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Don’t understand a measure? Learn it:
Structured Prediction for Coreference Resolution optimizing its measures

Anonymous ACL submission

Abstract
An interesting aspect of structured predic-
tion is the evaluation of an output struc-
ture against the gold standard. Especially
in the loss-augmented setting, the need of
finding the max-violating constraint has
severely limited the expressivity of effec-
tive loss functions. In this paper, we trade
off exact computation for enabling the use
and study of more complex loss functions
for coreference resolution (CR). Most in-
terestingly, we show that such functions
can be (i) automatically learned also from
controversial but commonly accepted CR
measures, e.g., MELA, and (ii) success-
fully used in learning algorithms. The ac-
curate model comparison on the standard
CoNLL–2012 setting shows the benefit of
more expressive loss functions.

1 Introduction
In recent years, interesting structured predic-
tion methods have been developed for coref-
erence resolution (CR), e.g., (Fernandes et al.,
2014; Björkelund and Kuhn, 2014; Martschat and
Strube, 2015). These models are supposed to out-
put clusters but, to better control the exponential
nature of the problem, the clusters are converted
into tree structures. Although this simplifies the
problem, optimal solutions are associated with an
exponential set of trees, requiring to maximize
over such a set. This originated latent models (Yu
and Joachims, 2009) optimizing the so-called loss-
augmented objective functions.

In this setting, loss functions need to be factor-
izable together with the feature representations for
finding the max-violating constraints. The conse-
quence is that only simple loss functions, basically
just counting wrong edges, were applied in pre-
vious work, giving up expressivity for simplicity.

This is a critical limitation as domain experts con-
sider more information than just counting edges.

In this paper, we study the use of more ex-
pressive loss functions in the structured predic-
tion framework for CR, although some findings
are clearly applicable to more general settings. We
attempted to use the complicated official MELA
measure (Pradhan et al., 2012) of CR1 within the
learning algorithm. Unfortunately, MELA is the
average of measures, among which CEAFe has
an exsessive computational complexity prevent-
ing its use. To solve this problem, we defined
a model for learning MELA from data using a
fast linear regressor, which can be then efficiently
used in structured prediction algorithms. Learn-
ing the loss function required the definition of
features suitable for such a task, e.g., different
link counts or aggregations such as Precision and
Recall. Moreover, we needed to generate train-
ing data for our regression loss algorithm (RL) to
make it generalize on unseen data, i.e., new CR
learning setting.

Since RL is not factorizable in the graph (we
have not found yet a possible factorization), we
designed a latent structure perceptron (LSP) that
can optimize non-factorizable loss functions on
CR graphs. We experimented with LSP using RL
and other traditional functions using the same set-
ting of the CoNLL–2012 Shared Task, thus en-
abling an exact comparison with previous work.
The results confirmed that RL can be effectively
learned and used in LSP, although the improve-
ment was smaller than expected, considering that
our RL provides the algorithm with a more accu-
rate feedback. Thus, we analyzed the theory be-
hind this process by also contributing to the defi-
nition of the property of the loss optimality. This
shows that the available loss functions, e.g., by

1It is the measure that received most consensus in the NLP
community.
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Fernandes et al.; Yu and Joachims, are enough
for optimizing MELA on the training set, at least
when the data is separable. Therefore, in these
conditions, we cannot expect a very large im-
provement from RL. To confirm such a conjecture,
we tested the models in a more difficult setting,
in terms of separability. We used different feature
sets of a smaller size and found out that in such
conditions, RL requires less epochs and produces
better results than the other simpler functions. The
accuracy of RL-based model, using 16 times less
features, decreases by just 0.3 points, still improv-
ing the state of the art in structured prediction.

2 Related Work
There is a number of works attempting to optimize
directly coreference metrics. The solution pro-
posed by Zhao and Ng (2010) consists in finding
an optimal weighting (by beam search) of training
instances, which would maximize the target coref-
erence metric. Their models optimizing MUC and
B3 delivered significant improvement on the MUC
and ACE corpora. Uryupina et al. (2011) bene-
fited from applying genetic algorithms for the se-
lection of features and architecture configuration
by multi-objective optimization of MUC and the
two CEAF variants. Our approach is different in
that the evaluation measure (its approximation) is
injected directly into the learning algorithm.

