
Deep Neural Networks for Named Entity Recognition in Italian

Daniele Bonadiman†, Aliaksei Severyn∗, Alessandro Moschitti‡†
†DISI - University of Trento, Italy

∗Google Inc.
‡Qatar Computing Research Institute, HBKU, Qatar

{bonadiman.daniele,aseveryn,amoschitti}@gmail.com

Abstract

English. In this paper, we intro-
duce a Deep Neural Network (DNN) for
engineering Named Entity Recognizers
(NERs) in Italian. Our network uses a
sliding window of word contexts to pre-
dict tags. It relies on a simple word-level
log-likelihood as a cost function and uses
a new recurrent feedback mechanism to
ensure that the dependencies between the
output tags are properly modeled. The
evaluation on the Evalita 2009 benchmark
shows that our DNN performs on par with
the best NERs, outperforming the state of
the art when gazetteer features are used.

Italiano. In questo lavoro, si introduce
una rete neurale deep (DNN) per pro-
gettare estrattori automatici di entitá nom-
inate (NER) per la lingua italiana. La rete
utilizza una finestra scorrevole di contesti
delle parole per predire le loro etichette
con associata probabilitá, la quale è us-
ata come funzione di costo. Inoltre si uti-
lizza un nuovo meccanismo di retroazione
ricorrente per modellare le dipendenze tra
le etichette di uscita. La valutazione della
DNN sul dataset di Evalita 2009 indica che
è alla pari con i migliori NER e migliora lo
stato dell’arte quando si aggiungono delle
features derivate dai dizionari.

1 Introduction
Named Entity (NE) recognition is the task of de-
tectings phrases in text, e.g., proper names, which
directly refer to real world entities along with
their type, e.g., people, organizations, locations,
etc. see, e.g., (Nadeau and Sekine, 2007).

Most NE recognizers (NERs) rely on machine
learning models, which require to define a large set
of manually engineered features. For example, the

state-of-the-art (SOTA) system for English (Rati-
nov and Roth, 2009) uses a simple averaged per-
ceptron and a large set of local and non-local fea-
tures. Similarly, the best performing system for
Italian (Nguyen et al., 2010) combines two learn-
ing systems that heavily rely on both local and
global manually engineered features. Some of the
latter are generated using basic hand-crafted rules
(i.e., suffix, prefix) but most of them require huge
dictionaries (gazetteers) and external parsers (POS
taggers and chunkers). While designing good fea-
tures for NERs requires a great deal of expertise
and can be labour intensive, it also makes the tag-
gers harder to adapt to new domains and languages
since resources and syntactic parsers used to gen-
erate the features may not be readily available. Re-
cently, DNNs have been shown to be very effective
for automatic feature engineering, demonstrating
SOTA results in many sequence labelling tasks,
e.g., (Collobert et al., 2011), also for Italian lan-
guage (Attardi, 2015).

In this paper, we target NERs for Italian and
propose a novel deep learning model that can
match the accuracy of the previous best NERs
without using manual feature engineering and
only requiring a minimal effort for language adap-
tation. In particular, our model is inspired by the
successful neural network architecture presented
by Collobert et al. (2011) to which we propose
several innovative and valuable enhancements: (i)
a simple recurrent feedback mechanism to model
the dependencies between the output tags and (ii) a
pre-training process based on two-steps: (a) train-
ing the network on a weekly labeled dataset and
then (b) refining the weights on the supervised
training set. Our final model obtains 82.81 in
F1 on the Evalita 2009 Italian dataset (Speranza,
2009), which is an improvement of +0.81 over
the Zanoli and Pianta (2009) system that won the
competition. Our model only uses the words in
the sentence, four morphological features and a

Figure 1: The architecture of Context Window Network
(CWN) of Collobert et al. (2011).

gazetteer. Interestingly, if the gazetteer is removed
from our network, it achieves an F1 of 81.42,
which is still on par with the previous best systems
yet it is simple and easy to adapt to new domains
and languages.

2 Our DNN model for NER
In this section, we first briefly describe the archi-
tecture of the Context Window Network (CWN)
from Collobert et al. (2011), pointing out its lim-
itation. We then introduce our Recurrent Context
Window Network (RCWN), which extends CWN
and aims at solving its drawbacks.

2.1 Context Window Network
We adopt a CWN model that has been success-
fully applied by Collobert et al. (2011) for a wide
range of sequence labelling NLP tasks. Its archi-
tecture is depicted in Fig. 1. It works as follows:
given an input sentence s = [w1, . . . , wn], e.g.,
Barack Obama è il presidente degli Stati Uniti
D’America1, for each word wi, the sequences of
word contexts [wi−k/2+1, .., wi, .., wi+k/2] of size
k around the target word wi (i = 1, .., n) are used
as input to the network.2 For example, the Fig. 1
shows a network with k = 5 and the input se-
quence for the target word è at position i = 3.

