
1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

ACL 2017 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Don’t understand a measure? Learn it:
Structured Prediction for Coreference Resolution optimizing its measures

Anonymous ACL submission

Abstract
An interesting aspect of structured predic-
tion is the evaluation of an output struc-
ture against the gold standard. Especially
in the loss-augmented setting, the need of
finding the max-violating constraint has
severely limited the expressivity of effec-
tive loss functions. In this paper, we trade
off exact computation for enabling the use
and study of more complex loss functions
for coreference resolution (CR). Most in-
terestingly, we show that such functions
can be (i) automatically learned also from
controversial but commonly accepted CR
measures, e.g., MELA, and (ii) success-
fully used in learning algorithms. The ac-
curate model comparison on the standard
CoNLL–2012 setting shows the benefit of
more expressive loss functions.

1 Introduction
In recent years, interesting structured predic-
tion methods have been developed for coref-
erence resolution (CR), e.g., (Fernandes et al.,
2014; Björkelund and Kuhn, 2014; Martschat and
Strube, 2015). These models are supposed to out-
put clusters but, to better control the exponential
nature of the problem, the clusters are converted
into tree structures. Although this simplifies the
problem, optimal solutions are associated with an
exponential set of trees, requiring to maximize
over such a set. This originated latent models (Yu
and Joachims, 2009) optimizing the so-called loss-
augmented objective functions.

In this setting, loss functions need to be factor-
izable together with the feature representations for
finding the max-violating constraints. The conse-
quence is that only simple loss functions, basically
just counting wrong edges, were applied in pre-
vious work, giving up expressivity for simplicity.

This is a critical limitation as domain experts con-
sider more information than just counting edges.

In this paper, we study the use of more ex-
pressive loss functions in the structured predic-
tion framework for CR, although some findings
are clearly applicable to more general settings. We
attempted to use the complicated official MELA
measure (Pradhan et al., 2012) of CR1 within the
learning algorithm. Unfortunately, MELA is the
average of measures, among which CEAFe has
an exsessive computational complexity prevent-
ing its use. To solve this problem, we defined
a model for learning MELA from data using a
fast linear regressor, which can be then efficiently
used in structured prediction algorithms. Learn-
ing the loss function required the definition of
features suitable for such a task, e.g., different
link counts or aggregations such as Precision and
Recall. Moreover, we needed to generate train-
ing data for our regression loss algorithm (RL) to
make it generalize on unseen data, i.e., new CR
learning setting.

Since RL is not factorizable in the graph (we
have not found yet a possible factorization), we
designed a latent structure perceptron (LSP) that
can optimize non-factorizable loss functions on
CR graphs. We experimented with LSP using RL
and other traditional functions using the same set-
ting of the CoNLL–2012 Shared Task, thus en-
abling an exact comparison with previous work.
The results confirmed that RL can be effectively
learned and used in LSP, although the improve-
ment was smaller than expected, considering that
our RL provides the algorithm with a more accu-
rate feedback. Thus, we analyzed the theory be-
hind this process by also contributing to the defi-
nition of the property of the loss optimality. This
shows that the available loss functions, e.g., by

1It is the measure that received most consensus in the NLP
community.

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2017 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Fernandes et al.; Yu and Joachims, are enough
for optimizing MELA on the training set, at least
when the data is separable. Therefore, in these
conditions, we cannot expect a very large im-
provement from RL. To confirm such a conjecture,
we tested the models in a more difficult setting,
in terms of separability. We used different feature
sets of a smaller size and found out that in such
conditions, RL requires less epochs and produces
better results than the other simpler functions. The
accuracy of RL-based model, using 16 times less
features, decreases by just 0.3 points, still improv-
ing the state of the art in structured prediction.

2 Related Work
There is a number of works attempting to optimize
directly coreference metrics. The solution pro-
posed by Zhao and Ng (2010) consists in finding
an optimal weighting (by beam search) of training
instances, which would maximize the target coref-
erence metric. Their models optimizing MUC and
B3 delivered significant improvement on the MUC
and ACE corpora. Uryupina et al. (2011) bene-
fited from applying genetic algorithms for the se-
lection of features and architecture configuration
by multi-objective optimization of MUC and the
two CEAF variants. Our approach is different in
that the evaluation measure (its approximation) is
injected directly into the learning algorithm.

SVMcluster – a structured output approach by
Finley and Joachims (2005) – enables optimiza-
tion to any clustering loss function (including non-
decomposable ones). The authors show experi-
mentally that optimizing a particular loss results
into a better classification accuracy in terms of
the same very loss function. The loss functions
applied in the work allow for fast computation,
while, given the realistic coreference benchmark
and the MELA metric, this is not the case.

While Finley and Joachims are compelled to
perform approximate inference to overcome the
intractability of finding an optimal clustering, the
latent variable structural approaches – SVM of Yu
and Joachims (2009) and perceptron of Fernan-
des et al. (2014) – render exact inference possi-
ble by introducing auxiliary graph structures. The
modeling of Fernandes et al. (also referred to as
the antecedent tree approach) is exploited in the
works of Björkelund and Kuhn (2014), Martschat
and Strube (2015), and Lassalle and Denis (2015).
Like us, the first couples such approach with ap-
proximate inference but for enabling the use of

Figure 1: Latent tree used for structural learning

non-local features. The current state of the art
model of Wiseman et al. (2016) also employs a
greedy inference procedure as it has global fea-
tures from an RNN as a non-decomposable term
in the inference objective.

