
Learning to Rank Aggregated Answers for
Crossword Puzzles

Massimo Nicosia1,2, Gianni Barlacchi2 and Alessandro Moschitti1,2

1 Qatar Computing Research Institute
2 University of Trento

m.nicosia@gmail.com, gianni.barlacchi@gmail.com, amoschitti@qf.org.qa

Abstract. In this paper, we study methods for improving the quality of automatic
extraction of answer candidates for automatic resolution of crossword puzzles
(CPs), which we set as a new IR task. Since automatic systems use databases
containing previously solved CPs, we define a new effective approach consisting
in querying the database (DB) with a search engine for clues that are similar to the
target one. We rerank the obtained clue list using state-of-the-art methods and go
beyond them by defining new learning to rank approaches for aggregating similar
clues associated with the same answer.

1 Introduction

CPs are among the most popular language games. Automatic solvers mainly use AI
techniques for filling the puzzle grid with candidate answers. The basic approach is
to optimize the overall probability of correctly filling the grid by exploiting the likeli-
hood of each candidate answer, fulfilling the grid constraints. Previous work [4] clearly
suggests that providing the solver with an accurate list of answer candidates is vital.
These can be (i) partially retrieved from the Web and (ii) most importantly they can
be recuperated from a DB of previously solved CPs (CPDB). The latter contains clues
from previous CPs, which are often reused: querying CPDB with the target clue may
allow for recuperating the same (or similar) clues. It is interesting to note that all pre-
vious automatic CP solvers use standard DB techniques, e.g., SQL Full-Text query, for
querying CPDBs. In [2], we showed that IR techniques can improve clue retrieval but
our approach was limited on providing better ranking of clues whereas CP solvers re-
quire the extraction of the answer. In other words, given the list of similar clues retrieved
by an IR system, a clue aggregation step and a further reranking process is needed to
provide the list of answer candidates to the solver. More specifically, each clue ci in the
rank is associated with an answer aci . A typical approach to select or rerank answers is
to consider ci as a vote for aci . However, this is subject to the important problem that
clues are relevant to the query with different probability. Trivially, a clue very low in
the rank is less reliable than clues in the first position. One solution may use the score
provided by the learning to rank algorithm (LTR) as a vote weight but as we show,
its value is not uniformly distributed with respect to the probability of the correctness
of ci: this makes voting strategies less effective. In this paper, we study and propose
different techniques for answer aggregation and reranking with the aim of solving the

2

problem above. First of all, we apply logistic regression (LGR) to the scores produced
by LTR algorithms for transforming them into probabilities. This way, we can apply a
voting approach with calibrated probabilities, which improves on previous work. Sec-
ondly, we propose an innovative machine learning model for learning to combine the
information that each ci bring to their aci : we define a representation of each aci based
on aggregate features extracted from ci, e.g., their average, maximum and minimum
reranking score. We experiment with this new answer representation with both LGR as
well as SVMrank [7]. Thirdly, another important contribution is the construction of the
dataset for clue retrieval: it is constituted by 2,131,034 of clues and associated answers.
This dataset is an interesting resource that we made available to the research commu-
nity. Eventually, using the above dataset, we carried out two sets of experiments on two
main tasks: (i) clue reranking, which focuses on improving the rank of clues ci retrieved
for a query; and (ii) answer reranking, which targets the list of aci , i.e., their aggregated
clues. The results of our experiments with the above dataset demonstrate that (i) stan-
dard IR greatly improves on DB methods for clue reranking, i.e., BM25 improves on
SQL query by 6 absolute percent points; (ii) kernel-based rerankers using several fea-
ture sets, improves SQL by more than 15 absolute percent points; and (iii) using our
answer aggregation reranking methods, the improvement on Recall (Precision) at rank
1, increases by additional 2 points absolute over the best results.