1Barack Obama is the president of the United States of
America.

2In case the target word i is at the beginning/end of a sen-
tence, up to (k − 1)/2 placeholders are used in place of the
empty input words.

The input words wi from the vocabulary V are
mapped to d-dimensional word embedding vec-
tors wi ∈ Rd. Embeddings wi for all words in V
form an embedding matrix W ∈ R|V |×d, which is
learned by the network. An embedding vector wi

for a word wi is retrieved by a simple lookup op-
eration in W (see lookup frame in Fig. 1). After
the lookup, the k embedding vectors of the con-
text window are concatenated into a single vector
r1 ∈ Rkd, which is passed to the next hidden layer
hl. It applies the following linear transformation:
hl(r1) = M1·r1+b1, where the matrix of weights
M1 and the bias b1 parametrize the linear transfor-
mation and are learned by the network. The goal
of the hidden layer is to learn feature combinations
from the word embeddings of the context window.

To enable the learning of non-linear discrimina-
tive functions, the output of hl is passed through
a non-linear transformation also called activation
function, i.e., a HardTanh() non-linearity, thus
obtaining, r2. Finally, the output classification
layer encoded by the matrix M2 ∈ R|C|×h and
the bias b2 are used to evaluate the vector p =
softmax(M2×r2+b2) of class conditional prob-
abilities, i.e., pc = p(c|x), c ∈ C, where C is the
set of NE tags, h is the dimension of the hl and x
is the input context window.

2.2 Our model
The CWN model described above has several
drawbacks: (i) each tag prediction is made by con-
sidering only local information, i.e., no dependen-
cies between the output tags are taken into ac-
count; (ii) publicly available annotated datasets for
NER are usually too small to train neural networks
thus often leading to overfitting. We address both
problems by proposing: (i) a novel recurrent con-
text window network (RCWN) architecture; (ii) a
network pre-training technique using weakly la-
beled data; and (iii) we also experiment with a set
of recent techniques to improve the generalization
of our DNN to avoid overfitting, i.e., we use early
stopping (Prechelt, 1998), weight decay (Krogh
and Hertz, 1992), and Dropout (Hinton, 2014).

2.2.1 Recurrent Context Window Network
We propose RCWN for modeling dependencies
between labels. It extends CWN by using m previ-
ously predicted tags as an additional input, i.e., the
previously predicted tags at steps i−m, . . . , i− 1
are used to predict the tag of the word at posi-
tion i, where m < k/2. Since we proceed from
left to right, words in the context window wj with

Dataset Articles Sentences Tokens

Train 525 11,227 212,478
Test 180 4,136 86,419

Table 1: Splits of the Evalita 2009 dataset

j > i − 1, i.e., at the right of the target word, do
not have their predicted tags, thus we simply use
the special unknown tag, UNK, for them.

Since NNs provide us with the possibility to
define and train arbitrary embeddings, we asso-
ciate each predicted tag type with an embedding
vector, which can be trained in the same way as
word embeddings (see vectors for tags ti in Fig. 1).
More specifically, given k words wi ∈ Rdw in
the context window and previously predicted tags
ti ∈ Rdt at corresponding positions, we con-
catenate them together along the embedding di-
mension obtaining new vectors of dimensionality
dw + dt. Thus, the output of the first input layer
becomes a sequence of k(dw + dt) vectors.

RCWN is simple to implement and is compu-
tationally more efficient than, for example, NNs
computing sentence log-likelihood, which require
Viterbi decoding. RCWN may suffer from an er-
ror propagation issue as the network can misclas-
sify the word at position t − i, propagating an er-
roneous feature (the wrong label) to the rest of
the sequence. However, the learned tag embed-
dings seem to be robust to noise3. Indeed, the pro-
posed network obtains a significant improvement
over the baseline model (see Section 3.2).

3 Experiments
In these experiments, we compare three different
enhancements of our DNNs on the data from
the Evalita challenge, namely: (i) our RCWN
method, (ii) pre-training on weakly supervised
data, and (iii) the use of gazetteers.
3.1 Experimental setup
Dataset. We evaluate our models on the Evalita
2009 Italian dataset for NERs (Speranza, 2009)
summarized in Tab. 1. There are four types of
NEs: person (PER), location (LOC), organiza-
tion (ORG) and geo-political entity (GPE), (see
Tab. 2). Data is annotated using the IOB tagging
schema, i.e., for inside, outside and beginning of a
entity, respectively.

Training and testing the network. We use
(i) the Negative Log Likelihood cost function,

3We can use the same intuitive explanation of error cor-
recting output codes.