3 Structure Output Learning for CR
We consider online learning algorithms for link-
ing structured input and output patterns. More
formally, such algorithms find a linear mapping
f(x,y) = 〈w,Φ(x,y)〉, where f : X × Y → R,
w is a linear model, Φ(x,y) is a combined fea-
ture space of input variables X and output vari-
ables Y . The predicted structure is derived with
the argmax

y∈Y
f(x,y). In the next sections, we show

how to learn w for CR using structured percep-
tron. Additionally, we provide a characterization
of effective loss functions for separable cases.

3.1 Modeling CR
In this framework, CR is essentially modeled as a
clustering problem, where an input-output exam-
ple is described by a tuple (x,y,h), x is a set of
entity mentions contained in a text document, y
is set of the corresponding mention clusters and h
is a latent variable, i.e., an auxiliary structure that
can represent the cluster y. For example, given the
following text:

Although (she)m1 was supported by (President
Obama)m2 , (Mrs. Clinton)m3 missed (her)m4

(chance)m5 , (which)m6 looked very good before
counting votes.

the clusters of the entity mentions are represented
by the latent tree in Fig. 1, where its nodes are
mentions and the subtrees connected to the addi-
tional root node form distinct clusters. The trees
h are called latent variables as they are consis-
tent with y, i.e., they only contain links between
mention nodes that corefer or fall into the same
cluster according to y. Clearly, an exponential set
of trees, H , can be associated with one and the
same clustering. Using only one tree to represent
a clustering makes the search for optimal mention

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

ACL 2017 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Algorithm 1 Latent Structured Perceptron
1: Input: X = {(xi,yi)}ni=1, w0, C, T
2: w← w0; t← 0
3: repeat
4: for i = 1, ..., n do
5: h∗i ← argmax

h∈H(xi,yi)

〈wt,Φ(xi,h)〉

6: ĥi ← argmax
h∈H(xi)

〈wt,Φ(xi,h)〉+C×∆(yi,h
∗
i ,h)

7: if ∆(yi,h
∗
i , ĥi) > 0 then

8: wt+1 ← wt + Φ(xi,h
∗
i)− Φ(xi, ĥi)

9: end if
10: end for
11: t← t + 1
12: until t < nT

13: w← 1
t

t∑
i=1

wi

return w

clusters tractable. In particular, structured predic-
tion algorithms select h that maximizes the model
learned at time t as shown in the next section.

3.2 Latent Structured Perceptron (LSP)

The LSP model proposed by Sun et al. (2009)
and specialized for solving CR tasks by Fernandes
et al. (2012) is described by Algorithm 1.

Given a training set {(xi,yi)}i=1,..,n, an initial-
ized w0

2, a trade off parameter C and the max-
imum number of epochs T , LSP iterates the fol-
lowing operations: Line 5 finds a latent tree h∗i
that maximizes 〈wt,Φ(xi,h)〉 for the target exam-
ple (xi,yi). This basically finds the max ground
truth tree with respect to the current wt. Finding
such max requires an exploration over the tree set
H(xi,yi), which only contains arcs between men-
tions that corefer according to the gold standard
clustering yi. Line 6 seeks for the max-violating
tree ĥi in H(xi), which is the set of all candi-
date trees using any combination of possible arcs.
Line 7 tests if the produced tree ĥi has some mis-
takes with respect to the gold clustering yi, using
a loss function, ∆(yi,h

∗
i, ĥi). Note that some

models define a loss also exploiting the best latent
tree h∗i . If the test is verified, the model is updated
with the vector Φ(xi,h

∗
i)− Φ(xi, ĥi).

Fernandes et al. (2012) used exactly the directed
trees we showed as latent structures and applied
the Edmonds’ spanning tree algorithm (Edmonds,
1967) for finding the max. Their model achieved
the best results in the CoNLL–2012 Shared Task,
a challenge for CR systems (Pradhan et al., 2012).
Also important was the role of their selected loss
function, which we elaborate in the next sections.

2Either to 0 or to a random value.

3.3 Loss functions
When defining a loss function, it is very important
to preserve the factorization of the model compo-
nents along the latent tree edges since this leads to
efficient maximization algorithms (see Sec. 5).

Fernandes et al. uses a loss function that (i)
compares a predicted tree ĥ against the gold tree
h∗ and (ii) factorizes over the edges in the way the
model does. Its equation is:

∆F (h∗, ĥ) =

M∑
i=1

1ĥ(i) 6=h∗(i)(1+r ·1h∗(i)=0), (1)

where h∗(i) and ĥ(i) output the parent of the men-
tion node i in the gold and predicted tree, respec-
tively, whereas 1h∗(i) 6=ĥ(i) just checks if the par-
ents are different, and if yes, penalty of 1 (or 1 + r
if the gold parent is the root) is added.

Yu and Joachims’s loss is based on undirected
tree without a root and on the gold clustering y. It
is computed as:

∆Y J(y, ĥ) = n(y)− k(y) +
∑
e∈ĥ

l(y, e), (2)

where n(y) is the number of graph nodes, k(y) is
the number of clusters in y, and l(y, e) assigns−1
to any edge e that connects nodes from the same
cluster in y, and r otherwise.