SVMcluster – a structured output approach by
Finley and Joachims (2005) – enables optimiza-
tion to any clustering loss function (including non-
decomposable ones). The authors show experi-
mentally that optimizing a particular loss results
into a better classification accuracy in terms of
the same very loss function. The loss functions
applied in the work allow for fast computation,
while, given the realistic coreference benchmark
and the MELA metric, this is not the case.

While Finley and Joachims are compelled to
perform approximate inference to overcome the
intractability of finding an optimal clustering, the
latent variable structural approaches – SVM of Yu
and Joachims (2009) and perceptron of Fernan-
des et al. (2014) – render exact inference possi-
ble by introducing auxiliary graph structures. The
modeling of Fernandes et al. (also referred to as
the antecedent tree approach) is exploited in the
works of Björkelund and Kuhn (2014), Martschat
and Strube (2015), and Lassalle and Denis (2015).
Like us, the first couples such approach with ap-
proximate inference but for enabling the use of

Figure 1: Latent tree used for structural learning

non-local features. The current state of the art
model of Wiseman et al. (2016) also employs a
greedy inference procedure as it has global fea-
tures from an RNN as a non-decomposable term
in the inference objective.

3 Structure Output Learning for CR
We consider online learning algorithms for link-
ing structured input and output patterns. More
formally, such algorithms find a linear mapping
f(x,y) = 〈w,Φ(x,y)〉, where f : X × Y → R,
w is a linear model, Φ(x,y) is a combined fea-
ture space of input variables X and output vari-
ables Y . The predicted structure is derived with
the argmax

y∈Y
f(x,y). In the next sections, we show

how to learn w for CR using structured percep-
tron. Additionally, we provide a characterization
of effective loss functions for separable cases.

3.1 Modeling CR
In this framework, CR is essentially modeled as a
clustering problem, where an input-output exam-
ple is described by a tuple (x,y,h), x is a set of
entity mentions contained in a text document, y
is set of the corresponding mention clusters and h
is a latent variable, i.e., an auxiliary structure that
can represent the cluster y. For example, given the
following text:

Although (she)m1 was supported by (President
Obama)m2 , (Mrs. Clinton)m3 missed (her)m4

(chance)m5 , (which)m6 looked very good before
counting votes.

the clusters of the entity mentions are represented
by the latent tree in Fig. 1, where its nodes are
mentions and the subtrees connected to the addi-
tional root node form distinct clusters. The trees
h are called latent variables as they are consis-
tent with y, i.e., they only contain links between
mention nodes that corefer or fall into the same
cluster according to y. Clearly, an exponential set
of trees, H , can be associated with one and the
same clustering. Using only one tree to represent
a clustering makes the search for optimal mention
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Algorithm 1 Latent Structured Perceptron
1: Input: X = {(xi,yi)}ni=1, w0, C, T
2: w← w0; t← 0
3: repeat
4: for i = 1, ..., n do
5: h∗i ← argmax

h∈H(xi,yi)

〈wt,Φ(xi,h)〉

6: ĥi ← argmax
h∈H(xi)

〈wt,Φ(xi,h)〉+C×∆(yi,h
∗
i ,h)

7: if ∆(yi,h
∗
i , ĥi) > 0 then

8: wt+1 ← wt + Φ(xi,h
∗
i )− Φ(xi, ĥi)

9: end if
10: end for
11: t← t + 1
12: until t < nT

13: w← 1
t

t∑
i=1

wi

return w

clusters tractable. In particular, structured predic-
tion algorithms select h that maximizes the model
learned at time t as shown in the next section.

3.2 Latent Structured Perceptron (LSP)

The LSP model proposed by Sun et al. (2009)
and specialized for solving CR tasks by Fernandes
et al. (2012) is described by Algorithm 1.

