
Twitter Sentiment Analysis with
Deep Convolutional Neural Networks

Aliaksei Severyn∗
Google Inc.

aseveryn@gmail.com

Alessandro Moschitti†
Qatar Computing Research Institute

amoschitti@qf.org.qa

ABSTRACT
This paper describes our deep learning system for sentiment anal-
ysis of tweets. The main contribution of this work is a new model
for initializing the parameter weights of the convolutional neural
network, which is crucial to train an accurate model while avoid-
ing the need to inject any additional features. Briefly, we use an
unsupervised neural language model to train initial word embed-
dings that are further tuned by our deep learning model on a distant
supervised corpus. At a final stage, the pre-trained parameters of
the network are used to initialize the model. We train the latter on
the supervised training data recently made available by the official
system evaluation campaign on Twitter Sentiment Analysis orga-
nized by Semeval-2015. A comparison between the results of our
approach and the systems participating in the challenge on the of-
ficial test sets, suggests that our model could be ranked in the first
two positions in both the phrase-level subtask A (among 11 teams)
and on the message-level subtask B (among 40 teams). This is an
important evidence on the practical value of our solution.

Categories and Subject Descriptors
I.5.1 [Pattern Recognition]: Models—Neural nets

Keywords
Convolutional neural networks; twitter sentiment analysis

1. INTRODUCTION
In this work we describe our deep convolutional neural network

for sentiment analysis of tweets. Its architecture is most similar to
the deep learning systems presented in [2, 3] that have recently es-
tablished new state-of-the-art results on various NLP sentence clas-
sification tasks also including sentiment analysis. Convolutional
neural networks have been also successfully applied in various IR
applications, e.g., [8, 9]. While already demonstrating excellent
results, training a convolutional neural network that would beat
hand-engineered approaches that also rely on multiple manual and

∗This work was carried out at University of Trento.
†Professor at University of Trento, DISI.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SIGIR’15, August 09 - 13, 2015, Santiago, Chile.
c© 2015 ACM. ISBN 978-1-4503-3621-5/15/08 ...$15.00.

DOI: http://dx.doi.org/10.1145/2766462.2767830.

automatically constructed lexicons, e.g. [5, 11], requires careful at-
tention. This becomes an even harder problem especially in cases
when the amount of labelled data is relatively small, e.g., thousands
of examples.

It turns out that providing the network with good initialisation
parameters can have a significant impact on the accuracy of the
trained model. To address this issue, we propose a three-step pro-
cess to train our deep learning model for sentiment classification.
Our approach can be summarized as follows: (i) word embeddings
are initialized using a neural language model [4, 7], which is trained
on a large unsupervised collection of tweets; (ii) we use a convo-
lutional neural network to further refine the embeddings on a large
distant supervised corpus [1]; (iii) the word embeddings and other
parameters of the network obtained at the previous stage are used
to initialize the network with the same architecture, which is then
trained on a supervised corpus from Semeval-2015.

We apply our deep learning model on two subtasks of Semeval-
2015 Twitter Sentiment Analysis (Task 10) challenge: phrase-level
(subtask A) and message-level (subtask B). Our system achieves
high results on the official tests sets of the phrase-level and on the
message-level subtasks. In addition to the above test sets, we also
used the so-called progress test set, which consists of five test sets,
where our system again outperforms most of the systems partici-
pated in the challenge. In particular, if we ranked all systems (in-
cluding ours) according to their accuracy on each of the six test sets
and compute their average ranks, our model would be ranked first
in both subtasks, A and B.

2. OUR DEEP LEARNING MODEL FOR SEN-
TIMENT CLASSIFICATION

The architecture of our convolutional neural network for senti-
ment classification is shown on Fig. 1. It is mainly inspired by the
architectures used in [2, 3] for performing various sentence classifi-
cation tasks. Given that our training process (described in Sec. 3.3)
requires to run the network on a rather large corpus, our design
choices are mainly driven by the computational efficiency of our
network. Hence, different from [2], which presents an architecture
with several layers of convolutional feature maps, we adopt a sin-
gle level architecture. Nevertheless, single-layer architectures have
been shown in [3] to perform equally well.

