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Abstract
English. This paper aims at filling the
gap between the accuracy of Italian and
English constituency parsing: firstly, we
adapt the Bllip parser, i.e., the most ac-
curate constituency parser for English,
also known as Charniak parser, for Ital-
ian and trained it on the Turin Univer-
sity Treebank (TUT). Secondly, we design
a parse reranker based on Support Vec-
tor Machines using tree kernels, where the
latter can effectively generalize syntactic
patterns, requiring little training data for
training the model. We show that our
approach outperforms the state of the art
achieved by the Berkeley parser, improv-
ing it from 84.54 to 86.81 in labeled F1.

Italiano. Questo paper mira a col-
mare il gap di accuratezza tra il con-
stituency parsing dell’Italiano e quello In-
glese: come primo miglioramento, abbi-
amo adattato il parser a costituenti per
l’Inglese, Bllip, anche noto come Char-
niak parser, per l’Italiano e lo abbi-
amo addestrato sul Turin University Tree-
bank. In seguito, abbiamo progettato un
reranker basato sulle Macchine a Vettori
di Supporto che usano kernel arborei, i
quali possono efficacemente generalizzare
pattern sintattici, richiedendo pochi dati
di training per addestrare il modello. Il
nostro approccio supera lo stato dell’arte
ottenuto con il Berkeley parser, miglio-
rando la labeled F1 da 84.54 a 86.81.

1 Introduction
Constituency Syntactic parsing is one of the most
important research lines in Computational Lin-
guistics. Consequently, a large body of work has
been also devoted to its design for Italian language
(Bosco et al., 2007; Bosco et al., 2009; Bosco and

Mazzei, 2011). However, the accuracy reported
for the best parser is still far behind the state of the
art of other languages, e.g., English.

One noticeable attempt to fill this technolog-
ical gap was carried out in the EvalIta chal-
lenge, which proposed a parsing track on both
dependency and constituency parsing for Italian.
Among the several participant systems, the Berke-
ley parser (Petrov and Klein, 2007) gave the best
result (Lavelli and Corazza, 2009; Lavelli, 2011).

At the beginning, the outcome for constituency
parsing computed on TUT (Bosco et al., 2009)
was much lower than the one obtained for English
on the Penn Treebank (Marcus et al., 1993). In
the last EvalIta edition, such gap diminished as the
Italian parser labeled F1 increased from 78.73%
(EvalIta 2009) to 82.96% (EvalIta 2011). Some
years later the parser F1 improved to 83.27%
(Bosco et al., 2013). However, the performance
of the best English parser (McClosky et al., 2006),
i.e., 92.1%, is still far away. The main rea-
son for such gap is the difference in the amount
of training data available for Italian compared to
English. In fact, while Penn Treebank contains
49, 191 sentences/trees, TUT only contains 3, 542
sentences/trees.

In presence of scarcity of training data, a gen-
eral solution for increasing the accuracy of a ma-
chine learning-based system is the use of more
general features. This way, the probability of
matching training and testing instance representa-
tions is larger, allowing the learning process to find
more accurate optima. In case of syntactic pars-
ing, we need to generalize either lexical or syntac-
tic features, or possibly both. However, modeling
such generalization in state-of-the-art parser algo-
rithms such as the Bllip1 (Charniak, 2000; Char-
niak and Johnson, 2005) is rather challenging. In
particular, the space of all possible syntactic pat-
terns is very large and cannot be explicitly coded

1https://github.com/BLLIP/bllip-parser



in the model. An easier solution consists in us-
ing such features in a simpler model, which can be
trained to improve the outcome of the main parser,
e.g., selecting one of its best hypotheses. In partic-
ular, tree kernels (TKs) by Moschitti (2006) can be
used for encoding an exponential number of syn-
tactic patterns in parse rerankers.

In this work, we aim at filling the gap between
English and Italian constituency parsing: firstly,
we adapted Bllip parser, i.e., the most accurate
constituency parser for English, also known as
Charniak parser, for Italian and trained it on TUT.
We designed various configuration files for defin-
ing specific labels for TUT by also defining their
type, although we did not encode head-finding
rules for Italian, needed to complete the parser
adaptation.