In our experiments, we adopt both the loss func-
tions, however, we measure ∆F , in contrast to Fer-
nandes et al., always against the gold label y and
not against the current h∗, i.e., in the way it is done
by Martschat and Strube (2015), who employ in
their work an equivalent LSP model.

3.4 On optimality of simple loss functions
The above loss functions are rather simple and
mainly based on counting the number of mistaken
edges. Below, we show that such simple functions
achieve training data separation (if it exists) of a
general task measure reaching its max on 0 mis-
takes. The latter is a desiderable characteristic of
many measures used in CR and NLP research.

Proposition 1 (Sufficient condition for optimal-
ity of loss functions for learning graphs). Let
∆(y,h∗, ĥ) ≥ 0 be a simple, edge-factorizable
loss function, which is also monotone in the num-
ber of edge errors, and let µ(y, ĥ) be any graph-
based measure maximized by no edge errors.
Then, if the training set is linearly separable LSP
optimizing ∆ converges to the µ optimum.
Proof. If the data is linearly separable the percep-
tron converges ⇒ ∆(yi,h

∗
i, ĥi) = 0, ∀xi. The

loss is factorizable, i.e.,

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

ACL 2017 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

∆(yi,h
∗
i, ĥi) =

∑
e∈ĥi

l(yi,h
∗
i, e), (3)

where l(·) is an edge loss function. Thus,∑
e∈ĥi

l(yi,h
∗
i, e) = 0. The latter equation and

monotonicity imply l(yi,h
∗
i, e) = 0,∀e ∈ ĥi,

i.e., there are no edge mistakes, otherwise by fix-
ing such edges, we would have a smaller ∆, i.e.,
negative, contracting the initial positiveness hy-
pothesis. Thus, no edge mistake in any xi implies
that µ(y, ĥ) is maximized on the training set.

Corollary 1. ∆F (h∗, ĥ) and ∆Y J(y, ĥ) are both
optimal loss functions for graphs.

Proof. Eq. 1 and Eq. 2 show that both are 0 when
applied to a clustering with no mistake on the
edges. Additionally, for each edge mistake more,
both loss functions increase, implying monotonic-
ity. Thus, they satisfy all the assumptions of
Proposition 1.

Our characterization above suggests that ∆F

and ∆Y J can optimize any measure that rea-
sonably targets no mistakes as its best outcome.
Clearly, this property does not guarantee loss func-
tions to be suitable for a given task measure, e.g.,
the latter may have different max points and be-
have rather discontinuously. However, a common
practice in NLP is to optimize the maximum of a
measure, e.g., in case of Precision and Recall, or
Accuracy, therefore, loss functions able to at least
achieve such optimum are preferable.

4 Automatically learning a loss function
How to measure a complex task such as CR has
generated a long and controversial discussion in
the research community. While such a debate is
progressing, the most accepted and used measure
is the so-called, Mention, Entity, and Link Av-
erage (MELA) score. As it will be clear from
the description below, MELA is not easily inter-
pretable and not robust to the mention identifica-
tion effect (Moosavi and Strube, 2016). Thus, loss
functions showing the optimality property may not
be enough to optimize it. Our proposal is to use a
version of MELA transformed in a loss function
optimized by an LSP algorithm with inexact in-
ference. However, the computational complexity
of the measure prevents to carry out an effective
learning. Our solution is thus to learn MELA with
a fast linear regressor, which also produces a con-
tinuos version of the measure.

4.1 Measures for CR
MELA is the unweighted average of MUC (Vilain
et al., 1995), B3 (Bagga and Baldwin, 1998) and
CEAFe (CEAF variant with entity-based similar-
ity) (Luo, 2005; Cai and Strube, 2010) scores, hav-
ing heterogeneous nature. MUC computes Pre-
cision and Recall based on the number of cor-
rectly predicted links between mentions, B3 is
based on computing Precision and Recall individ-
ually for each mention, and, finally, CEAFe – on
computing similarity between key and system en-
tities after finding an optimal alignment between
them. All the three are strongly influenced by the
mention identification effect (Moosavi and Strube,
2016). Thus, loss functions, such as ∆F and ∆Y J ,
may output identical values for different cluster-
ings that can have a big gap in terms of MELA.

Additionally, MELA computation is rather ex-
pensive. Its most costly component is CEAFe,
which employs the Kuhn-Munkres algorithm for
finding an optimal alignment between the enti-
ties (clusters) of the gold y and the system output
ŷ. Its complexity is bounded by O(Mm2 logm)
(Luo, 2005), where M and m are, correspond-
ingly, a maximum and a minimum number of en-
tities in y and ŷ. Computing CEAFe is especially
slow for the candidate outputs ŷ with a low quality
of prediction, i.e, when m is big, and the coher-
ence with the gold y is scarse.

