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Abstract. Leveraging previous knowledge is essential for the automatic
resolution of Crossword Puzzles (CPs). Clues from a new crossword may
have appeared in the past, verbatim or paraphrased, and thus we can
extract similar clues using information retrieval (IR) techniques. The
output of a search engine implementing the retrieval model can be re-
fined using learning to rank techniques: the goal is to move the clues that
have the same answer of the query clue to the top of the result list. The
accuracy of a crossword solver heavily depends on the quality of the lat-
ter. In previous work, the lists generated by an IR engine were reranked
with a linear model by exploiting the multiple occurrences of an answer
in such lists. In this paper, following our recent work on CP resolution
for the English language, we create a labelled dataset for Italian, and
propose (i) a set of reranking baselines and (ii) a neural reranking model
based on distributed representations of clues and answers. Our neural
model improves over our proposed baselines and the state of the art.
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1 Introduction

Automatic solvers of CPs require accurate list of candidate answers for finding
the correct solution to new clues. Candidate answers to a target clue can be
found by retrieving clues from past games that are similar to it. Indeed, the
retrieved clues may have the same answers as the target clue. Databases (DBs)
of previously solved CPs (CPDBs) are thus very useful, since clues are often
reused or reformulated for building new CPs.

In this paper, we propose distributional models for reranking answer candi-
date lists generated by an IR engine. We present a set of baselines that exploit
distributed representations of similar clues. Most importantly, (i) we build a
dataset for clue retrieval for Italian, composed of 46,270 clues with their as-
sociated answers, and (ii) we evaluate an effective neural network model for
computing the similarity between clues. The presented dataset is an interesting
resource that we make available to the research community1. To assess the effec-

1 http://ikernels-portal.disi.unitn.it/projects/webcrow/
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tiveness of our model, we compare it with the state-of-the-art reranking model
for Italian [2].

The experimental results in this paper demonstrate that:

– distributed representations are effective in encoding reranking clue pairs and
candidate answers;

– our neural network model is able to exploit the distributed representations
more effectively than the other baseline models; and

– our models can improve over a strong retrieval baseline and the previous
state-of-the-art system.

In addition, to promote reproducibility, we will make the training, develop-
ment and test data available, together with the implementations of the models.

2 Clue Reranking for Solving CPs

In this section, we briefly present the ideas behind the CP resolution systems
and the state-of-the-art models for reranking answer candidates.

2.1 CP Solvers

CP solvers are in many ways similar to question answering (QA) systems such
as IBM Watson [5]. Indeed, their goal is not different: in order to find the cor-
rect answer for a given clue, candidate answers are generated and then scored
according to more or less sophisticated strategies [9]. The main difference is the
grid-filling step of CP solvers, which is casted as a Probabilistic Constraint Sat-
isfaction Problem, e.g., [13]. In this step, the squares of the crossword puzzle are
filled according to the crossword constraints. The possible combinations consider
words from dictionaries or from the lists of answer candidates. Such lists can be
generated by exploiting previously seen crossword puzzles or using subsystems
specialized on domain-specific knowledge (e.g., famous persons, places, movies).

WebCrow is one of the best systems [4] for the resolution of CPs, and it
relies on the aforementioned domain-specialized subsystems. In addition to that,
it includes (i) a retrieval model for accessing clues stored in a database, (ii) a
search module for finding answers from the Web, and (iii) a simple NLP pipeline.

Clearly, feeding the solver with high quality answer lists (i.e., lists containing
the correct answers at the top) produces higher speed and accuracy in the grid-
filling task. For this reason, a competitive CP solver needs accurate rankers.

2.2 Similar Clue Retrieval and Reranking

One important source of candidate answers is the DB of previously solved CPs.
A target clue for which we seek the answer is used to query an index containing
the clues of the DB. The list of candidate answers depends on the list of similar
clues returned by the search engine (SE). The target clue, the candidate clues and
their answers can be encoded into a machine learning model and the answers can
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be scored by rerankers. The goal of the latter is to understand which candidate
clues are more similar to the target clue, and put the former at the top of the
candidate list, assuming their similarity indicates they share the same answer.

The reranking step is important because often SEs do not retrieve the correct
clues in the first results, i.e., the IR model is not able to capture the correct
semantics of the clues and their answers.

In our work on Italian crosswords [2], we applied a logistic regression model
to score aggregated sets of candidate clues with the same answer.

However, for English crosswords, we also (i) applied a pairwise reranking
model on structural representations of clues [1]; (ii) designed a reranking model
for aggregating the evidence coming from multiple occurrences of the same an-
swers in a candidate list [12]; and (iii) combined a support vector machine rerank-
ing model with a deep neural network, which interestingly learns a similarity
matrix M from the labelled data [16].

Motivated by the results in (iii), we applied the same distributional model for
Italian. Unfortunately, the model was not effective due to the small number of
available Italian clues. The same problem surfaces when using a small training
set of English clues. To solve the issue, we opted not to learn the similarity
matrix M from the data. Thus, we use a simpler neural network architecture
and we feed similarity information directly into the model.