Given a training set {(xi,yi)}i=1,..,n, an initial-
ized w0

2, a trade off parameter C and the max-
imum number of epochs T , LSP iterates the fol-
lowing operations: Line 5 finds a latent tree h∗i
that maximizes 〈wt,Φ(xi,h)〉 for the target exam-
ple (xi,yi). This basically finds the max ground
truth tree with respect to the current wt. Finding
such max requires an exploration over the tree set
H(xi,yi), which only contains arcs between men-
tions that corefer according to the gold standard
clustering yi. Line 6 seeks for the max-violating
tree ĥi in H(xi), which is the set of all candi-
date trees using any combination of possible arcs.
Line 7 tests if the produced tree ĥi has some mis-
takes with respect to the gold clustering yi, using
a loss function, ∆(yi,h

∗
i, ĥi). Note that some

models define a loss also exploiting the best latent
tree h∗i . If the test is verified, the model is updated
with the vector Φ(xi,h

∗
i )− Φ(xi, ĥi).

Fernandes et al. (2012) used exactly the directed
trees we showed as latent structures and applied
the Edmonds’ spanning tree algorithm (Edmonds,
1967) for finding the max. Their model achieved
the best results in the CoNLL–2012 Shared Task,
a challenge for CR systems (Pradhan et al., 2012).
Also important was the role of their selected loss
function, which we elaborate in the next sections.

2Either to 0 or to a random value.

3.3 Loss functions
When defining a loss function, it is very important
to preserve the factorization of the model compo-
nents along the latent tree edges since this leads to
efficient maximization algorithms (see Sec. 5).

Fernandes et al. uses a loss function that (i)
compares a predicted tree ĥ against the gold tree
h∗ and (ii) factorizes over the edges in the way the
model does. Its equation is:

∆F (h∗, ĥ) =

M∑
i=1

1ĥ(i) 6=h∗(i)(1+r ·1h∗(i)=0), (1)

where h∗(i) and ĥ(i) output the parent of the men-
tion node i in the gold and predicted tree, respec-
tively, whereas 1h∗(i) 6=ĥ(i) just checks if the par-
ents are different, and if yes, penalty of 1 (or 1 + r
if the gold parent is the root) is added.

Yu and Joachims’s loss is based on undirected
tree without a root and on the gold clustering y. It
is computed as:

∆Y J(y, ĥ) = n(y)− k(y) +
∑
e∈ĥ

l(y, e), (2)

where n(y) is the number of graph nodes, k(y) is
the number of clusters in y, and l(y, e) assigns−1
to any edge e that connects nodes from the same
cluster in y, and r otherwise.

In our experiments, we adopt both the loss func-
tions, however, we measure ∆F , in contrast to Fer-
nandes et al., always against the gold label y and
not against the current h∗, i.e., in the way it is done
by Martschat and Strube (2015), who employ in
their work an equivalent LSP model.

3.4 On optimality of simple loss functions
The above loss functions are rather simple and
mainly based on counting the number of mistaken
edges. Below, we show that such simple functions
achieve training data separation (if it exists) of a
general task measure reaching its max on 0 mis-
takes. The latter is a desiderable characteristic of
many measures used in CR and NLP research.

Proposition 1 (Sufficient condition for optimal-
ity of loss functions for learning graphs). Let
∆(y,h∗, ĥ) ≥ 0 be a simple, edge-factorizable
loss function, which is also monotone in the num-
ber of edge errors, and let µ(y, ĥ) be any graph-
based measure maximized by no edge errors.
Then, if the training set is linearly separable LSP
optimizing ∆ converges to the µ optimum.
Proof. If the data is linearly separable the percep-
tron converges ⇒ ∆(yi,h

∗
i, ĥi) = 0, ∀xi. The

loss is factorizable, i.e.,
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∆(yi,h
∗
i, ĥi) =

∑
e∈ĥi

l(yi,h
∗
i, e), (3)

where l(·) is an edge loss function. Thus,∑
e∈ĥi

l(yi,h
∗
i, e) = 0. The latter equation and

monotonicity imply l(yi,h
∗
i, e) = 0,∀e ∈ ĥi,

i.e., there are no edge mistakes, otherwise by fix-
ing such edges, we would have a smaller ∆, i.e.,
negative, contracting the initial positiveness hy-
pothesis. Thus, no edge mistake in any xi implies
that µ(y, ĥ) is maximized on the training set.