4.2 Features for learning measures
As computational reasons prevent to use MELA in
LSP (see our inexact search algorithm in Sec. 5),
we study methods for approximating it with a lin-
ear regressor. For this purpose, we devised 9 fea-
tures counting statistics, which can be seen, in
some sense, as truncated and simplified versions
of Precision, Recall and F1 of each of the three
metric-components of MELA. Clearly, neither ∆F

nor ∆Y J provide the same or even similar values.
Apart from the computational complexity, the

difficulty of evaluating the quality of the predicted
clustering ŷ during training is also due to the fact
that CR is carried out on automatically detected
mentions, while it needs to be compared against a
gold standard clustering of a gold mention set. It
is too much of a chore to sustain information about
the latter on the training phase. However, we can
use simple information about automatic mentions
and how they relate to gold mentions and gold
clusters: (i) the number of correctly detected auto-
matic mentions, (ii) the number of links they have

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

ACL 2017 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Algorithm 2 Finding a Max-violating Spanning
Tree
1: Input: training example (x,y); graph G(x) with ver-

tices V denoting mentions; set of the incoming candidate
edges, E(v), v ∈ V ; weight vector w

2: h∗ ← ∅
3: for v ∈ V do
4: e∗ = argmax

e∈E(v)

〈w, e〉+ C × l(y, e)

5: h∗ = h∗ ∪ e∗

6: end for
7: return max-violating tree h∗

8: (clustering y∗ is induced by the tree h∗)

in the gold standard, (iii) the number of gold men-
tions and gold clusters, (iv) the number of gold
links. Having such quantities, we can precisely
compute Precision, Recall and F1-measure values
of MUC, which is the simplest of the three met-
rics. These are the first three important features.

B3 and CEAFe require more processing. B3

computes an overlap between the predicted and
the gold clusters in proportion to the cluster size,
on a per-mention basis. CEAFe also computes a
cluster overlap, but on the level of clusters. Since
we do not have access to the full information about
all the gold mentions and their participation in the
gold clusters, we assume the clusters formed by
automatic mentions that are known to be in the
gold output as truncated gold clusters ỹ and com-
pute approximated B3 and CEAFe values towards
them. For computing CEAFe heuristics, we do not
perform cluster alignment.
4.3 Generating training and test data
The features described above can be used to char-
acterize the clustering variables ŷ. For generating
training data, we collected all the max-violating ŷ
produced during LSPF (using ∆F) learning and
associate them with their correct MELA scores
from the scorer. This way, we can have both train-
ing and test data for our regressor. In our experi-
ments, for the generation purpose, we decided to
run LSPF on each document separately, in order
to obtain more variability of ŷ’s. We use a simple
linear SVM to learn a model wρ. Considering that
MELA(y, ŷ) score lies in the interval [100, 0], a
simple approximation of loss function could be:

∆ρ(y, ŷ) = 100−wρ · φ(y, ŷ). (4)
In the next section, we show its improved version
as well as an LSP for learning with it based on
inexact search.

5 Learning with learned loss functions
Our experiments will demonstrate that ∆ρ can be
accurately learned from data. However, the fea-

Algorithm 3 Inexact Inference of a Max-violating
Spanning Tree with a Global Loss
1: Input: training example (x,y); graph G(x) with ver-

tices V denoting mentions; set of the incoming candidate
edges, E(v), v ∈ V ; w, ground truth tree h∗

2: ĥ← ∅
3: score← 0
4: repeat
5: prev score = score
6: score = 0
7: for v ∈ V do
8: h = ĥ \ e(v)
9: ê = argmax

e∈E(v)

〈w, e〉+ C ×∆(y,h∗,h ∪ e)

10: ĥ = h ∪ ê
11: score = score + 〈w, ê〉
12: end for
13: score = score + ∆(y,h∗, ĥ)
14: until score = prev score

15: return max-violating tree ĥ

tures we used for this are not factorizable over the
edges of the latent trees. Thus, we design a new
LSP algorithm that can use our learned loss in an
approximated max search.

5.1 A general inexact algorithm for CR
If the loss function can be factorized over tree
edges (see Eq. 3) the max-violating constraint in
Line 6 of Alg. 1 can be efficiently found by exact
decoding, e.g., using the Edmonds’ algorithm as in
(Fernandes et al., 2014) or Kruskal’s as in (Yu and
Joachims, 2009). The candidate graph, by con-
struction, does not contain cycles, and the infer-
ence by Edmonds’ algorithm does technically the
same as the ”best-left-link” inference algorithm by
Chang et al. (2012). It can be schematically repre-
sented in Alg. 2.

When we deal with ∆ρ, Alg. 2 cannot be
longer applied as our new loss function is non-
factorizable. Thus, we designed a greedy solution,
Alg. 3, which still uses the spanning tree algo-
rithm, though, it is not guaranteed to deliver the
max-violating constraint. However, finding even
a suboptimal solution optimizing a more accurate
loss function may achieve better performance both
in terms of speed and accuracy.

We reformulate Step 4 of Alg. 2, where a max-
violating incoming edge ê is identified for a ver-
tex v. The new max-violating inference objective
contains now a global loss measured on the partial
structure ĥ built up to now plus a candidate edge
e for a vertex v in consideration (Line 10 of Algo-
rithm 3). On a high level, this resembles the infer-
ence procedure of Wiseman et al. (2016), who use
it for optimizing global features coming from an

6

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

ACL 2017 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Samples # examples MSE SCCTrain Test
S1 S2 6, 011 2.650 99.68
S2 S1 5, 496 2.483 99.70

Table 1: Accuracy of the loss regressor on two different sets
of examples generated from different documents samples.