Our network is composed of a single convolutional layer fol-
lowed by a non-linearity, max pooling and a soft-max classification
layer.

In the following, we give a brief explanation of the main compo-
nents of our network: sentence matrix, activations, convolutional,
pooling and softmax layers. We also describe how to adapt the
network for predicting sentiment of phrases inside the tweets.

Figure 1: The architecture of our deep learning model for sen-
timent classification.

2.1 Sentence matrix
The input to our model are tweets each treated as a sequence of

words: [wi, .., w|s|], where each word is drawn from a vocabulary
V . Words are represented by distributional vectors w ∈ R1×d

looked up in a word embeddings matrix W ∈ Rd×|V |. This matrix
is formed by simply concatenating embeddings of all words in V .
For convenience and ease of lookup operations in W, words are
mapped into indices 1, . . . , |V |.

For each input tweet s, we build a sentence matrix S ∈ Rd×|s|,
where each column i represents a word embedding wi at the cor-
responding position i in a sentence (see Fig. 1). To learn to capture
and compose features of individual words in a given sentence from
low-level word embeddings into higher level semantic concepts,
the neural network applies a series of transformations to the input
sentence matrix S using convolution, non-linearity and pooling op-
erations, which we describe next.

2.2 Convolutional feature maps
The aim of the convolutional layer is to extract patterns, i.e., dis-

criminative word sequences found within the input tweets that are
common throughout the training instances.

More formally, the convolution operation, ∗, between an input
matrix s ∈ Rd×|s| and a filter F ∈ Rd×m of width m results in
a vector c ∈ R|s|+m−1, where each component is computed as
follows:

ci = (S ∗ F)i =
∑
k,j

(S[:,i−m+1:i] ⊗ F)kj , (1)

where ⊗ is the element-wise multiplication and S[:,i−m+1:i] is a
matrix slice of size m along the columns. Note that the convo-
lution filter is of the same dimensionality d as the input sentence
matrix. As shown in Fig. 1, it slides along the column dimension
of S producing a vector c ∈ R1×(|s|−m+1) in output. Each compo-
nent ci is the result of computing an element-wise product between
a column slice of S and a filter matrix F, which is then summed to
a single value.

So far we have described a way to compute a convolution be-
tween the input sentence matrix and a single filter. To form a richer
representation of the data, deep learning models apply a set of fil-
ters that work in parallel generating multiple feature maps (also
shown on Fig. 1). A set of filters form a filter bank, F ∈ Rn×d×m,
sequentially convolved with the sentence matrix S and producing a
feature map matrix C ∈ Rn×(|s|−m+1).

In practice, we also need to add a bias vector b ∈ Rn to the
result of a convolution – a single bi value for each feature map ci.
This allows the network to learn an appropriate threshold.

2.3 Activation units
To enable the learning of non-linear decision boundaries, each

convolutional layer is typically followed by a non-linear activation
function, α(), applied element-wise. Among the most common
choices of activation functions are: sigmoid (or logistic), hyper-
bolic tangent tanh, and a rectified linear (ReLU) function defined
as simply max(0,x) to ensure that feature maps are always posi-
tive.

We use ReLU in our model since, as shown in [6], it speeds up
the training and sometimes produces more accurate results.

2.4 Pooling
The output from the convolutional layer (passed through the ac-

tivation function) is then passed to the pooling layer, whose goal
is to aggregate the information and reduce the representation. The
result of the pooling operation is:

cpooled =

pool(α(c1 + b1 ∗ e))
. . .

pool(α(cn + bn ∗ e))

 ,
where ci is the ith convolutional feature map with added bias (the
bias is added to each element of ci and e is a unit vector of the
same size as ci) and passed through the activation function α().

The most popular choices for pooling operation are: max and
average pooling. Recently, max pooling has been generalized to k-
max pooling [2], where instead of a single max value, k values are
extracted in their original order. We use max pooling in our model,
which simply returns the maximum value. It operates on columns
of the feature map matrix C returning the largest value: pool(ci) :
R1×(|s|+m−1) → R (also shown schematically in Fig. 1).