Corollary 1. ∆F (h∗, ĥ) and ∆Y J(y, ĥ) are both
optimal loss functions for graphs.

Proof. Eq. 1 and Eq. 2 show that both are 0 when
applied to a clustering with no mistake on the
edges. Additionally, for each edge mistake more,
both loss functions increase, implying monotonic-
ity. Thus, they satisfy all the assumptions of
Proposition 1.

Our characterization above suggests that ∆F

and ∆Y J can optimize any measure that rea-
sonably targets no mistakes as its best outcome.
Clearly, this property does not guarantee loss func-
tions to be suitable for a given task measure, e.g.,
the latter may have different max points and be-
have rather discontinuously. However, a common
practice in NLP is to optimize the maximum of a
measure, e.g., in case of Precision and Recall, or
Accuracy, therefore, loss functions able to at least
achieve such optimum are preferable.

4 Automatically learning a loss function
How to measure a complex task such as CR has
generated a long and controversial discussion in
the research community. While such a debate is
progressing, the most accepted and used measure
is the so-called, Mention, Entity, and Link Av-
erage (MELA) score. As it will be clear from
the description below, MELA is not easily inter-
pretable and not robust to the mention identifica-
tion effect (Moosavi and Strube, 2016). Thus, loss
functions showing the optimality property may not
be enough to optimize it. Our proposal is to use a
version of MELA transformed in a loss function
optimized by an LSP algorithm with inexact in-
ference. However, the computational complexity
of the measure prevents to carry out an effective
learning. Our solution is thus to learn MELA with
a fast linear regressor, which also produces a con-
tinuos version of the measure.

4.1 Measures for CR
MELA is the unweighted average of MUC (Vilain
et al., 1995), B3 (Bagga and Baldwin, 1998) and
CEAFe (CEAF variant with entity-based similar-
ity) (Luo, 2005; Cai and Strube, 2010) scores, hav-
ing heterogeneous nature. MUC computes Pre-
cision and Recall based on the number of cor-
rectly predicted links between mentions, B3 is
based on computing Precision and Recall individ-
ually for each mention, and, finally, CEAFe – on
computing similarity between key and system en-
tities after finding an optimal alignment between
them. All the three are strongly influenced by the
mention identification effect (Moosavi and Strube,
2016). Thus, loss functions, such as ∆F and ∆Y J ,
may output identical values for different cluster-
ings that can have a big gap in terms of MELA.

Additionally, MELA computation is rather ex-
pensive. Its most costly component is CEAFe,
which employs the Kuhn-Munkres algorithm for
finding an optimal alignment between the enti-
ties (clusters) of the gold y and the system output
ŷ. Its complexity is bounded by O(Mm2 logm)
(Luo, 2005), where M and m are, correspond-
ingly, a maximum and a minimum number of en-
tities in y and ŷ. Computing CEAFe is especially
slow for the candidate outputs ŷ with a low quality
of prediction, i.e, when m is big, and the coher-
ence with the gold y is scarse.

4.2 Features for learning measures
As computational reasons prevent to use MELA in
LSP (see our inexact search algorithm in Sec. 5),
we study methods for approximating it with a lin-
ear regressor. For this purpose, we devised 9 fea-
tures counting statistics, which can be seen, in
some sense, as truncated and simplified versions
of Precision, Recall and F1 of each of the three
metric-components of MELA. Clearly, neither ∆F

nor ∆Y J provide the same or even similar values.
Apart from the computational complexity, the

difficulty of evaluating the quality of the predicted
clustering ŷ during training is also due to the fact
that CR is carried out on automatically detected
mentions, while it needs to be compared against a
gold standard clustering of a gold mention set. It
is too much of a chore to sustain information about
the latter on the training phase. However, we can
use simple information about automatic mentions
and how they relate to gold mentions and gold
clusters: (i) the number of correctly detected auto-
matic mentions, (ii) the number of links they have
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Algorithm 2 Finding a Max-violating Spanning
Tree
1: Input: training example (x,y); graph G(x) with ver-

tices V denoting mentions; set of the incoming candidate
edges, E(v), v ∈ V ; weight vector w