Dataset PER ORG LOC GPE

Train 4,577 3,658 362 2,813
Test 2,378 1,289 156 1,143

Table 2: Entities distribution in Evalita 2009

i.e., −log(pc), where c is the correct label for
the target word, (ii) stochastic gradient descent
(SGD) to learn the parameters of the network and
(iii) the backpropogation algorithm to compute
the updates. At test time, the tag c, associated
with the highest class conditional probability pc,
is selected, i.e., c = argmaxc∈C pc.

Features. In addition to words, all our models
also use 4 basic morphological features: all low-
ercase, all uppercase, capitalized and it contains
uppercase character. These can reduce the size
of the word embedding dictionary as showed by
(Collobert et al., 2011). In our implementation,
these 4 binary features are encoded as one dis-
crete feature associated with an embedding vec-
tor of size 5, i.e., similarly to the preceding tags
in RCWN. Additionally, we use a similar vector
to also encode gazetteer features. Gazetteers are
collections of names, locations and organizations
extracted from different sources such as the Ital-
ian phone book, Wikipedia and stock marked web-
sites. Since we use four different dictionaries one
for each NE class, we add four feature vectors to
the network.
Word Embeddings. We use a fixed dictionary
of size 100K and set the size of the word em-
beddings to 50, hence, the number parameters
to be trained is 5M . Training a model with
such a large capacity requires a large amount of
labelled data. Unfortunately, the sizes of the
supervised datasets available for training NER
models are much smaller, thus we mitigate such
problem by pre-training the word embeddings
on huge unsupervised training datasets. We use
word2vec (Mikolov et al., 2013) skip-gram model
to pre-train our embeddings on Italian dump of
Wikipedia: this only took a few hours.
Network Hyperparameters. We used h = 750
hidden units, a learning rate of 0.05, the word em-
bedding size dw = 50 and a size of 5 for the em-
beddings of discrete morphological and gazetteer
features. Differently, we used a larger embedding,
dt = 20 for the NE tags.
Pre-training DNN with gazetters. Good
weight initialization is crucial for training
better NN models (Collobert et al., 2011; Ben-

Model F1 Prec. Rec.

Baseline 78.32 79.45 77.23
RCWN 81.39 82.63 80.23
RCWN+Gazz 83.59 84.85 82.40
RCWN+WLD 81.74 82.93 80.63
RCWN+WLD+Gazz 83.80 85.03 82.64

Table 3: Results on 10-fold cross-validation

gio, 2009). Over the years different ways of
pre-training the network have been designed:
layer-wise pre-training (Bengio, 2009), word
embeddings (Collobert et al., 2011) or by re-
lying on distant supervised datasets (Severyn
and Moschitti, 2015). Here, we propose a pre-
training technique using an off-the-shelf NER
to generate noisily annotated data, e.g., a sort
of distance/weakly supervision or self-training.
Our Weakly Labeled Dataset (WLD) is built by
automatically annotating articles from the local
newspaper ”L’Adige”, which is the same source
of the training and test sets of Evalita challenge.
We split the articles in sentences and tokenized
them. This unlabeled corpus is composed of
20.000 sentences. We automatically tagged it
using EntityPro, which is a NER tagger included
in the TextPro suite (Pianta et al., 2008).

3.2 Results

Our models are evaluated on the Evalita 2009
dataset. We applied 10-fold cross-validation to the
training set of the challenge4 for performing pa-
rameter tuning and picking the best models.

Table 3 reports performance of our models av-
eraged over 10-folds. We note that (i) modeling
the output dependencies with RCWN leads to a
considerable improvement in F1 over the CWN
model of Collobert et al. (2011) (our baseline); (ii)
adding the gazetteer features leads to an improve-
ment both in Precision and Recall, and therefore
in F1; and (iii) pre-training the network on the
weakly labeled training set produces improvement
(although small), which is due to a better initial-
ization of the network weights.

Table 4 shows the comparative results between
our models and the current state of the art for
Italian NER on the Evalita 2009 official test
set. We used the best parameter values de-
rived when computing the experiments of Table 3.
Our model using both gazetteer and pre-training
outperforms all the systems participating to the

4The official evaluation metric for NER is the F1, which
is the harmonic mean between Precision and Recall.

Models F1 Prec. Rec.
Gesmundo (2009) 81.46 86.06 77.33
Zanoli and Pianta (2009) 82.00 84.07 80.02
Nguyen et al. (2010) (CRF) 80.34 83.43 77.48

Nguyen et al. (2010) + RR 84.33 85.99 82.73
RCWN 79.59 81.39 77.87
RCWN+WLD 81.42 82.74 80.14
RCWN+Gazz 81.47 83.48 79.56
RCWN+WLD+Gazz 82.81 85.69 80.10

Table 4: Comparison with the best NER systems for Italian.
Models below the double line were computed after the Evalita
challenge.