Secondly, we apply rerankers based on Support
Vector Machines (SVMs) using TKs to the k-best
parses produced by Bllip, with the aim of select-
ing its best hypotheses. TKs allow us to represent
data using the entire space of subtrees, which cor-
respond to syntactic patterns of different level of
generality. This representation enables the train-
ing of the reranker with little data. Finally, we
tested our models on TUT, following the EvalIta
setting and compare with other parsers. For ex-
ample, we observed an improvement of about 2%,
over the Berkeley parser, i.e., 86.81 vs. 84.54.

2 Bllip parser
The Bllip parser is a lexicalized probabilistic con-
stituency parser. It can be considered a smoothed
PCFG, whose non-terminals encode a wide vari-
ety of manually chosen conditioning information,
such as heads, governors, etc. Such information is
used to derive probability distributions, which, in
turn, are utilized for computing the likelihood of
constituency trees being generated. As described
by McClosky et al. (2006), Bllip uses five distri-
butions, i.e., the probabilities of the (i) constituent
heads, (ii) constituent part-of-speeches (PoS), (iii)
head-constituents, (iv) left-of-head and (v) right-
of-head constituents. Each probability distribu-
tion is conditioned by five or more features and
backed-off by the probability of lower-order mod-
els in case of rare feature configurations. The
variety of information needed by Bllip to work
properly makes its configuration much harder than
for other parsers, e.g., the Berkeley’ one. How-
ever, Bllip is faster to train than other off-the-shelf
parsers.

2.1 Adapting Bllip to Italian Language
Bllip adaptation required to create various config-
uration files. For example, PoS and bracket labels
observed in training and development sets must be
defined in a file named terms.txt. As labels present
in the TUT are different from those of the Penn
Treebank2, we added them in such file. Then, we
specified the type of labels present in the data, i.e.,
constituent type, open-class PoS, punctuation, etc.

Finally, it should be noted that, since Bllip is
lexicalized, head-finding rules for Italian should
be specified in the file, headInfo.txt. For example,
the rule, ADJP

r−→ JJ , specifies that the head of
an adjective phrase (ADJP) is the right-most ad-
jective (JJ). Due to time restriction, we used the
default Bllip rules and leave this task as our short-
term future work.

3 Tree Kernel-based Reranker
We describe three types of TKs and the Preference
Reranker approach using them.

3.1 Tree kernels
TKs can be used for representing arbitrary tree
structures in kernel machines, e.g., SVMs. They
are a viable alternative to explicit feature design
as they implement the scalar products between
feature vectors as a similarity between two trees.
Such scalar product is computed using efficient al-
gorithms and it is basically equal to the number of
the common subparts of the two trees.

Syntactic Tree Kernels (STK) count the num-
ber of common tree fragments, where the latter (i)
contain more than two nodes and (ii) each node is
connected to either all or none of its children. We
also used a variant, called STKb, which adds the
number of common leaves of the comparing trees
in the final subpart count.

Partial Tree Kernels (PTK) counts a larger
class of tree fragments, i.e., any subset of nodes,
where the latter are connected in the original trees:
clearly, PTK is a generalization of STK.

3.2 Preference Reranker
Preference reranking is cast as a binary classifica-
tion problem, where each instance is a pair 〈hi, hj〉
of tree hypotheses and the classifier decides if hi
is better than hj . The positive training examples
are the pairs, 〈h1, hi〉, where h1 has the highest
F1 with respect to the gold standard among the
candidate hypotheses. The negative examples are

2For example, the PoS-tag NN in Penn Treebank corre-
sponds to tag NOU∼CS in TUT



Models sentences ≤ 40 words All sentences
LR LP LF EMR LR LP LF EMR

Berkeley (Bosco et al., 2013) 83.45 84.48 83.96 24.91 82.78 83.76 83.27 23.67
Berkeley (our model) 85.31 85.76 85.53 27.76 84.35 84.72 84.54 26.33
Bllip base model 85.90 86.67 86.28 29.54 85.26 85.97 85.61 28.00
STK 86.16 87.02 86.59 30.96 85.73 86.38 86.05 29.33
STKb 86.36 87.21 86.78 31.67 85.89 86.53 86.21 30.00
PTK 86.82 87.95 87.38 30.96 86.33 87.29 86.81 29.67