2: h∗ ← ∅
3: for v ∈ V do
4: e∗ = argmax

e∈E(v)

〈w, e〉+ C × l(y, e)

5: h∗ = h∗ ∪ e∗

6: end for
7: return max-violating tree h∗

8: (clustering y∗ is induced by the tree h∗)

in the gold standard, (iii) the number of gold men-
tions and gold clusters, (iv) the number of gold
links. Having such quantities, we can precisely
compute Precision, Recall and F1-measure values
of MUC, which is the simplest of the three met-
rics. These are the first three important features.

B3 and CEAFe require more processing. B3

computes an overlap between the predicted and
the gold clusters in proportion to the cluster size,
on a per-mention basis. CEAFe also computes a
cluster overlap, but on the level of clusters. Since
we do not have access to the full information about
all the gold mentions and their participation in the
gold clusters, we assume the clusters formed by
automatic mentions that are known to be in the
gold output as truncated gold clusters ỹ and com-
pute approximated B3 and CEAFe values towards
them. For computing CEAFe heuristics, we do not
perform cluster alignment.
4.3 Generating training and test data
The features described above can be used to char-
acterize the clustering variables ŷ. For generating
training data, we collected all the max-violating ŷ
produced during LSPF (using ∆F ) learning and
associate them with their correct MELA scores
from the scorer. This way, we can have both train-
ing and test data for our regressor. In our experi-
ments, for the generation purpose, we decided to
run LSPF on each document separately, in order
to obtain more variability of ŷ’s. We use a simple
linear SVM to learn a model wρ. Considering that
MELA(y, ŷ) score lies in the interval [100, 0], a
simple approximation of loss function could be:

∆ρ(y, ŷ) = 100−wρ · φ(y, ŷ). (4)
In the next section, we show its improved version
as well as an LSP for learning with it based on
inexact search.

5 Learning with learned loss functions
Our experiments will demonstrate that ∆ρ can be
accurately learned from data. However, the fea-

Algorithm 3 Inexact Inference of a Max-violating
Spanning Tree with a Global Loss
1: Input: training example (x,y); graph G(x) with ver-

tices V denoting mentions; set of the incoming candidate
edges, E(v), v ∈ V ; w, ground truth tree h∗

2: ĥ← ∅
3: score← 0
4: repeat
5: prev score = score
6: score = 0
7: for v ∈ V do
8: h = ĥ \ e(v)
9: ê = argmax

e∈E(v)

〈w, e〉+ C ×∆(y,h∗,h ∪ e)

10: ĥ = h ∪ ê
11: score = score + 〈w, ê〉
12: end for
13: score = score + ∆(y,h∗, ĥ)
14: until score = prev score

15: return max-violating tree ĥ

tures we used for this are not factorizable over the
edges of the latent trees. Thus, we design a new
LSP algorithm that can use our learned loss in an
approximated max search.

5.1 A general inexact algorithm for CR
If the loss function can be factorized over tree
edges (see Eq. 3) the max-violating constraint in
Line 6 of Alg. 1 can be efficiently found by exact
decoding, e.g., using the Edmonds’ algorithm as in
(Fernandes et al., 2014) or Kruskal’s as in (Yu and
Joachims, 2009). The candidate graph, by con-
struction, does not contain cycles, and the infer-
ence by Edmonds’ algorithm does technically the
same as the ”best-left-link” inference algorithm by
Chang et al. (2012). It can be schematically repre-
sented in Alg. 2.

When we deal with ∆ρ, Alg. 2 cannot be
longer applied as our new loss function is non-
factorizable. Thus, we designed a greedy solution,
Alg. 3, which still uses the spanning tree algo-
rithm, though, it is not guaranteed to deliver the
max-violating constraint. However, finding even
a suboptimal solution optimizing a more accurate
loss function may achieve better performance both
in terms of speed and accuracy.