The convolutional layer utilizing the activation function and the
pooling layer acts as a non-linear feature extractor. Given that mul-
tiple feature maps are used in parallel to process the input, deep
learning networks are able to build rich feature representations of
the input.

2.5 Softmax
The output of the penultimate convolutional and pooling layers

x is passed to a fully connected softmax layer. It computes the
probability distribution over the labels:

P (y = j|x, s,b) = softmaxj(x
Tw + b)

= e
xT wj+bj∑K

k=1
ex

T wk+bk
,

where wk and bk are the weight vector and bias of the k-th class.

2.6 Phrase-level sentiment analysis
To perform phrase-level sentiment analysis, we feed the network

with an additional input sequence indicating the location of the tar-
get phrase in a tweet. The elements are encoded using only two
word types: the tokens spanning the phrase to be predicted are en-
coded with 1s and all the others with 0s. Each word type is asso-
ciated with its own embedding. So, when tackling the phrase-level
sentiment classification, we form a sentence matrix S as follows:
for each token in a tweet, we have to look up its corresponding
word embedding in the word matrix W, and the embedding for
one of the two word types. Hence, the input sentence matrix is
augmented with an additional set of rows from the word type em-
beddings. Other than that, the architecture of our network remains
unchanged.

3. OUR APPROACH TO TRAIN THE NET-
WORK

Convolutional neural networks can be tricky to train as are often
severely subject to overfitting when trained on small datasets. In
the following, we describe our approach to train our deep learning
model.

3.1 Network Parameters and Training
We use stochastic gradient descent (SGD) to train the network

and use backpropogation algorithm to compute the gradients. We
opt for the Adadelta [12] update rule to automatically tune the
learning rate.

3.2 Regularization
While neural networks have a large capacity to learn complex

decision functions they tend to easily overfit especially on small
and medium sized datasets. To mitigate the overfitting issue, we
augment the cost function with l2-norm regularization terms for
the parameters of the network.

We also use another popular and effective technique to improve
regularization of the neural networks — dropout [10]. Dropout
prevents feature co-adaptation by setting to zero (dropping out) a
portion of hidden units during the forward phase when computing
the activations at the softmax output layer.

3.3 Initializing the model parameters
Convolutional neural networks are trained with non-convex func-

tion optimization algorithms, which typically lead to locally op-
tima. Hence, starting the optimization from a good point can be
crucial to train an accurate model. We propose the following 3-step
process to initialize the parameter weights of the network:

1. Given that the largest parameter of the network is the word ma-
trix W, it is crucial to feed the network with the high quality
embeddings. We use a popular word2vec neural language
model [4] to learn the word embeddings on an unsupervised
tweet corpus. For this purpose, we collect 50M tweets over a
two-month period. We perform a minimal preprocessing, tok-
enizing the tweets, normalizing the URLs and author ids. To
train the embeddings, we use a skipgram model with window
size 5 and filter words with frequency less than 5.

2. When dealing with small amounts of labelled data, starting from
pre-trained word embeddings is a large step towards success-
fully training an accurate deep learning system. However, while
the word embeddings obtained at the previous step should al-
ready capture important syntactic and semantic aspects of the
words they represent, they are completely clueless about their
sentiment behaviour. Hence, we use a distant supervision ap-
proach [1] using our convolutional neural network to further re-
fine the embeddings. More specifically, (i) we collected 10M
tweets treating tweets containing positive emoticions, which can
be used as distantly supervised labels; and (ii) we used such
noisy label to train our embeddings. This step required a few
days.

3. Finally, we take the the parameters θ of the network obtained
at the previous step and use it to initialize the network which is
trained on the supervised training corpus from Semeval-2015.

