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In this paper, we introduce a Deep Neural Network (DNN) for engineering Named Entity
Recognizers (NERs) in Italian. Our network uses a sliding window of word contexts to predict
tags. It relies on a simple word-level log-likelihood as a cost function and uses a new recurrent
feedback mechanism to ensure that the dependencies between the output tags are properly
modeled. These choices make our network simple and computationally efficient. Unlike previous
best NERs for Italian, our model does not require manual-designed features, external parsers
or additional resources. The evaluation on the Evalita 2009 benchmark shows that our DNN
performs on par with the best NERs, outperforming the state of the art when gazetteer features
are used.

1. Introduction

Named Entity (NE) recognition is the task of detecting semantically important noun
phrases in text, e.g., proper names, which directly refer to real world entities along with
their type, e.g., people, organizations, locations, etc. see, e.g., (Nadeau and Sekine 2007).
International challenges on the NER task have been firstly proposed by the Message
Understanding Conference (MUC 6, MUC 7), the Conference on Natural Language
Learning (CoNLL 2002, 2003) whereas the Automatic Content Extraction program (ACE
2002, 2005) has supported the creation of several datasets based on named entities. More
recently, the NER challenges have been extended to other languages, e.g., Italian (Evalita
2007, 2009).

Most NE recognizers (NERs) rely on machine learning models, which require to de-
fine a large set of manually engineered features. For example, the state-of-the-art system
for English (Ratinov and Roth 2009) uses a simple averaged perceptron and a large set of
local and non-local features. Similarly, the best performing system for Italian (Nguyen
and Moschitti 2012) combines two learning systems that heavily rely on both local and
global manually engineered features. Some of the latter are generated using basic hand-
crafted rules (i.e., suffix, prefix) but most of them require huge dictionaries (gazetteers)
and external parsers (POS taggers and chunkers). While designing good features for
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NERs requires a great deal of expertise and can be labour intensive, it also makes the
taggers harder to adapt to new domains and languages since resources and syntactic
parsers used to generate the features may not be readily available.

Recently, DNNs have been shown to be very effective for automatic feature en-
gineering, demonstrating state-of-the-art results in many sequence labelling tasks,
e.g., (Collobert et al. 2011; dos Santos et al. 2015; Chiu and Nichols 2015), also for Italian
language (Attardi 2015).

In this paper, we target NERs for Italian and propose a novel deep learning model
that can match the accuracy of the previous best NERs without using manual feature en-
gineering and only requiring a minimal effort for language adaptation. In particular, our
model is inspired by the successful neural network architecture presented by (Collobert
et al. 2011) to which we propose several innovative and valuable enhancements: (i) a
simple recurrent feedback mechanism to model the dependencies between the output
tags and (ii) a pre-training process based on two-steps: (a) training the network on a
weakly labeled dataset (e.g., automatically annotated) and then (b) refining the weights
on the supervised training set. Our final model obtains 82.81 in F1 on the Evalita 2009
Italian dataset (Speranza 2009), which is an improvement of +0.81 over the (Zanoli and
Pianta 2009) system that won the competition. Our model only uses the words in the
sentence, four morphological features and a gazetteer. Interestingly, if the gazetteer is
removed from our network, it achieves an F1 of 81.42, which is still on par with the
previous best systems yet it is simple and easy to adapt to new domains and languages.

2. Our DNN model for NER

In this section, we first briefly describe the architecture of the Context Window Network
(CWN) from (Collobert et al. 2011), pointing out its limitation. We then introduce our
Recurrent Context Window Network (RCWN), which extends CWN and aims at solving
its drawbacks.

2.1 Context Window Network

We adopt a CWN model that has been successfully applied by (Collobert et al. 2011)
for a wide range of sequence labelling NLP tasks. Its architecture is depicted in Fig. 1.
It works as follows: given an input sentence s = [w1, . . . , wn], e.g., Barack Obama è il
presidente degli Stati Uniti D’America1, for each word wi, the sequences of word contexts
[wi−k/2+1, .., wi, .., wi+k/2] of size k around the target word wi (i = 1, .., n) are used as
input to the network.2 For example, the Fig. 1 shows a network with k = 5 and the
input sequence for the target word è at position i = 3.