We reformulate Step 4 of Alg. 2, where a max-
violating incoming edge ê is identified for a ver-
tex v. The new max-violating inference objective
contains now a global loss measured on the partial
structure ĥ built up to now plus a candidate edge
e for a vertex v in consideration (Line 10 of Algo-
rithm 3). On a high level, this resembles the infer-
ence procedure of Wiseman et al. (2016), who use
it for optimizing global features coming from an
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Samples # examples MSE SCCTrain Test
S1 S2 6, 011 2.650 99.68
S2 S1 5, 496 2.483 99.70

Table 1: Accuracy of the loss regressor on two different sets
of examples generated from different documents samples.

RNN. Differently though, after processing all the
vertices, we repeat the procedure until the score of
ĥ no longer improves.

It should be noted that Björkelund and Kuhn
(2014) perform inexact search on the same la-
tent tree structures to extend the model to non-
local features. In contrast to our approach, they
use beam search and accumulate the early up-
dates. Their tests show that early updates, in them-
selves, considerably slowdown the convergence of
the perceptron.

In addition to the design of an algorithm en-
abling the use of our ∆ρ, there are other intricacies
caused by the lack of factorization that need to be
taken into account (see the next section).

5.2 Approaching factorization properties
The ∆ρ defined by Eq. 4 approximately falls into
the interval [0, 100]. However, the simple optimal
loss functions, ∆F and ∆Y J , output a value de-
pendent on the size of the input training document
in terms of edges (as they factorize in terms of
edges). Since this property cannot be learned from
MELA by our regression algorithm, we calibrate
our loss with respect to the number of correctly
predicted mentions, c, in that document, obtaining
∆′ρ = c

100∆ρ. Finally, another important issue is
connected to the fact that on the way as we incre-
mentally construct a max-violating tree according
to Alg. 3, ∆ρ decreases (and MELA grows), as we
add more mentions to the output, traversing the
tree nodes v. Thus, to equalize the contribution
of the loss among the candidate edges of differ-
ent nodes, we also scale the loss of the candidate
edges of the node v having order i in the docu-
ment, according to the formula ∆′′ρ = i

|V |∆
′
ρ. On

the other hand, this can be interpreted as giving
more weight to the hard-to-classify instances – an
important issue alleviated by Zhao and Ng (2010).
Towards the end of the document, the probabil-
ity of correctly predicting an incoming edge for a
node generally decreases, as increases the number
of hypotheses.

6 Experiments
In our experiments, we first show that our regres-
sor for learning MELA approximates it rather ac-

101 102 103
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12

number of training examples

M
SE

101 102 103

98.8

99.0

99.2

99.4

99.6

99.8
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Figure 2: Regressor Learning curves.

curately. Then, we examine the impact of our
∆ρ on state-of-the-art systems in comparison with
other loss functions. Finally, we show that the im-
pact of our model is amplified when learning in
smaller feature spaces.

6.1 Setup

Data We conducted our experiments on the En-
glish part of the corpus from CoNLL 2012-Shared
Task3, containing 2,802, 343 and 348 documents
for training, dev. and test sets, respectively.
Models We implement our version of LSP,
where LSPF , LSPY J and LSPρ use the loss func-
tions, ∆F , ∆F and ∆ρ, defined in sec. 3.3 and
5.2, respectively. We also used cort4 – corefer-
ence toolkit by Martschat and Strube (2015) both
to preprocess the CoNLL data and to extract can-
didate mentions and features (the basic set).
Parametrization All the perceptron models re-
quire tuning of a regularization parameter C.
LSPF and LSPY J – also tuning of a specific loss
parameter r. We select the parameters on the
entire development set by training on 100 ran-
dom documents from the training set. We pick
up C from {1.0, 100.0, 1000.0, 2000.0}, the r val-
ues for LSPF from the interval [0.5, 2.5] with
step 0.5, and the r values for LSPY J – from
{0.05, 0.1, 0.5}. Ultimately, we used C = 1000.0
in all the models including LSPρ; r = 1.0 in LSPF
and r = 0.1 in LSPY J .
A standard previous work setting for the number
of epochs T of LSP is 5 (Martschat and Strube,
2015). Fernandes et al. (2014) noted that T = 50
was sufficient for convergence. To assess the ac-
curacy on the test set we selected the best T from
1 to 50 on the dev. set.
Evaluation measure We used MUC, B3, CEAFe
and their average MELA (Pradhan et al., 2012) for
evaluation, computed by the version 8 of the offi-
cial CoNLL scorer.