3 Distributional Models for Reranking Similar Clues

Previous methods for clue reranking use similarity features between clues based
on lexical matching or other distances between words computed on the Wikipedia
graph or the WordNet ontology.

Treating words as atomic units has evident limitations, since this approach
ignores the context in which words appear. The idea that similar words tend to
occur in similar contexts has a long history in computational linguistic [6]. In
distributional semantics, a word is represented by a continuous vector, which is
the result of counting some word statistics from a large corpus. In our work, we
take advantage of modern methods for computing distributed representations of
words and sentences, which may alleviate the semantic gap between clues, and
therefore, induce better similarities.

The neural network model for measuring the similarity between clues is pre-
sented in Fig. 1, and it is essentially a Multilayer Perceptron (MLP), which is
a simplification of our previous work [14, 16, 15]. Given the dimensionality d of
the word embeddings, the main components are:

(i) sentence matrices sci ∈ Rd×|ci| obtained by stacking the word vectors wj ∈
Rd of the corresponding words wj from the input clues ci;

(ii) a distributional sentence model f : Rd×|ci| → Rd that maps the sentence
matrix of an input clue ci to a fixed-size vector representations xci of size d;

(iii) an input layer that is the concatenation of the fixed-size representation of
the target clue xc1 , the similar clue xc2 , and a feature vector fv;
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Fig. 1. Distributional sentence matching model for computing similarity between clues.

(iv) a sequence of fully-connected hidden layers that capture the interactions
between the distributed representations of the clues and the feature vector;

(v) a softmax layer that outputs probability scores reflecting how well the clues
match with each other.

The choice of the sentence model plays a crucial role as the global repre-
sentation of a clue contains the relevant information that the next layers in the
network will use to compute the similarity between the clues.

Recently, distributional sentence models where f(s) is represented by a se-
quence of convolutional-pooling feature maps, have shown state-of-the-art results
on many NLP tasks, e.g., [7, 8].

Given the number of training instances in our dataset, we prefer to reduce
the number of learning parameters. For this reason, we opt for a simple sentence
model where f(sci) =

∑
i wi/|ci|, i.e., the word vectors, are averaged to a sin-

gle fixed-sized vector x ∈ Rd. In addition, our preliminary experiments for the
English language revealed that this simpler model works just as well as more
complicated single or multi-layer convolutional architectures.

4 Experiments

In this section we describe the experimental setting in which we evaluated our
models. To conclude, we present the results of our experiments.

4.1 Experimental Setup

Data. The corpus of Italian crosswords contains 46,270 clues in the Italian lan-
guage, with their associated answers, from La Settimana Enigmistica magazine,
La Repubblica newspaper and the Web. In the original dataset, there are some
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clues containing words with hyphens in the middle. We normalize them by re-
moving the hyphens whenever the cleaned word is in a list of terms extracted
from the Italian Wiktionary2. In addition, we apply a simple tokenization rules
to the clue definitions, in order to detach punctuation from the words. The pro-
cessed dataset contains 46,185 unique clue/answer pairs. The unique definitions
are 45,644, indicating that some definitions have multiple answer variations.

We construct our training and test datasets by sampling a set of training
clues, and a disjoint set of test clues. We index only the training clues to prevent
test clues appearing in the training lists, and thus to avoid dependencies between
training and test sets. The indexing is performed with the Lucene library3. We
enable the analyzer for Italian, which includes lowercasing, stemming and re-
moval of stopwords. We query the SE with each training clue, obtaining related
clues according to the BM25 retrieval model (we will refer to these clues as can-
didate lists). We of course remove the first exact match result (the training query
clue is contained in the index), and retrieve only the clues whose answer length
matches the answer length of the query clue. The candidate lists that do not
contain the query answer in the first 10 positions are filtered out. Therefore, our
lists always contain an answer, and have a maximum of 10 results. The test lists
are constructed with the same process and constraints, by querying the training
index with the test clues. The only difference is that we do not remove the first
result, since the test clues are not present in the index.

Thus, our training and test instances consist of pairs of clues, i.e., a query clue
and a similar candidate clue. The training set used in the experiments contains
the results of 10,000 query clues, while the development and test sets contain the
results of 1,000 query clues each. These numbers reflect the experimental setup
of the previous state-of-the-art model for Italian.

Features. Our models use distributed representations of clue definitions and
answers. Such representations are constructed from word embeddings [10]. The
latter are learned by running the word2vec tool on the ItWaC corpus [3], a
crawl of the Italian web containing 1,585,620,279 tokens. We use the SkipGram
model trained with the hierarchical softmax algorithm. The dimensionality of
the embeddings is set to 50, the window size to 5, and words with frequency less
than 5 are filtered out.

The clue definitions are mapped to fixed-sized vectors by computing the aver-
age of their word embeddings, an approach also known as neural bag-of-words. It
would be interesting to weight the word vectors by classical IR statistics associ-
ated with the corresponding words, but in this work, the vectors are unweighted.