The input words wi from the vocabulary V are mapped to d-dimensional word
embedding vectors wi ∈ Rd. Embeddings wi for all words in V form an embedding
matrix W ∈ R|V |×d, which is learned by the network. An embedding vector wi for a
word wi is retrieved by a simple lookup operation in W (see lookup frame in Fig. 1).
After the lookup, the k embedding vectors of the context window are concatenated
into a single vector r1 ∈ Rkd, which is passed to the next hidden layer hl. It applies the
following linear transformation: hl(r1) = M1 · r1 + b1, where the matrix of weights M1

1 Barack Obama is the president of the United States of America.
2 In case the target word i is at the beginning/end of a sentence, up to (k − 1)/2 placeholders are used in

place of the empty input words.
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Figure 1
The architecture of Context Window Network (CWN).

and the bias b1 parametrize the linear transformation and are learned by the network.
The goal of the hidden layer is to learn feature combinations from the word embeddings
of the context window.

To enable the learning of non-linear discriminative functions, the output of hl
is passed through a non-linear transformation also called activation function, i.e., a
HardTanh() non-linearity, Eq. 1), thus obtaining, r2.

HardTanh(x) =


1 x > 1

x −1 < x < 1

−1 x < −1
(1)

Finally, the output classification layer encoded by the matrix M2 ∈ R|C|×h and the
bias b2 are used to evaluate the vector p = softmax(M2 × r2 + b2) of class conditional
probabilities, i.e., pc = p(c|x), c ∈ C, where C is the set of NE tags, h is the dimension of
the hl and x is the input context window.



Italian Journal of Computational Linguistics Volume 1, Number 1

2.2 Our model

The CWN model described above has several drawbacks: (i) each tag prediction is made
by considering only local information, i.e., no dependencies between the output tags
are taken into account; (ii) publicly available annotated datasets for NER are usually
too small to train neural networks thus often leading to overfitting. We address both
problems by proposing: (i) a novel recurrent context window network (RCWN) archi-
tecture; (ii) a network pre-training technique using weakly labeled data; and (iii) we
also experiment with a set of recent techniques to improve the generalization of our
DNN to avoid overfitting, i.e., we use early stopping (Prechelt 1998), weight decay (Krogh
and Hertz 1992), and Dropout (Hinton 2014). Dropout prevents feature co-adaptation by
setting the output of the hidden units to 0 in the forward pass of the training phase. Fur-
thermore, Dropout acts as an approximate model averaging technique (Hinton 2014).

2.2.1 Recurrent Context Window Network
Generally, the sliding window model cannot capture the dependencies between the out-
put tags since each window of words of the input sequence is processed independently
from the others. This results in a performance lower than the one obtained by more
traditional methods, which instead models dependencies by considering predicted tags
near the target word or also the whole sentence as in the case of Conditional Random
Fields (Pereira et al. 2001) or the Sentence Level Log Likelihood (Collobert et al. 2011).

We propose RCWN for modeling dependencies between labels. It extends CWN by
using m previously predicted tags as an additional input, i.e., the previously predicted
tags at steps i−m, . . . , i− 1 are used to predict the tag of the word at position i, where
m < k/2. Since we proceed from left to right, words in the context window wj with
j > i− 1, i.e., at the right of the target word, do not have their predicted tags, thus we
simply use the special unknown tag, UNK, for them.

Since NNs provide us with the possibility to define and train arbitrary embeddings,
we associate each predicted tag type with an embedding vector, which can be trained in
the same way as word embeddings (see vectors for tags ti in Fig. 1). More specifically,
given k words wi ∈ Rdw in the context window and previously predicted tags ti ∈ Rdt

at corresponding positions, we concatenate them together along the embedding dimen-
sion obtaining new vectors of dimensionality dw + dt Thus, the output of the first input
layer becomes a sequence of k(dw + dt) vectors.