3conll.cemantix.org/2012/data.html
4http://smartschat.de/software

conll.cemantix.org/2012/data.html
http://smartschat.de/software
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Model Selected (N = 1M ) All (N ∼ 16.8M )
Dev. Test Tbest Dev. Test Tbest

LSPF 63.72 62.19 49 64.05 63.05 41
LSPJ 63.72 62.44 29 64.32 62.76 13
LSPρ 64.12 63.09 27 64.30 63.37 18

M&S AT – – – 62.31 61.24 5
M&S MR – – – 63.52 62.47 5
B&K – – – 62.52 61.63 –
Fer – – – 60.57 60.65 –

Table 2: Results of our and previous work models evaluated
on the dev. and test sets following the exact CoNLL-2012 En-
glish setting, using all training documents with All and 1M
features. Tbest is evaluated on the dev. set.

6.2 Learning loss functions
For learning MELA, we generated training and
test examples from LSPF according to the proce-
dure described in Section 4.3. In the first exper-
iment, we trained the wρ model on a set of ex-
amples, S1, generated from a sample of 100 doc-
uments and tested on a set of examples, S2, gen-
erated from another sample of the same size, and
vice versa. The results in Table 1 show that with
just 5, 000/6, 000, the Mean Squared Error (MSE)
is roughly between ∼ 2.4 − 2.7: these are rather
small numbers considering that the regression out-
put values in the interval [0, 100]. Squared Corre-
lation Coefficient (SCC) reaches a correlation of
about 99.7%, demonstrated that our regression ap-
proach is effective in estimating MELA.

Additionally, Figure 2 shows the regression
learning curves evaluated with MSE and SCC. The
former rapidly decreases and, with about 3, 000
examples, reaches a plateau around 2.5. The latter
shows a similar behavior, approaching a correla-
tion of about 99.8% with MELA.

6.3 State of the art and model comparison
We first experimented with the standard CoNLL
setting to compare the LSP accuracy in terms of
MELA using the three different loss functions, i.e.,
LSPF , LSPY J and LSPρ. In particular, we used
all the documents of the training set and all the
features (N ∼ 16.8M) from cort, and tested on
both dev. and test sets. The results are reported
in Columns All of Table 2. We note that first:
our ∆ρ is effective as it stays on a par with ∆F

and ∆Y J on dev. set. This is interesting as Corol-
lary 1 shows that such functions can optimize
MELA, the reported values refer to the optimal
epoch numbers. Also, LSPρ improves the other
models on the test set by 0.3 percent points (statis-
tically significant at 93% of confidence level).

Secondly, all the three models improve the state
of the art on CR using LSP, i.e., by Martschat and

#Feat. Model Test Set
MUC B3 CEAFe F1

All LSPF 72.66 59.94 56.54 63.05
LSPJ 72.18 59.31 55.82 62.76
LSPρ 72.33 60.21 57.21 63.37

LSPF 71.95 59.03 55.59 62.19
1M LSPJ 72.35 59.54 56.38 62.44

LSPρ 72.09 60.11 57.07 63.09

Table 3: Results on the test set only using the same setting
of Tab. 2 and the measures composing MELA

Strube (2015) using antecedent trees (M&S AT)
or mention ranking (M&S MR), Björkelund and
Kuhn (2014) using a global feature model (B&K)
and Fernandes et al. (2014) (Fer). It should be
taken into account that all the LSP models were
trained on the training set only, without retraining
on the training and development sets together, im-
plying that the scores can be still improved.