RNN. Differently though, after processing all the
vertices, we repeat the procedure until the score of
ĥ no longer improves.

It should be noted that Björkelund and Kuhn
(2014) perform inexact search on the same la-
tent tree structures to extend the model to non-
local features. In contrast to our approach, they
use beam search and accumulate the early up-
dates. Their tests show that early updates, in them-
selves, considerably slowdown the convergence of
the perceptron.

In addition to the design of an algorithm en-
abling the use of our ∆ρ, there are other intricacies
caused by the lack of factorization that need to be
taken into account (see the next section).

5.2 Approaching factorization properties
The ∆ρ defined by Eq. 4 approximately falls into
the interval [0, 100]. However, the simple optimal
loss functions, ∆F and ∆Y J , output a value de-
pendent on the size of the input training document
in terms of edges (as they factorize in terms of
edges). Since this property cannot be learned from
MELA by our regression algorithm, we calibrate
our loss with respect to the number of correctly
predicted mentions, c, in that document, obtaining
∆′ρ = c

100∆ρ. Finally, another important issue is
connected to the fact that on the way as we incre-
mentally construct a max-violating tree according
to Alg. 3, ∆ρ decreases (and MELA grows), as we
add more mentions to the output, traversing the
tree nodes v. Thus, to equalize the contribution
of the loss among the candidate edges of differ-
ent nodes, we also scale the loss of the candidate
edges of the node v having order i in the docu-
ment, according to the formula ∆′′ρ = i

|V |∆
′
ρ. On

the other hand, this can be interpreted as giving
more weight to the hard-to-classify instances – an
important issue alleviated by Zhao and Ng (2010).
Towards the end of the document, the probabil-
ity of correctly predicting an incoming edge for a
node generally decreases, as increases the number
of hypotheses.

6 Experiments
In our experiments, we first show that our regres-
sor for learning MELA approximates it rather ac-

101 102 103

2

4

6

8

10

12

number of training examples

M
SE

101 102 103

98.8

99.0

99.2

99.4

99.6

99.8

number of training examples

SC
C

Figure 2: Regressor Learning curves.

curately. Then, we examine the impact of our
∆ρ on state-of-the-art systems in comparison with
other loss functions. Finally, we show that the im-
pact of our model is amplified when learning in
smaller feature spaces.

6.1 Setup

Data We conducted our experiments on the En-
glish part of the corpus from CoNLL 2012-Shared
Task3, containing 2,802, 343 and 348 documents
for training, dev. and test sets, respectively.
Models We implement our version of LSP,
where LSPF , LSPY J and LSPρ use the loss func-
tions, ∆F , ∆F and ∆ρ, defined in sec. 3.3 and
5.2, respectively. We also used cort4 – corefer-
ence toolkit by Martschat and Strube (2015) both
to preprocess the CoNLL data and to extract can-
didate mentions and features (the basic set).
Parametrization All the perceptron models re-
quire tuning of a regularization parameter C.
LSPF and LSPY J – also tuning of a specific loss
parameter r. We select the parameters on the
entire development set by training on 100 ran-
dom documents from the training set. We pick
up C from {1.0, 100.0, 1000.0, 2000.0}, the r val-
ues for LSPF from the interval [0.5, 2.5] with
step 0.5, and the r values for LSPY J – from
{0.05, 0.1, 0.5}. Ultimately, we used C = 1000.0
in all the models including LSPρ; r = 1.0 in LSPF
and r = 0.1 in LSPY J .
A standard previous work setting for the number
of epochs T of LSP is 5 (Martschat and Strube,
2015). Fernandes et al. (2014) noted that T = 50
was sufficient for convergence. To assess the ac-
curacy on the test set we selected the best T from
1 to 50 on the dev. set.
Evaluation measure We used MUC, B3, CEAFe
and their average MELA (Pradhan et al., 2012) for
evaluation, computed by the version 8 of the offi-
cial CoNLL scorer.

3conll.cemantix.org/2012/data.html
4http://smartschat.de/software

conll.cemantix.org/2012/data.html
http://smartschat.de/software

7

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

ACL 2017 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Model Selected (N = 1M) All (N ∼ 16.8M)
Dev. Test Tbest Dev. Test Tbest

LSPF 63.72 62.19 49 64.05 63.05 41
LSPJ 63.72 62.44 29 64.32 62.76 13
LSPρ 64.12 63.09 27 64.30 63.37 18

M&S AT – – – 62.31 61.24 5
M&S MR – – – 63.52 62.47 5
B&K – – – 62.52 61.63 –
Fer – – – 60.57 60.65 –

Table 2: Results of our and previous work models evaluated
on the dev. and test sets following the exact CoNLL-2012 En-
glish setting, using all training documents with All and 1M
features. Tbest is evaluated on the dev. set.