2 Related Work

There have been many attempts to build automatic CP solving systems. Their goal is
to outperform human players in solving crosswords, more accurately and in less time.
Knowledge about previous CPs is essential for solving new ones as clues often re-
peat in different CPs. Thus, all systems contain at least a module for clue retrieval
from CPDBs. Proverb [8] was the first system for automatic resolution of CPs. It in-
cludes several modules for generating lists of candidate answers. These lists are merged
and used to solve a Probabilistic-Constraint Satisfaction Problem. Proverb relies on
a very large crossword database as well as several domain-specific expert modules.
WebCrow [4] extends Proverb by applying basic linguistic analysis such as POS tag-
ging and lemmatization. It uses semantic relations contained in WordNet, dictionaries
and gazetteers. To exploit the database of clue-answer pairs, WebCrow applies MySQL
match and Full-Text search functions. We used WebCrow as baseline as its CPDB mod-
ule is one of the most accurate among CP resolution systems. This makes it one of the
best system for Automatic CP resolution. The authors kindly made it available to us. It
should be noted that, to the best of our knowledge, the state-of-the-art system is Dr. Fill
[6], which targets the crossword filling task with a Weighted-Constraint Satisfaction
Problem. However, its CPDB module is comparable to the one of WebCrow.

3 Advanced Learning to Rank Algorithms

We used the reranking framework applied to CPs described in [2]. This uses a prefer-
ence reranking approach [7] exploiting structural kernels [10] and feature vectors.

3

Structural kernels. The model described in [11] are fed with a textual query and the
list of related candidates, retrieved by a search engine (used to index a DB) according
to some similarity criteria. Then, the query and the candidates are processed by an NLP
pipeline, which contains many text analysis components: the tokenizer3, sentence detec-
tor1, lemmatizer1, part-of-speech (POS) tagger1, chunker4 and stopword marker5. The
output of these processors are used for building tree representations of clues. We use
kernels applied to syntactic trees and feature vectors to encode pairs of clues in SVMs,
which reorder the candidate lists. Since the syntactic parsing accuracy can impact the
quality of our trees, and thus the accuracy of SVMs, we used shallow syntactic trees.

3.1 Feature Vectors

In addition to structural representations, we also used features for capturing the degrees
of similarity between clues.
iKernels features (iK). these are a set of similarity features taking into account syntac-
tic information captured by n-grams, and using kernels:
– Syntactic similarities. Several cosine similarity measures are computed on n-grams
(with n = 1, 2, 3, 4) of word lemmas and part-of-speech tags.
– Kernel similarities. These are computed using (i) string kernels applied to clues, and
tree kernels applied to structural representations
DKPro Similarity (DKP). We used similarity features used in Semantic Textual Sim-
ilarity (STS) tasks, namely features in DKPro from the UKP Lab [1]. These features
were effective in predicting the degree of similarity between two sentences:
– Longest common substring measure and Longest common subsequence measure. They
determine the length of the longest substring shared by two text segments.
– Running-Karp-Rabin Greedy String Tiling. It provides a similarity between two sen-
tences by counting the number of shuffles in their subparts.
– Resnik similarity. The WordNet hypernymy hierarchy is used to compute a measure
of semantic relatedness between concepts expressed in the text.
– Explicit Semantic Analysis (ESA) similarity [5]. It represents documents as weighted
vectors of concepts learned from Wikipedia, WordNet and Wiktionary.
– Lexical Substitution [3]. A supervised word sense disambiguation system is used
to substitute a wide selection of high-frequency English nouns with generalizations.
Resnik and ESA features are computed on the transformed text.
WebCrow features (WC). We included the similarity measures computed on the clue
pairs by WebCrow and the Search Engine as features:
– Lucene Score. BM25 score of the target candidate.
– Clue distance. It quantifies how dissimilar the input clue and the retrieved clue are.
This formula is mainly based on the well known Levenshtein distance.

3 http://nlp.stanford.edu/software/corenlp.shtml
4 http://cogcomp.cs.illinois.edu/page/software view/13
5 Stopwords: https://github.com/mimno/Mallet/blob/master/stoplists/en.txt

4

4 Aggregation Models for Answer Reranking

CP resolution is a sort of question answering task: it requires extracting the answer
rather than a set of ranked clues. Groups of similar clues retrieved from the search en-
gine can be associated with the same answers. Since each clue receives a score from
the reranker, a strategy to combine the scores is needed. We aim at aggregating clues
associated with the same answer and building meaningful features for such groups. We
designed two different strategies: (i) apply LGR to the scores of our reranker to obtain
probabilities and then sum together those referring to the same answer candidates; and
(ii) represent each answer candidate with features derived from all the clues associated
with it, i.e., their aggregation using standard operators such average, min. and max.
Logistic Regression Model. The search engine or the reranker associate clues with
scores that are not probabilities and have their own distributions. In contrast, LGR
assigns probabilities to answer candidates. Such probabilities, learned using also ad-
ditional features, are more effective for aggregation. We apply the following formula:
Score(G) = 1