RCWN is simple to implement and is computationally more efficient than, for
example, NNs computing sentence log-likelihood, which require Viterbi decoding. RCWN
may suffer from an error propagation issue as the network can misclassify the word
at position t− i, propagating an erroneous feature (the wrong label) to the rest of the
sequence. However, the learned tag embeddings seem to be robust to noise3. Indeed,
the proposed network obtains a significant improvement over the baseline model (see
Section 3.2).

3. Experiments

In these experiments, we compare three different enhancements of our DNNs on the
data from the Evalita challenge, namely: (i) our RCWN method, (ii) pre-training on
weakly supervised data, and (iii) the use of gazetteers.

3 We can use the same intuitive explanation of error correcting output codes.
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Dataset Articles Sentences Tokens
Train 525 11,227 212,478
Test 180 4,136 86,419

Table 1
Splits of the Evalita 2009 dataset

3.1 Experimental setup

Dataset. We evaluate our models on the Evalita 2009 Italian dataset for NERs (Speranza
2009) summarized in Tab. 1. There are four types of NEs: person (PER), location (LOC),
organization (ORG) and geo-political entity (GPE), (see Tab. 2). Data is annotated using
the IOB tagging schema, i.e., for inside, outside and beginning of a entity, respectively.
Note that NEs do not overlap and are not nested. For instance, in the case of the entity,
University of Trento, the entity Trento is not labeled as LOC since it is nested into an ORG
entity.

Training and testing the network. We use (i) the Negative Log Likelihood cost function, i.e.,
−log(pc), where c is the correct label for the target word, (ii) stochastic gradient descent
(SGD) to learn the parameters of the network and (iii) the backpropogation algorithm
to compute the updates. During training, the true labels for all the words but the one
to be predicted are used. Conversely, at test time, the predicted tag c, associated with
the highest class conditional probability pc, is selected, i.e., c = argmaxc∈C pc is used as
input for the next iteration.

Features. In addition to words, all our models also use 4 basic morphological features:
all lowercase, all uppercase, capitalized and it contains uppercase character. These can reduce
the size of the word embedding dictionary as showed by (Collobert et al. 2011). In our
implementation, these 4 binary features are encoded as one discrete feature associated
with an embedding vector of size 5, i.e., similarly to the preceding tags in RCWN.
Additionally, we use a similar vector to also encode gazetteer features. Gazetteers are
collections of names, locations and organizations extracted from different sources such
as the Italian phone book, Wikipedia and stock marked websites. Since we use four
different dictionaries one for each NE class, we add four feature vectors to the network.

Word Embeddings. We use a fixed dictionary of size 100K and set the size of the word
embeddings to 50, hence, the number parameters to be trained is 5M . Training a model
with such a large capacity requires a large amount of labelled data. Unfortunately, the
sizes of the supervised datasets available for training NER models are much smaller,
thus we mitigate such problem by pre-training the word embeddings on huge unsu-
pervised training datasets. For example, (Collobert et al. 2011) proposed a method to
train word embeddings using a sliding window NNs by solving an artificial task on
Wikipedia. However, this method is rather time consuming, taking up to several months
for properly training the embeddings. We use word2vec (Mikolov et al. 2013) skip-gram
model (i.e., predicting the context given a word) with negative sampling and a context
window of size 5 to pre-train our embeddings on Italian dump of Wikipedia: this only
took a few hours. Interestingly, (Qu et al. 2015) report that the Skip-Gram embeddings
outperform the ones from (Collobert et al. 2011) in NER systems.
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Dataset PER ORG LOC GPE
Train 4,577 3,658 362 2,813
Test 2,378 1,289 156 1,143