6.2 Learning loss functions
For learning MELA, we generated training and
test examples from LSPF according to the proce-
dure described in Section 4.3. In the first exper-
iment, we trained the wρ model on a set of ex-
amples, S1, generated from a sample of 100 doc-
uments and tested on a set of examples, S2, gen-
erated from another sample of the same size, and
vice versa. The results in Table 1 show that with
just 5, 000/6, 000, the Mean Squared Error (MSE)
is roughly between ∼ 2.4 − 2.7: these are rather
small numbers considering that the regression out-
put values in the interval [0, 100]. Squared Corre-
lation Coefficient (SCC) reaches a correlation of
about 99.7%, demonstrated that our regression ap-
proach is effective in estimating MELA.

Additionally, Figure 2 shows the regression
learning curves evaluated with MSE and SCC. The
former rapidly decreases and, with about 3, 000
examples, reaches a plateau around 2.5. The latter
shows a similar behavior, approaching a correla-
tion of about 99.8% with MELA.

6.3 State of the art and model comparison
We first experimented with the standard CoNLL
setting to compare the LSP accuracy in terms of
MELA using the three different loss functions, i.e.,
LSPF , LSPY J and LSPρ. In particular, we used
all the documents of the training set and all the
features (N ∼ 16.8M) from cort, and tested on
both dev. and test sets. The results are reported
in Columns All of Table 2. We note that first:
our ∆ρ is effective as it stays on a par with ∆F

and ∆Y J on dev. set. This is interesting as Corol-
lary 1 shows that such functions can optimize
MELA, the reported values refer to the optimal
epoch numbers. Also, LSPρ improves the other
models on the test set by 0.3 percent points (statis-
tically significant at 93% of confidence level).

Secondly, all the three models improve the state
of the art on CR using LSP, i.e., by Martschat and

#Feat. Model Test Set
MUC B3 CEAFe F1

All LSPF 72.66 59.94 56.54 63.05
LSPJ 72.18 59.31 55.82 62.76
LSPρ 72.33 60.21 57.21 63.37

LSPF 71.95 59.03 55.59 62.19
1M LSPJ 72.35 59.54 56.38 62.44

LSPρ 72.09 60.11 57.07 63.09

Table 3: Results on the test set only using the same setting
of Tab. 2 and the measures composing MELA

Strube (2015) using antecedent trees (M&S AT)
or mention ranking (M&S MR), Björkelund and
Kuhn (2014) using a global feature model (B&K)
and Fernandes et al. (2014) (Fer). It should be
taken into account that all the LSP models were
trained on the training set only, without retraining
on the training and development sets together, im-
plying that the scores can be still improved.

Thirdly, Tab. 3 shows the breakdown of the
MELA results in terms of its components on the
test set. Interestingly, LSPρ is noticeably better in
terms of B3 and CEAFe, while LSP with simple
losses, as expected, deliver higher MUC score.

Finally, the overall improvement of ∆ρ is not
impressive. This mainly depends on the optimal-
ity of the competing loss functions. However, ac-
cording to Proposition 1, they require to work in
separable cases: hypothesis that can be likely ver-
ified in a setting of ∼ 16M features.

6.4 Learning in more challenging conditions
In thse experiments, we verify the hypothesis that
when the optimality property is partially or totally
missing ∆ρ is more visibly superior to ∆F and
∆Y J . As we do not want to degrade their effec-
tiveness, the only condition dependent on the set-
ting is the data inseparability or at least harder to
be separated. These conditions can be obtained
by reducing the size of the feature space. How-
ever, since we aim at testing conditions, where ∆ρ

is practically useful, we filter out less important
features, preserving the model accuracy (at least
when the selection is not extremely harsh). For
this purpose, we designed a feature selection ap-
proach using a basic binary classifier trained to
discriminate between correct and incorrect men-
tion pairs. This is typically used in non structured
CR methods and it has the nice property of using
the same features of LSP (we do not use global
features in our study). We carried out a selection
using the absolute values of the model weights of
the classifier for ranking features and then select-
ing those having higher rank.

8

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

ACL 2017 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

0 25 50 75 100

42

44

46

48

number of epochs, T

M
E

L
A

N = 10K

0 25 50 75 100

54

56

58

60

number of epochs, T

M
E

L
A

N = 100K

0 25 50 75 100
56

58

60

62

number of epochs, T

M
E

L
A

N = 300K

0 25 50 75 100

58

60

62

64

number of epochs, T

M
E

L
A

N = 500K

0 25 50 75 100

60

62

64

number of epochs, T

M
E

L
A

N = 1M

0 25 50 75 100

60

62

64

number of epochs, T

M
E

L
A

N = 1.5M

0 25 50 75 100

61

62

63

64

number of epochs, T

M
E

L
A

All (N ∼ 16.8M)

104 105 106 107
45

50

55

60

65

number of features,N

M
E
L
A

All on the Test Set

LSPF LSPJ LSPρ

Figure 3: Results of LSP models on dev. set using different number of features N . The last plot reports MELA score on the
test set of models using the optimal epoch numbers derived from the dev. set.

The MELA produced by of our models using all
training data are presented in Figure 3. The first 7
plots show learning curves in terms of epochs of
LSP models for different feature sets of increas-
ing size, N , tested on the dev. set. We note that:
firstly, the fewer features are available, the better
LSPρ curves are than those of LSPF and LSPY J
in terms of accuracy and convergence speed. The
intuition is that finding a separation of the training
set (generalizing well) becomes more challenging
(e.g., with 10k features the data is not linearly sep-
arable) thus a loss function closer to the real mea-
sure provides some advantages.