4. EXPERIMENTS AND EVALUATION

Table 1: Semeval-2015 data.
Dataset Subtask A Subtask B

Twitter’13-train 5,895 9,728
Twitter’13-dev 648 1,654
Twitter’13-test 2,734 3,813
LiveJournal’14 660 1,142
SMS’13 1,071 2,093
Twitter’14 1,807 1,853
Sarcasm’14 82 86
Twitter’15 3,092 2,390

Teams 11 40

4.1 Data and setup
We test our model on two subtasks from Semeval-2015 Task

10: phrase-level (subtask A) and message-level (subtask B)1. The
datasets used in Semeval-2015 are summarized in Table 1. We use
train and dev from Twitter’13 for training and Twitter’13-test as
a validation set. The other datasets are used for testing, whereas
Twitter’15 is used to establish the official ranking of the systems.
For evaluation we use the official scorers from Semeval 2015, which
compute the average between F-measures for the positive and neg-
ative classes.

To pre-train the weights of our network, we use a large unsu-
pervised corpus containing 50M tweets for training the word em-
beddings and a 10M tweet corpus for distant supervision. The lat-
ter corpus was built similarly to [1], where tweets with positive
emoticons, like ’:)’, are assumed to be positive, and tweets with
negative emoticons, like ’:(’, are labeled as negative. The dataset
contains equal number of positive and negative tweets.

The parameters of our model were (chosen on the validation set)
as follows: the width m of the convolution filters is set to 5 and
the number of convolutional feature maps is 300. We use ReLU
activation function and a simple max-pooling. The dimensionality
of the word embeddings d is set to 100. For the phrase-level subtask
the size of the word type embeddings, which encode tokens that
span the target phrase or not, is set to 10.

4.2 Pre-training the network
To train our deep learning model, we follow our 3-step process as

described in Sec. 3.3. We report the results for training the network
on the official supervised dataset from Semeval’15 using parame-
ters that were initialized: (i) completely at random (Random); (ii)
using word embeddings from the neural language model trained
on a large unsupervised dataset (Unsup) with the word2vec tool
and (iii) initializing all the parameters of our model with the pa-
rameters of the network that uses the word embeddings from the
previous step and are further tuned on a distant supervised dataset
(Distant).

Table 2 summarizes the performance of our model on five test
sets using three parameter initialization schemas.

We note that: first, training the network with all parameters ini-
tialized completely at random results in a rather mediocre accuracy.
This is due to a small size of the training set.

Secondly, using embeddings pre-trained by a neural language
model considerably boosts the performance.

Finally, using a large distant supervised corpus to further tune

1the test datasets of SemEval’15 subsume the test sets from previ-
ous editions of Semeval, i.e., Semeval’13 and Semeval’14, so our
results directly apply to those of the previous years.

Table 2: Testing the model on the progress test sets from
Semeval-2015 with different parameter initializion schemes:
Random (random word embeddings); Unsup (word2vec em-
beddings); Distant (all parameters from a network trained
on a distant supervised dataset).

Dataset Random Unsup Distant

LiveJournal’14 63.58 73.09 72.48
SMS’13 58.41 65.21 68.37
Twitter’13 64.51 72.35 72.79
Twitter’14 63.69 71.07 73.60
Sarcasm’14 46.10 52.56 55.44

the word embeddings to also capturing the sentiment aspect of the
words results in a further improvement across all test sets (except
for a small drop on LiveJournal’14).

4.3 Official rankings
The comparison of our system performance with the official sys-

tem rankings from Semeval’15 for both subtasks A and B are sum-
marized in Table 3. As we can see our system performs particularly
well on subtask A, it would be ranked 1st on the official Twitter’15
test set, while also showing excellent accuracy on all other test sets.

On subtask B our system would rank 2nd also showing high re-
sults on the other test sets (except for the LiveJournal’14). In fact,
no single system at Semeval-2015 performed equally well across all
test sets. For example, a system that ranked 1st on the official Twit-
ter’15 dataset performed much worse on the progress test sets rank-
ing, i.e., {14, 14, 11, 7, 12} on {LiveJournal’14, SMS’13,
Twitter’13, Twitter’14, and Sarcasm’14}, respectively.
This results on an AveRank of 9.8, which is only at the 6th posi-
tion if systems were ranked according to this average rank metric.
In contrast, our system shows high robustness as its results, across
all tests, would provide the AveRank of 4.3, which is the top-score
according to this metric among all 40 submissions.