n

∑
c∈G

PLR(y=1|xc)
rankc

to obtain a single final score for each different an-
swer candidate, where c is the answer candidate, G is the set of clue answers equal
to c, and n is the size of the answer candidate list. xc is the feature vector associated
with c ∈ G, y ∈ {0, 1} is the binary class label (y = 1 when c is the correct answer).
rankc is the rank assigned from the reranker to the word c. Eventually, we divide the
probability by the rank of the answer candidate to reduce the contribution of bottom
candidates. The conditional probability computed by the linear model is the following:
PLR(y = 1|c) = 1

1+e−ywT xc
, where w ∈ Rn is a weight vector [12].

Learning to rank aggregated answers. We apply SVMrank to rerank each set of clues
having the same answer candidate. To build the feature vectors associated with such
groups, we average the features used for each clue by the first reranker, i.e., those de-
scribed in Sec. 3.1. We call these features FV. Additionally, we compute the sum and
the average of the scores, the maximum score, the minimum score and the term fre-
quency of the word in the CPDB Dataset. We call them (AVG). Eventually, we model
the occurrences of the answer instance in the list by means of positional features: we use
n features, where n is the size of our candidate list (i.e., 10). Each feature corresponds
to the positions of the answer instance in the list. We call them (POS).

5 Experiments

The experiments compare different ranking models. i.e., WebCrow, BM25 and several
rerankers, for the task of clue retrieval. Most importantly, we show innovative models
for aggregating and reranking answers based on LGR and SVMrank.

5.1 Database of previously resolved CPs (CPDB)

We compiled a crosswords corpus combining (i) the downloaded CPs from the Web6

and (ii) the clues database provided by Otsys7. We removed duplicates, fill-in-the-blank
6 http://www.crosswordgiant.com
7 http://www.otsys.com/clue

5

Model MRR SUC@1 SUC@5
WebCrow (WC) 64.65 57.14 74.98
BM25 75.17 63.78 90.40
RR (iK) 78.01 67.34 92.32
RR (iK+DKP) 80.89 71.62 93.14
RR (iK+DKP+WC) 81.70 72.50 94.02

Table 1: Similar Clue Reranking

Model MRR SUC@1 SUC@5
Raw voting 41.33 17.44 78.48
LGR voting 83.16 73.18 96.68
SVM (AVG+POS) 83.49 73.82 96.78
SVM (AVG+POS+FV) 83.95 74.60 96.78
LGR (AVG+POS+FV) 81.70 73.54 96.74

Table 2: Answer reranking

clues (which are better solved by using other strategies) and clues representing ana-
grams or linguistic games. The resulting compressed dataset, called CPDB, contains
2,131,034 unique and standard clues, with associated answers.

5.2 Experimental Setup

We used SVM-light-TK8 to train our models, with default parameters. It enables the use
of structural kernels [10] in SVM-light [7]. We applied a polynomial kernel of degree
3 to the explicit feature vectors. To measure the impact of the rerankers as well as the
baselines, we use: success at rank 1 (SUC@1), which is the percentage of questions with
a correct answer in the first position; Mean Reciprocal Rank (MRR), which is computed
by 1

|Q|
∑|Q|

q=1
1

rank(q) , where rank(q) is the position of the first correct answer in the
candidate list; and success at rank 5 (SUC@5), which is the percentage of questions
with at least one correct answer in the first 5 reranked clues.