Evalita 2009 (Zanoli and Pianta, 2009; Gesmundo,
2009). It should be noted that Nguyen et al.
(2010) obtained better results using a CRF clas-
sifier followed by a reranker (RR) based on tree
kernels. However, our approach only uses one
learning algorithm, which is simpler than mod-
els applying multiple learning approaches, such as
those in (Nguyen et al., 2010) and (Zanoli and Pi-
anta, 2009). Moreover, our model outperforms the
Nguyen et al. (2010) CRF baseline (which is given
in input to the tree-kernel based reranker) by∼ 2.5
points in F1. Thus it is likely that applying their
reranker on top of our model’s output might pro-
duce a further improvement over SOTA.

Finally, it is important to note that our model
obtains an F1 comparable to the best system in
Evalita 2009 without using any extra features (we
only use words and 4 morphological features). In
fact, when we remove the gazetteer features, our
method still obtains the very high F1 of 81.42.

4 Conclusion
In this paper, we propose a new DNN for design-
ing NERs in Italian. Its main characteristics are:
(i) the RCWN feedback method, which can model
dependencies of the output label sequence and (ii)
a pre-training technique involving a weakly super-
vised dataset. Our system is rather simple and ef-
ficient as it involves only one model at test time.
Additionally, it does not require time-consuming
feature engineering or extensive data processing
for their extraction.

In the future, we would like to apply rerankers
to our methods and explore combinations of
DNNs with structural kernels.

Acknowledgments
This work has been partially supported by the EC
project CogNet, 671625 (H2020-ICT-2014-2, Re-
search and Innovation action) and by an IBM Fac-
ulty Award.

References
Giuseppe Attardi. 2015. Deepnl: a deep learning nlp

pipeline. In Proceedings of the 1st Workshop on Vec-
tor Space Modeling for Natural Language Process-
ing, pages 109–115, Denver, Colorado, June. Asso-
ciation for Computational Linguistics.

Yoshua Bengio. 2009. Learning Deep Architectures
for AI. Foundations and Trends in Machine Learn-
ing, 2(1):1–127.

Ronan Collobert, Jason Weston, Leon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural Language Processing (almost) from
Scratch. The Journal of Machine Learning Re-
search, 1(12):2493–2537.

Andrea Gesmundo. 2009. Bidirectional Sequence
Classification for Named Entities Recognition. Pro-
ceedings of EVALITA.

Geoffrey Hinton. 2014. Dropout : A Simple
Way to Prevent Neural Networks from Overfitting.
Journal of Machine Learning Research (JMLR),
15(1):1929–1958.

A. Krogh and J. Hertz. 1992. A Simple Weight Decay
Can Improve Generalization. Advances in Neural
Information Processing Systems, 4:950–957.

Tomas Mikolov, Greg Corrado, Kai Chen, and Jeffrey
Dean. 2013. Efficient Estimation of Word Rep-
resentations in Vector Space. Proceedings of the
International Conference on Learning Representa-
tions (ICLR 2013), pages 1–12.

David Nadeau and Satoshi Sekine. 2007. A survey of
named entity recognition and classification.

Truc-vien T Nguyen, Alessandro Moschitti, and
Giuseppe Riccardi. 2010. Kernel-based Rerank-
ing for Named-Entity Extraction. In COLING ’10
Proceedings of the 23rd International Conference on
Computational Linguistics: Poster, number August,
pages 901–909. Association for Computational Lin-
guistics.

Emanuele Pianta, Christian Girardi, and Roberto
Zanoli. 2008. The TextPro tool suite. In Proceed-
ings of LREC, pages 2603–2607. Citeseer.

Lutz Prechelt. 1998. Early stopping-but when? In
Neural Networks: Tricks of the trade, pages 55–69.
Springer.

Lev Ratinov and Dan Roth. 2009. Design chal-
lenges and misconceptions in named entity recog-
nition. In Proceedings of the International Confer-
ence On Computational Linguistics, pages 147–155.
Association for Computational Linguistics.

Aliaksei Severyn and Alessandro Moschitti. 2015.
UNITN: Training Deep Convolutional Neural Net-
work for Twitter Sentiment Classification. Proceed-
ings of SEMEVAL.

Manuela Speranza. 2009. The named entity recog-
nition task at evalita 2009. In Proceedings of
EVALITA.

R Zanoli and E Pianta. 2009. Named Entity Recog-
nition through Redundancy Driven Classi ers. In:
Proceedings of EVALITA 2009. Reggio Emilia, Italy.