5. CONCLUSIONS
We described our deep learning approach to sentiment analysis

of tweets for predicting polarities at both message and phrase lev-
els. We give a detailed description of our 3-step process to train
the parameters of the network that is the key to our success. The
resulting model sets a new state-of-the-art on the phrase-level and
is 2nd on the message-level subtask. Considering the average rank
across all test sets our system is 1st on both subtasks.

Our network initialization process includes the use of distant su-
pervised data (noisy labels are inferred using emoticons found in
the tweets) to further refine the weights of the network passed from
the completely unsupervised neural language model. Thus, our so-
lution successfully combines together two traditionally important
aspects of IR: unsupervised learning of text representations (word
embeddings from neural language model) and learning on weakly
supervised data. In the future we plan to apply deep learning ap-
proach to other IR applications, e.g., learning to rank for Microblog
retrieval and answer reranking for Question Answering.

Acknowledgments. This work has been supported by the EC project
CogNet, 671625 (H2020-ICT-2014-2). The first author was sup-
ported by the Google Europe Doctoral Fellowship Award 2013.

Table 3: Results on Semeval-2015 for phrase and tweet-level
subtasks. Rank shows the absolute position of our system on
each test set. AveRank is the averaged rank across all test sets.

Dataset Score Rank

Phrase-level subtask A
LJournal’14 84.46 2
SMS’13 88.60 2
Twitter’13 90.10 1
Twitter’14 87.12 1
Sarcasm’14 73.65 5
Twitter’15 84.79 1

AveRank 2.0 1

Message-level subtask B
LJournal’14 72.48 12
SMS’13 68.37 2
Twitter’13 72.79 3
Twitter’14 73.60 2
Sarcasm’14 55.44 5
Twitter’15 64.59 2

AveRank 4.3 1

REFERENCES
[1] A. Go, R. Bhayani, and L. Huang. Twitter sentiment

classification using distant supervision. In CS224N Project
Report, Stanford, 2009.

[2] N. Kalchbrenner, E. Grefenstette, and P. Blunsom. A
convolutional neural network for modelling sentences. In
ACL, 2014.

[3] Y. Kim. Convolutional neural networks for sentence
classification. In EMNLP, 2014.

[4] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and phrases
and their compositionality. In NIPS, 2013.

[5] S. M. Mohammad, S. Kiritchenko, and X. Zhu. Nrc-canada:
Building the state-of-the-art in sentiment analysis of tweets.
In Semeval, 2013.

[6] V. Nair and G. E. Hinton. Rectified linear units improve
restricted boltzmann machines. In ICML, 2010.

[7] J. W. Ronan Collobert. A unified architecture for natural
language processing: deep neural networks with multitask
learning. In ICML, 2008.

[8] Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil. A latent
semantic model with convolutional-pooling structure for
information retrieval. CIKM, 2014.

[9] Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil. Learning
semantic representations using convolutional neural
networks for web search. In WWW, 2014.

[10] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: A simple way to prevent neural
networks from overfitting. Journal of Machine Learning
Research, 15:1929–1958, 2014.

[11] S. M. M. Xiaodan Zhu, Svetlana Kiritchenko.
Nrc-canada-2014: Recent improvements in sentiment
analysis of tweets, and the Voted Perceptron. In SemEval,
2014.

[12] M. D. Zeiler. Adadelta: An adaptive learning rate method.
CoRR, 2012.

	1 Introduction
	2 Our Deep Learning model for sentiment classification
	2.1 Sentence matrix
	2.2 Convolutional feature maps
	2.3 Activation units
	2.4 Pooling
	2.5 Softmax
	2.6 Phrase-level sentiment analysis

	3 Our approach to train the network
	3.1 Network Parameters and Training
	3.2 Regularization
	3.3 Initializing the model parameters

	4 Experiments and evaluation
	4.1 Data and setup
	4.2 Pre-training the network
	4.3 Official rankings

	5 Conclusions