Table 2
Entities distribution in Evalita 2009

Model F1 Prec. Rec.
Baseline 78.32 79.45 77.23
RCWN 81.39 82.63 80.23
RCWN+Gazz 83.59 84.85 82.40
RCWN+WLD 81.74 82.93 80.63
RCWN+WLD+Gazz 83.80 85.03 82.64

Table 3
Results on 10-fold cross-validation

Network Hyperparameters. We used h = 750 hidden units, a learning rate of 0.05, the word
embedding size dw = 50 and a size of 5 for the embeddings of discrete morphological
and gazetteer features. Differently, we used a larger embedding, dt = 20 for the NE
tags, i.e., the tag predicted by the network for the previous words. We used the same
hyperparameters for all the proposed networks and estimated the best ones with a 10-
fold cross-validation on the training set.

Pre-training DNNs. Good weight initialization is crucial for training better NN mod-
els (Collobert et al. 2011; Bengio 2009). Over the years different ways of pre-training
the network have been designed: layer-wise pre-training (Bengio 2009), word embed-
dings (Collobert et al. 2011) or by relying on distant supervised datasets (Severyn and
Moschitti 2015b, 2015a). Here, we propose a pre-training technique using an off-the-
shelf NER to generate noisily annotated data, e.g., a sort of distance/weakly supervision
or self-training. Our Weakly Labeled Dataset (WLD) is built by automatically annotating
articles from the local newspaper "L’Adige", which is the same source of the training and
test sets of Evalita challenge. We split the articles in sentences and tokenized them. This
unlabeled corpus is composed of 20.000 sentences. We automatically tagged it using
EntityPro, which is a NER tagger included in the TextPro suite (Pianta, Girardi, and
Zanoli 2008).

3.2 Results

Our models are evaluated on the Evalita 2009 dataset. We applied 10-fold cross-
validation to the training set of the challenge4 for performing parameter tuning and
picking the best models.

Table 3 reports performance of our models averaged over 10-folds. We note that (i)
modeling the output dependencies with RCWN leads to a considerable improvement in

4 The official evaluation metric for NER is the F1, which is the harmonic mean between Precision and
Recall.
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Models F1 Prec. Rec.
(Gesmundo 2009) 81.46 86.06 77.33
(Gesmundo 2009) - Gazz 76.21 83.91 69.79
(Zanoli and Pianta 2009)† 82.00 84.07 80.02
(Nguyen, Moschitti, and Riccardi 2009) 79.77 82.26 77.43
(Nguyen, Moschitti, and Riccardi 2009) - Gazz5 73.70 77.05 70.65

(Nguyen and Moschitti 2012) (CRF) 80.34 83.43 77.48
(Nguyen and Moschitti 2012) + RR† 84.33 85.99 82.73
RCWN 79.59 81.39 77.87
RCWN+WLD 81.42 82.74 80.14
RCWN+Gazz 81.47 83.48 79.56
RCWN+WLD+Gazz 82.81 85.69 80.10

Table 4
Comparison with the best NER systems for Italian. Models below the line were computed after
the Evalita challenge. Systems marked with † use combinations of different learning models.

F1 over the CWN model of (Collobert et al. 2011) (our baseline); (ii) adding the gazetteer
features leads to an improvement both in Precision and Recall, and therefore in F1; and
(iii) pre-training the network on the weakly labeled training set produces improvement
(although small), which is due to a better initialization of the network weights.

Table 4 shows the comparative results between our models and the current state of
the art for Italian NER on the Evalita 2009 official test set. We used the best parameter
values derived when computing the experiments of Table 3. Our model using both
gazetteer and pre-training outperforms all the systems participating to the Evalita
2009 (Zanoli and Pianta 2009; Gesmundo 2009). It should be noted that (Nguyen and
Moschitti 2012; Nguyen, Moschitti, and Riccardi 2010) obtained better results using a
CRF classifier followed by a reranker (RR) based on tree kernels. However, our approach
only uses one learning algorithm, which is simpler than models applying multiple
learning approaches, such as those in (Nguyen and Moschitti 2012) and (Zanoli and
Pianta 2009). Moreover, our model outperforms the (Nguyen and Moschitti 2012) CRF
baseline (which is given in input to the tree-kernel based reranker) by ∼ 2.5 points in
F1. Thus it is likely that applying their reranker on top of our model’s output might
produce a further improvement over state of the art.