Table 1: Comparative results on the test set. LR/LP/LF = labeled recall/precision/F1. EMR = percentage of sentences where
recall and precision are 100%. STK- and STKb-based rerankers use 20-best hypotheses, while PTK-based reranker use 30-best
hypotheses.

obtained inverting the hypotheses in the pairs, i.e.,
〈hi, h1〉. If the hypotheses have the same score,
the pair is not included in the training set. At clas-
sification time all pairs 〈hi, hj〉 generated from the
k-best hypotheses are classified. A positive classi-
fication is a vote for hi, whereas a negative classi-
fication is a vote for hj . The hypothesis associated
with the highest number of votes (or highest sum
of classifier scores) is selected as the best parse.

4 Experiments
In these experiments, we first report on the per-
formance of Bllip for Italian and compare it with
the Berkeley parser. Then, we show that our parse
reranker can be very effective, even in case of use
of small training data.

4.1 Experimental Setup

Parsing data. The data for training and test-
ing the constituency parsers come from the TUT
project 3, developed at the University of Turin.
There have been several releases of the dataset:
we used the latest version from EvalIta 2011. The
training set is composed of 3, 542 sentences, while
the test set contains 300 sentences. The set of
PoS-tags includes 97 tags: 68 encoding morpho-
logical features (out of which 19 basic tags) for
pre-terminal symbols (e.g., ADJ, ADVB, NOUN,
etc.) and 29 non-terminal symbols for phrase con-
stituents (e.g., ADJP, ADVP, NP, etc.).
Reranking Data. To generate the data for train-
ing the reranker, we apply 10-fold cross validation
to the official TUT training set: we train the based
parser on 9 folds and applied it to the remaining
fold to generate the n-best trees for each of its sen-
tences. Then, we merge all the 10-labeled folds
to produce the training set of the reranker. This
way, we avoid the bias a parser would have if ap-
plied to the data used for training it. For generat-
ing the test data of the reranker, we simply apply

3http://www.di.unito.it/˜tutreeb/

the base parser (trained on all TUT training data)
to the TUT test set and generate n-hypotheses for
each sentence.

SVM Reranker. We train the reranker using
SVM-light-TK, which takes both feature vectors
and trees as input to learn a classification model.
The features used for reranking constituency trees
are: (i) the probability and the (inverse) rank of
the hypotheses provided by Bllip and (ii) the en-
tire syntactic trees used with two types of kernels,
STK and PTK, described in Sec. 3.
Measures. For evaluating the parsers, we used
the EVALB scoring program, which reports the
Labeled Precision (LP), Labeled Recall (LR), La-
beled F1 (LF) and Exact Match Rate (EMR). Ac-
cording to the official EvalIta procedure for eval-
uating the participant system output, we did not
score the TOP label, ignore all functional labels
attached to non-terminals and include punctuation
in the scoring procedure.

4.2 Bllip base parser results
We divided the training set in train and validation
sets, where the latter is composed of the last 50
sentences of each of the six sections of the former
for a total of 300 sentences. We train the models
on the training set and tune parameters on the val-
idation set. Then, we applied the learned model
to the 300 sentences of the test set. Table 1 shows
the results obtained by the Bllip base parser on the
TUT test set. Our parser obtained an LF of 86.28%
for sentences with less than 40 words and a score
of 85.61% for all sentences.

4.3 Comparison with the Berkeley parser
Table 1 also reports the results of the Berkeley
parser obtained by Bosco et al. (2013). For com-
parison purposes, we trained our own version of
the Berkeley parser. In particular, we trained the
parser for 5 split-merge cycles on the whole train-
ing set. We selected such number of cycles ap-
plying 10-fold cross validation on the training set.
Similarly to Bosco et al. (2013), we specialized

http://www.di.unito.it/~tutreeb/


Models
10-best 20-best 30-best

Tree Tree + feat. Tree Tree + feat. Tree Tree + feat.
len≤40 All ≤40 All len≤40 All len≤40 All len≤40 All len≤40 All