Thirdly, Tab. 3 shows the breakdown of the
MELA results in terms of its components on the
test set. Interestingly, LSPρ is noticeably better in
terms of B3 and CEAFe, while LSP with simple
losses, as expected, deliver higher MUC score.

Finally, the overall improvement of ∆ρ is not
impressive. This mainly depends on the optimal-
ity of the competing loss functions. However, ac-
cording to Proposition 1, they require to work in
separable cases: hypothesis that can be likely ver-
ified in a setting of ∼ 16M features.

6.4 Learning in more challenging conditions
In thse experiments, we verify the hypothesis that
when the optimality property is partially or totally
missing ∆ρ is more visibly superior to ∆F and
∆Y J . As we do not want to degrade their effec-
tiveness, the only condition dependent on the set-
ting is the data inseparability or at least harder to
be separated. These conditions can be obtained
by reducing the size of the feature space. How-
ever, since we aim at testing conditions, where ∆ρ

is practically useful, we filter out less important
features, preserving the model accuracy (at least
when the selection is not extremely harsh). For
this purpose, we designed a feature selection ap-
proach using a basic binary classifier trained to
discriminate between correct and incorrect men-
tion pairs. This is typically used in non structured
CR methods and it has the nice property of using
the same features of LSP (we do not use global
features in our study). We carried out a selection
using the absolute values of the model weights of
the classifier for ranking features and then select-
ing those having higher rank.
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Figure 3: Results of LSP models on dev. set using different number of features N . The last plot reports MELA score on the
test set of models using the optimal epoch numbers derived from the dev. set.

The MELA produced by of our models using all
training data are presented in Figure 3. The first 7
plots show learning curves in terms of epochs of
LSP models for different feature sets of increas-
ing size, N , tested on the dev. set. We note that:
firstly, the fewer features are available, the better
LSPρ curves are than those of LSPF and LSPY J
in terms of accuracy and convergence speed. The
intuition is that finding a separation of the training
set (generalizing well) becomes more challenging
(e.g., with 10k features the data is not linearly sep-
arable) thus a loss function closer to the real mea-
sure provides some advantages.

Secondly, when using all features, LSPρ is still
overall better than the other models but clearly the
latter can achieve the same MELA on the dev. set.

Thirdly, the last plot shows the MELA produced
by LSP models on the test set, when trained with
the best epoch derived from the dev. set (previous
plots). We observe that LSPρ is constantly better
than the other models, though decreasing its im-
provement as the feature number increases.

Next, in Column 1 (Selected) of Tab. 2, we re-
port the model MELA using 1 million features.
We note that LSPρ improves the other models by
at least 0.6 percent points, achieving the same ac-
curacy than the best of its competitors, i.e., LSPF ,
using all its features.

Finally, ∆ρ does not satisfy Prop. 1, therefore,
generally, we do not know if it can optimize any
measure µ-type measure over graphs. However,
being learned to optimize MELA, it clearly sepa-

rates data to maximize such a measure. We empir-
ically verified this by checking the MELA score
obtained on the training set: we found that LSPρ
always optimizes MELA, iterating for less epochs
than the other loss functions.

7 Conclusions
In this paper, we studied the use of more com-
plex loss functions in structured prediction for CR.
Given the scale of our investigation, we limited
our study to LSP, considered anyway state of the
art. We derived several findings: (i) for the first
time, to our knowledge, we showed that a com-
plex measure, such as MELA, can be learned by
a linear regressor (RL) with high accuracy and ef-
fective generalization. (ii) The latter was essential
for the design of our new LSP based on inexact
search and RL. (iii) We showed that an automati-
cally learned loss can be used and provides state-
of-the-art performance in a real setting, including
thousands of documents and millions of features,
such as CoNLL–2012 Shared Task. (iv) Very in-
terestingly, we also defined some properties of op-
timal loss functions for CR, which show that in
separable cases, they are enough to get the state of
the art. However, as soon as separability becomes
more complex simple loss functions lose optimal-
ity and RL becomes more accurate and faster.

Our study opens several future directions, rang-
ing from defining algorithms based on automati-
cally learned loss functions to learning more ef-
fective measures from expert examples.
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