5.3 Ranking results

To build the reranking training and test set, we used the clues contained in CPDB for
querying the search engine, which retrieves a list of candidates from the indexed clues
excluding the input clue. For each input clue, similar candidate clues are retrieved and
used to form a first list for the reranker. The training set is composed by 8,000 unique
pairs of clue/answer that have at least one correct answer in the first 10 candidates
retrieved by the search engine. We also created a test set containing 5,000 clues that
are not contained in the training set. We tested two different models: (i) BM25 and (ii)
reranking models (RR). Since WebCrow includes a database module, we also report its
accuracy. We used the BM25 implementation of Lucene [9] as the IR Baseline: lists
are ordered using Lucene scores. To rerank these lists, we tried different combinations
of features for the rerankers, described in Section 3.1. The results in Tab. 1 show that:
(i) BM25 produces an MRR of 75.17%, which improves on WebCrow by more than
6.5 absolute percent points, demonstrating the superiority of an IR approach over DB
methods; (ii) RR (iK) achieves a higher MRR, up to 4 percent absolute of improvement
over BM25 and thus about 10.5 points more than WebCrow. With respect to this model,
the improvement on MRR of (iii) RR (iK+DKPro) is up to 1.2 percent points and finally,
(iv) RR (iK+DKP+WC) improves the best results of another full percent point. Tab. 2
shows the results for answer reranking: (i) voting the answer using the raw score of the
reranker is not effective; (ii) voting, after transforming scores into probabilities with
LGR, improves on the best clue reranking model in terms of SUC@1 and MRR; (iii)

8 http://disi.unitn.it/moschitti/Tree-Kernel.htm

6

the SVMrank aggregation model using AVG and POS feature sets improves on the
LGR voting model; (iv) when FV are added we notice a further increase in MRR and
SUC@1; (v) LGR on the same best model AVG+POS+FV is not effective, showing that
ranking methods are able to refine answer aggregation better than regression methods.

6 Conclusions

In this paper, we improve the answer extraction from DBs for automatic CP resolution.
We design innovative learning to rank aggregation methods based on SVMs on top
of state-of-the-art rerankers designed for clue reordering. Our approach first retrieves
clues using BM25, then applies SVMs based on several features and tree kernels and
eventually, collapses clues with the same answers, thus modeling answer reranking.
The latter uses innovative aggregation features and positional features. The comparisons
with state-of-the-art CP solvers, i.e., WebCrow, show that our model relatively improves
it by about 30% (16.4 absolute percent points) in SUC@1 and even more on MRR. For
our study, we collected over 6 millions of English clues and we created a dataset for
clue similarity with over 2 millions of English clues. This is an important resource for
IR research that we make available to the community.

References
1. Bär, D., Zesch, T., Gurevych, I.: Dkpro similarity: An open source framework for text simi-

larity. In: Proceedings of ACL (System Demonstrations) (2013)
2. Barlacchi, G., Nicosia, M., Moschitti, A.: Learning to rank answer candidates for automatic

resolution of crossword puzzles. In: Proceedings of the Eighteenth Conference on Computa-
tional Natural Language Learning. Association for Computational Linguistics (June 2014)

3. Biemann, C.: Creating a system for lexical substitutions from scratch using crowdsourcing.
Lang. Resour. Eval. 47(1), 97–122 (Mar 2013)

4. Ernandes, M., Angelini, G., Gori, M.: Webcrow: A web-based system for crossword solving.
In: In Proc. of AAAI 05. pp. 1412–1417. Menlo Park, Calif., AAAI Press (2005)

5. Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using wikipedia-based ex-
plicit semantic analysis. In: Proceedings of the 20th International Joint Conference on Artif-
ical Intelligence. pp. 1606–1611. IJCAI’07 (2007)

6. Ginsberg, M.L.: Dr.fill: Crosswords and an implemented solver for singly weighted csps. J.
Artif. Int. Res. 42(1), 851–886 (Sep 2011)

7. Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings of the
Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
pp. 133–142. KDD ’02, ACM, New York, NY, USA (2002)

8. Littman, M.L., Keim, G.A., Shazeer, N.: A probabilistic approach to solving crossword puz-
zles. Artificial Intelligence 134(12), 23 – 55 (2002)

9. McCandless, M., Hatcher, E., Gospodnetic, O.: Lucene in Action, Second Edition: Covers
Apache Lucene 3.0. Manning Publications Co., Greenwich, CT, USA (2010)

10. Moschitti, A.: Efficient convolution kernels for dependency and constituent syntactic trees.
In: ECML. pp. 318–329 (2006)

11. Severyn, A., Moschitti, A.: Structural relationships for large-scale learning of answer re-
ranking. In: Proceedings of ACM SIGIR. New York, NY, USA (2012)

12. Yu, H.F., Huang, F.L., Lin, C.J.: Dual coordinate descent methods for logistic regression and
maximum entropy models. Mach. Learn. 85(1-2), 41–75 (Oct 2011)