Bllip base model 86.28 85.61 86.28 85.61 86.28 85.61 86.28 85.61 86.28 85.61 86.28 85.61
STK 84.95 84.49 86.31 85.69 84.70 84.16 86.59 86.05 84.99 84.45 86.55 86.00
STKb 85.05 84.52 86.31 85.69 84.92 84.35 86.78 86.21 84.92 84.38 86.62 86.06
PTK 86.02 85.46 87.34 86.65 85.89 86.41 87.37 86.79 86.42 85.92 87.38 86.81

Table 2: Reranker performance: the first row reports the number n of the best hypotheses used during training. The second
row shows the used group of features: Tree or Tree + feat, while the third row illustrates the parse results (LF) for two sentence
groups: sentences with ≤ 40 words and all sentences.

punctuation symbols to more specific tags. How-
ever, we used full PoS-tags, as they gave the best
results in cross-fold validation. Indeed, the table
shows that our own version of the Berkeley parser
outperforms the version the one of Bosco et al.
(2013) by 1.27 absolute percent points (84.54 vs.
83.27). The table also reports the results of the
Bllip parser, which outperforms the best result ob-
tained by the Berkeley parser by 1.07% in LF, i.e.,
85.61 vs. 84.54.

4.4 Reranking using different TKs

Table 2 reports the LF obtained by different
reranking models, varying: (i) the type of TKs,
(ii) the group of features (i.e., either trees or trees
+ feat.) and (iii) the number, n, of parse trees used
to generate the reranker training data. More in par-
ticular, we experimented with three values for n,
i.e., 10-, 20- and 30-best parse trees. As it can be
seen from the table, PTK constantly outperforms
STK and STKb for any number of parse hypothe-
ses. This indicates that the subtree features gener-
ated by PTK, which include nodes with any sub-
set of the children in the original tree, are useful
for improving the parser accuracy.

Very interestingly, the performance of all mod-
els when trained on 30-best trees give either worse
results (e.g., STKb and STK) or very little im-
provement (e.g., PTK) than training on 20-best
parse trees. This may suggest that adding too
many negative examples, largely populating the
lower part of the n-best list may be detrimental.

The bottom part of Table 1 shows standard
parser evaluation metrics for different reranking
models using different kernel types: only the ker-
nel models with the highest LF from Table 2 are
reported. The method shows an 1.2% absolute im-
provement in LF (from 85.61% to 86.81%) on all
the sentences over the base-parser model (i.e., the
baseline) when using the most powerful kernel,
PTK, and 30-best hypotheses. STK and STKb

show a lower improvement over the baseline of
0.44% and 0.6%, respectively. One interesting

fact is the following: while PTK gives better re-
sults in terms of LF, STK and STKb perform bet-
ter in terms of EMR, i.e., the percentage of sen-
tence parse completely matching gold trees. This
is rather intuitive as the name suggests, Partial
Tree Kernel generates partial subtrees, i.e., partial
production rules as patterns. On one hand, this
can improve the ability of matching syntactic pat-
terns, thus capturing rules partially expressed by
more than one support vector. On the other hand,
the precision in capturing complete patterns, i.e.,
regarding a complete tree is intuitively decreased.

5 Related Work and Conclusions
This work was inspired by Collins and Duffy
(2002) and Collins and Koo (2005), who explored
discriminative approaches for ranking problems.
Their studies were limited to WSJ, though, and
did not explore the use of max-margin classifiers,
i.e., SVMs. The first experiments with SVMs and
TKs were conducted by Shen and Joshi (2003),
who proposed a new SVM-based voting algorithm
making use of preference reranking.

In this paper, we adapted the Charniak parser
for Italian gaining an improvement of 1.07% over
the Berkeley model (indicated by EvalIta as the
state of the art for Italian). Then, our TK-based
reranker further improved it up to 2 absolute per-
cent points. It should also be noted that our best
reranking result is 3.54 absolute points better than
the best outcome reported in (Bosco et al., 2013),
i.e., 83.27.

In the future, we would like to integrate (i) the
features developed in the reranking software avail-
able by Johnson and Ural (2010) in our model for
further improving it, (ii) generalizing lexical fea-
tures (e.g., embeddings, brown clusters) and in-
cluding similarity measures in PTK, i.e., SPTK
(Croce et al., 2011).
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