Secondly, when using all features, LSPρ is still
overall better than the other models but clearly the
latter can achieve the same MELA on the dev. set.

Thirdly, the last plot shows the MELA produced
by LSP models on the test set, when trained with
the best epoch derived from the dev. set (previous
plots). We observe that LSPρ is constantly better
than the other models, though decreasing its im-
provement as the feature number increases.

Next, in Column 1 (Selected) of Tab. 2, we re-
port the model MELA using 1 million features.
We note that LSPρ improves the other models by
at least 0.6 percent points, achieving the same ac-
curacy than the best of its competitors, i.e., LSPF ,
using all its features.

Finally, ∆ρ does not satisfy Prop. 1, therefore,
generally, we do not know if it can optimize any
measure µ-type measure over graphs. However,
being learned to optimize MELA, it clearly sepa-

rates data to maximize such a measure. We empir-
ically verified this by checking the MELA score
obtained on the training set: we found that LSPρ
always optimizes MELA, iterating for less epochs
than the other loss functions.

7 Conclusions
In this paper, we studied the use of more com-
plex loss functions in structured prediction for CR.
Given the scale of our investigation, we limited
our study to LSP, considered anyway state of the
art. We derived several findings: (i) for the first
time, to our knowledge, we showed that a com-
plex measure, such as MELA, can be learned by
a linear regressor (RL) with high accuracy and ef-
fective generalization. (ii) The latter was essential
for the design of our new LSP based on inexact
search and RL. (iii) We showed that an automati-
cally learned loss can be used and provides state-
of-the-art performance in a real setting, including
thousands of documents and millions of features,
such as CoNLL–2012 Shared Task. (iv) Very in-
terestingly, we also defined some properties of op-
timal loss functions for CR, which show that in
separable cases, they are enough to get the state of
the art. However, as soon as separability becomes
more complex simple loss functions lose optimal-
ity and RL becomes more accurate and faster.

Our study opens several future directions, rang-
ing from defining algorithms based on automati-
cally learned loss functions to learning more ef-
fective measures from expert examples.

9

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

ACL 2017 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

References
Amit Bagga and Breck Baldwin. 1998. Algorithms

for scoring coreference chains. In Proceedings of
the Linguistic Coreference Workshop at the First In-
ternational Conference on Language Resources and
Evaluation. Granada, Spain, pages 563–566.

Anders Björkelund and Jonas Kuhn. 2014. Learn-
ing structured perceptrons for coreference resolution
with latent antecedents and non-local features. In
Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers). Association for Computational Lin-
guistics, Baltimore, Maryland, pages 47–57.

Jie Cai and Michael Strube. 2010. Evaluation metrics
for end-to-end coreference resolution systems. In
Proceedings of the 11th Annual Meeting of the
Special Interest Group on Discourse and Dia-
logue. Association for Computational Linguistics,
Stroudsburg, PA, USA, SIGDIAL ’10, pages 28–36.
http://dl.acm.org/citation.cfm?id=1944506.1944511.

Kai-Wei Chang, Rajhans Samdani, Alla Rozovskaya,
Mark Sammons, and Dan Roth. 2012. Illinois-
coref: The ui system in the conll-2012 shared
task. In Joint Conference on EMNLP and
CoNLL - Shared Task. Association for Computa-
tional Linguistics, Jeju Island, Korea, pages 113–
117. http://www.aclweb.org/anthology/W12-4513.

Jack Edmonds. 1967. Optimum branchings. Journal
of research of National Bureau of standards pages
233–240.

Eraldo Rezende Fernandes, Cı́cero Nogueira dos
Santos, and Ruy Luiz Milidiú. 2012. Latent
structure perceptron with feature induction
for unrestricted coreference resolution. In
Joint Conference on EMNLP and CoNLL -
Shared Task. Association for Computational
Linguistics, Jeju Island, Korea, pages 41–48.
http://www.aclweb.org/anthology/W12-4502.

Eraldo Rezende Fernandes, Cı́cero Nogueira dos San-
tos, and Ruy Luiz Milidiú. 2014. Latent trees for
coreference resolution. Computational Linguistics
40(4):801–835.

Thomas Finley and Thorsten Joachims. 2005.
Supervised clustering with support vector ma-
chines. In ICML ’05: Proceedings of the 22nd
international conference on Machine learning.
ACM, New York, NY, USA, pages 217–224.
https://doi.org/10.1145/1102351.1102379.

Emmanuel Lassalle and Pascal Denis. 2015.
Joint anaphoricity detection and corefer-
ence resolution with constrained latent struc-
tures. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence.
AAAI Press, AAAI’15, pages 2274–2280.
http://dl.acm.org/citation.cfm?id=2886521.2886637.

Xiaoqiang Luo. 2005. On coreference resolution per-
formance metrics. In Proceedings of the Con-
ference on Human Language Technology and Em-
pirical Methods in Natural Language Process-
ing. Association for Computational Linguistics,
Stroudsburg, PA, USA, HLT ’05, pages 25–32.
https://doi.org/10.3115/1220575.1220579.

Sebastian Martschat and Michael Strube. 2015. La-
tent structures for coreference resolution. Transac-
tions of the Association for Computational Linguis-
tics 3:405–418.