In addition to the clue vectors, we use a set of features for capturing the SE
result order, and the similarities between the distributed representations of clues
and answers.

The reversed rank encodes the position of a candidate clue in the SE results.
The rank is a decreasing value that starts at 10 for the top clue.

2 https://it.wiktionary.org/
3 https://lucene.apache.org/core/
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We also compute the cosine similarity of (i) the query and candidate clues,
(ii) the query clue and the candidate answer, (iii) the candidate clue and the
candidate answer. We obviously do not use the query answer since it is the gold
label during testing. Therefore, the additional feature vector has 4 dimensions.

Distributional neural network model. Our neural network model clas-
sifies pairs of query and candidate clues as similar or not. The input to the
model is a vector (of dimensionality 104) resulting from the concatenation of the
distributed representations of the query and candidate clues, together with the
feature vector. We use two hidden layers of size 256 and adopt the ReLU [11] as
activation function. The model is regularized by applying dropout [17] on both
hidden layers. Dropout prevents the co-adaptation of hidden units by setting to
0 a proportion p of the latter, during the forward pass at training time. In our
case, we set p to 0.4.

The network is trained using Stochastic Gradient Descent (SGD) with shuf-
fled mini-batches. The batch size is set to 16 examples. We train the model for
100 epochs with early stopping, i.e., stopping when the Mean Average Precision
(MAP) on the development set does not increase for the last 7 epochs.

Evaluation. To measure the impact of the baseline models and our neural
network model, we used well-known metrics for evaluating retrieval and QA sys-
tems: REC-1@k (@1, @5), Mean Average Precision (MAP) and Mean Reciprocal
Rank (MRR). REC-1@k is the percentage of lists with a correct answer placed
at the first position. Given a set of query clues Q, MRR is computed as follows:

MRR = 1
|Q|

∑|Q|
q=1

1
rank(q) ,

where rank(q) is the position of the first correct answer in the candidate list.
MAP is the mean of the average precision scores for each query:

1

Q

Q∑
q=1

AveP (q).

4.2 Results

The first section of Table 1 contains the measures reported in [2], i.e., the previous
state-of-the-art model. MAP values are not reported in the original work. The
second section of the table contains the evaluation measures of our baselines and
neural network model.

The WebCrow retrieval component establishes the matching between the
query clue and the clues in its index using the standard SQL search operator.
This explains its low performance compared to the other models.

Our BM25 baseline is stronger due to the improved preprocessing of the
definitions in the dataset of Italian clues.

The Cosine baseline scores each target and candidate clue pair by the cosine
similarity of the distributed representations of the clues, i.e., the vectors obtained
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Table 1. Results of the reranking experiments. The first section of the table contains
the measures reported in previous state-of-the-art work. The second section of the table
contains the evaluation measures of the models described in this paper.

Model MRR MAP REC-1@1 REC-1@5

WebCrow [2] 73.00 - 64.93 83.51
BM25 [2] 77.27 - 65.75 93.40

LR on aggregated clues [2] 81.20 - 71.12 95.70

BM25 78.40 75.14 68.00 91.90
Cosine 77.64 74.28 66.10 93.00

LR classifier 83.86 81.15 74.80 96.10
DNN 85.51 82.72 77.90 96.20

by applying f(sci
) =

∑
i wi/|ci| to the sentence matrices of the two clues. Then,

the pair in the lists are ordered by decreasing similarity.
Our LR baseline is a Logistic Regression classifier trained on the input layer,

which is described in Section 3, together with the DNN neural network model.
The results show the effectiveness of the distributed representations of clues

and their answers. Both supervised models benefit from this information, but
the neural network, with its non-linearities, is able to better exploit the features
fed to the models. With respect to the previous state-of-the-art model, the DNN
produces 4.31% absolute and 5.30% relative improvement in MRR, and more
interestingly, 6.78% absolute and 9.53% relative improvement in REC-1@1. This
translates in more answers that are correctly selected and promoted to the top
of the candidate answer list.

The DNN model uses less features than the structural reranking models pre-
viously developed for this task, and does not require computationally expensive
NLP for annotating the clues. As an interesting side note, we point out that the
performance of the IR baseline for Italian are aligned with the performance of
the IR baseline for English. This may suggest that, given enough training data,
our simple model could perform even better, and we could be able to train a
neural model with a learned similarity matrix M [16].

5 Conclusions

In this paper, we described the first distributional models for the retrieval of sim-
ilar clues for crossword solving. We showed that distributed representations are
effective for computing the similarity between clues, without involving expen-
sive NLP and feature extractors in the reranking system. Our models outperform
previous state-of-the-art system for the presented task, showing a consistent im-
provement across all the evaluation metrics.

We have described a dataset of clues and answers for the Italian language
that we make available to the research community. In addition, we will publish
all the necessary data and code for reproducing our experiments.
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In the future, we plan to gather additional clue/answer pairs for Italian, in
order to train more complex neural network models. Additionally, we will also
apply the developed models for question to question similarity in a question
answering setting.
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