Finally, it is important to note that our model obtains an F1 comparable to the best
system in Evalita 2009 without using any extra features (we only use words and 4 mor-
phological features). In fact, when we remove the gazetteer features, our method still
obtains the very high F1 of 81.42. Only two systems provided results without external
knowledge (Gesmundo 2009) that obtained an F1 of 76.21 and (Nguyen, Moschitti, and
Riccardi 2009) that obtained 73.70 on the development dataset. This shows that NNs
can obtain high results without manually constructed gazzeteer.

Finally, Table 5 highlights the per-class performance of our models compared to the
systems at the Evalita 2009 competitions. Our best system obtains a higher F1 on all
the classes. Moreover, our basic model, i.e., RCWN, obtains an absolute improvement
of ∼ 10 points on the LOC class, which is the rarest entity type in the dataset. This
improvement is lower in our best model (∼ 4 points), possibly due to errors introduced
by the off-the-shelf NER used to produce the weakly labeled dataset.
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Models GPE LOC ORG PER
(Gesmundo 2009) 83.36 50.81 71.08 87.41
(Zanoli and Pianta 2009)† 85.13 51.24 70.56 88.31
(Nguyen, Moschitti, and Riccardi 2009) 82.85 42.34 67.89 86.44

RCWN 82.07 61.54 68.78 85.70
RCWN+WLD 84.01 61.09 71.28 86.95
RCWN+Gazz 85.95 63.35 69.23 86.97
RCWN+WLD+Gazz 86.67 55.94 71.65 88.23

Table 5
Per-class F1 comparison with the best NER systems for Italian. Models below the line were
computed after the Evalita challenge. Systems marked with † use multiple learned models at test
time.

4. Related Work and Discussion

Recently, many different NN models have been successfully applied to the task of
Named Entity Recognition, both using Recurrent Neural Networks (Chiu and Nichols
2015) and Convolutional Neural Networks (Collobert et al. 2011). In this work, we opted
for a simpler model since the amount of the data available for the Italian language is
usually smaller than the data available for English. Moreover, previous approaches re-
quire many more parameters than our models, which therefore show faster convergence
during training and faster classification at test time.

For the same reason, we did not used character level embeddings to automatically
encode morphological features into the model as in (dos Santos et al. 2015; Chiu and
Nichols 2015), since it requires an additional Convolutional layer to be applied on
every word. Conversely, the neural networks proposed in this work encode features as
embeddings and use a feedback loop to model the output dependencies. The feedback
loop do not introduce additional complexity to the model compared to the Viterbi
decoding described in (Collobert et al. 2011). The model in fact feeds the output of
the previous iteration to a multilayer perceptron that slides over the sequence. The
proposed model is rather simple but it is efficient and able to obtain the state of the
art on the Italian language.

5. Conclusion

In this paper, we have proposed a new DNN for designing NERs in Italian. Its main
characteristics are: (i) the RCWN feedback method, which can model dependencies of
the output label sequence and (ii) a pre-training technique involving a weakly super-
vised dataset. Our system is rather simple and efficient as it involves only one model at
test time with respect to current state-of-the-art systems that require multiple inference
steps (Zanoli and Pianta 2009; Nguyen and Moschitti 2012). Our system achieves results
comparable with the state of the art even without using gazetteers. It shows promising
results on the LOC class, which is the rarest class and therefore more challenging
in the Evalita 2009 dataset. Additionally, it does not require time-consuming feature
engineering or extensive data processing for their extraction.



Bonadiman et al. RCWN for Italian NER

In the future, we would like to apply rerankers to our methods and explore combi-
nations of DNNs with structural kernels.
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