Nafise Sadat Moosavi and Michael Strube. 2016.
Which coreference evaluation metric do you trust?
a proposal for a link-based entity aware metric.
In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Berlin, Germany, pages 632–642.
http://www.aclweb.org/anthology/P16-1060.

Sameer Pradhan, Alessandro Moschitti, Nian-
wen Xue, Olga Uryupina, and Yuchen Zhang.
2012. Conll-2012 shared task: Modeling mul-
tilingual unrestricted coreference in ontonotes.
In Joint Conference on EMNLP and CoNLL
- Shared Task. Association for Computational
Linguistics, Jeju Island, Korea, page 1–40.
http://www.aclweb.org/anthology/W12-4501.

Xu Sun, Takuya Matsuzaki, Daisuke Okanohara,
and Jun’ichi Tsujii. 2009. Latent variable
perceptron algorithm for structured classifi-
cation. In Proceedings of the 21st Interna-
tional Jont Conference on Artifical Intelligence.
Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, IJCAI’09, pages 1236–1242.
http://dl.acm.org/citation.cfm?id=1661445.1661643.

Olga Uryupina, Sriparna Saha, Asif Ekbal, and
Massimo Poesio. 2011. Multi-metric optimization
for coreference: The unitn/iitp/essex submission
to the 2011 conll shared task. In Proceedings
of the Fifteenth Conference on Computational
Natural Language Learning: Shared Task. Associ-
ation for Computational Linguistics, Stroudsburg,
PA, USA, CONLL Shared Task ’11, pages 61–65.
http://dl.acm.org/citation.cfm?id=2132936.2132944.

Marc Vilain, John Burger, John Aberdeen, Dennis Con-
nolly, and Lynette Hirschman. 1995. A model-
theoretic coreference scoring scheme. In Proceed-
ings of the 6th Message Understanding Conference.
pages 45–52.

Sam Wiseman, Alexander M. Rush, and Stuart M.
Shieber. 2016. Learning global features for
coreference resolution. CoRR abs/1604.03035.
http://arxiv.org/abs/1604.03035.

Chun-Nam John Yu and Thorsten Joachims. 2009.
Learning structural svms with latent variables.
In Proceedings of the 26th Annual International
Conference on Machine Learning. ACM, New

http://dl.acm.org/citation.cfm?id=1944506.1944511
http://dl.acm.org/citation.cfm?id=1944506.1944511
http://dl.acm.org/citation.cfm?id=1944506.1944511
http://www.aclweb.org/anthology/W12-4513
http://www.aclweb.org/anthology/W12-4513
http://www.aclweb.org/anthology/W12-4513
http://www.aclweb.org/anthology/W12-4513
http://www.aclweb.org/anthology/W12-4502
http://www.aclweb.org/anthology/W12-4502
http://www.aclweb.org/anthology/W12-4502
http://www.aclweb.org/anthology/W12-4502
https://doi.org/10.1145/1102351.1102379
https://doi.org/10.1145/1102351.1102379
https://doi.org/10.1145/1102351.1102379
http://dl.acm.org/citation.cfm?id=2886521.2886637
http://dl.acm.org/citation.cfm?id=2886521.2886637
http://dl.acm.org/citation.cfm?id=2886521.2886637
http://dl.acm.org/citation.cfm?id=2886521.2886637
https://doi.org/10.3115/1220575.1220579
https://doi.org/10.3115/1220575.1220579
https://doi.org/10.3115/1220575.1220579
http://www.aclweb.org/anthology/P16-1060
http://www.aclweb.org/anthology/P16-1060
http://www.aclweb.org/anthology/P16-1060
http://www.aclweb.org/anthology/W12-4501
http://www.aclweb.org/anthology/W12-4501
http://www.aclweb.org/anthology/W12-4501
http://dl.acm.org/citation.cfm?id=1661445.1661643
http://dl.acm.org/citation.cfm?id=1661445.1661643
http://dl.acm.org/citation.cfm?id=1661445.1661643
http://dl.acm.org/citation.cfm?id=1661445.1661643
http://dl.acm.org/citation.cfm?id=2132936.2132944
http://dl.acm.org/citation.cfm?id=2132936.2132944
http://dl.acm.org/citation.cfm?id=2132936.2132944
http://dl.acm.org/citation.cfm?id=2132936.2132944
http://arxiv.org/abs/1604.03035
http://arxiv.org/abs/1604.03035
http://arxiv.org/abs/1604.03035
https://doi.org/10.1145/1553374.1553523

10

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

ACL 2017 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

York, NY, USA, ICML ’09, pages 1169–1176.
https://doi.org/10.1145/1553374.1553523.

Shanheng Zhao and Hwee Tou Ng. 2010. Maximum
metric score training for coreference resolution. In
Proceedings of the 23rd International Conference
on Computational Linguistics (Coling 2010). Coling
2010 Organizing Committee, Beijing, China, pages
1308–1316. http://www.aclweb.org/anthology/C10-
1147.

https://doi.org/10.1145/1553374.1553523
http://www.aclweb.org/anthology/C10-1147
http://www.aclweb.org/anthology/C10-1147
http://www.aclweb.org/anthology/C10-1147
http://www.aclweb.org/anthology/C10-1147

