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Abstract

Automatic resolution of Crossword Puz-
zles (CPs) heavily depends on the qual-
ity of the answer candidate lists produced
by a retrieval system for each clue of the
puzzle grid. Previous work has shown
that such lists can be generated using In-
formation Retrieval (IR) search algorithms
applied to the databases containing previ-
ously solved CPs and reranked with tree
kernels (TKs) applied to a syntactic tree
representation of the clues. In this pa-
per, we create a labelled dataset of 2 mil-
lion clues on which we apply an innovative
Distributional Neural Network (DNN) for
reranking clue pairs. Our DNN is com-
putationally efficient and can thus take ad-
vantage of such large datasets showing a
large improvement over the TK approach,
when the latter uses small training data. In
contrast, when data is scarce, TKs outper-
form DNNs.

1 Introduction

Automatic solvers of CPs require accurate list of
answer candidates to find good solutions in little
time. Candidates can be retrieved from the DBs
of previously solved CPs (CPDBs) since clues are
often reused, and thus querying CPDBs with the
target clue allows us to recuperate the same (or
similar) clues.

In this paper, we propose for the first time the
use of Distributional Neural Networks to improve
the ranking of answer candidate lists. Most im-
portantly, we build a very large dataset for clue
retrieval, composed of 2,000,493 clues with their
associated answers, i.e., this is a supervised cor-
pus where large scale learning models can be de-
veloped and tested. This dataset is an interesting
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resource that we make available to the research
community1. To assess the effectiveness of our
DNN model, we compare it with the current state
of the art model (Nicosia et al., 2015) in rerank-
ing CP clues, where tree kernels (Moschitti, 2006)
are used to rerank clues according to their syntac-
tic/semantic similarity with the query clue.

The experimental results on our dataset demon-
strate that:

(i) DNNs are efficient and can greatly benefit
from large amounts of data;

(ii) when DNNs are applied to large-scale data,
they largely outperform traditional feature-
based rerankers as well as kernel-based mod-
els; and

(iii) if limited training data is available for train-
ing, tree kernel-based models are more accu-
rate than DNNs

2 Clue Reranking Models for CPs

In this section, we briefly introduce the general
idea of CP resolution systems and the state-of-the-
art models for reranking answer candidates.

2.1 CP resolution systems
The main task of a CP resolution system is the
generation of candidate answer lists for each clue
of the target puzzle (Littman et al., 2002). Then
a solver for Probabilistic-Constraint Satisfaction
Problems, e.g., (Pohl, 1970), tries combinations
of letters that satisfy the crossword constraints.
The combinations are derived from words found
in dictionaries or in the lists of answer candidates.
The latter can be generated using large crossword
databases as well as several expert modules ac-
cessing domain-specific databases (e.g., movies,
writers and geography). WebCrow, one of the

1http://ikernels-portal.disi.unitn.it/
projects/webcrow/



Rank Clue Answer

1 Actress Pflug who played Lt. Dish in ”MASH” Jo Ann
2 Actress Pflug who played in ”MASH” (1970) Jo Ann
3 Actress Jo Ann Pflug
4 MASH Actress Jo Ann Pflug
5 MASH Crush

Table 1: Candidate list for the query clue: Jo Ann
who played Lt. ”Dish” in 1970’s ”MASH” (an-
swer: Pflug)

best systems (Ernandes et al., 2005), incorporates
knowledge sources and an effective clue retrieval
model from DB. It carries out basic linguistic anal-
ysis such as part-of-speech tagging and lemmati-
zation and takes advantage of semantic relations
contained in WordNet, dictionaries and gazetteers.
It also uses a Web module constituted by a search
engine (SE), which can retrieve text snippets re-
lated to the clue.

Clearly, lists of better quality, i.e., many correct
candidates in top positions, result in higher accu-
racy and speed of the solver. Thus the design of
effective answer rankers is extremely important.

2.2 Clue retrieval and reranking

One important source of candidate answers is the
DB of previously solved clues. In (Barlacchi et
al., 2014a), we proposed the BM25 retrieval model
to generate clue lists, which were further refined
by applying our reranking models. The latter pro-
mote the most similar, which are probably asso-
ciated with the same answer of the query clue, to
the top. The reranking step is important because
SEs often fail to retrieve the correct clues in the
first position. For example, Table 1 shows the first
five clues retrieved for the query clue: Jo Ann who
played Lt. ”Dish” in 1970’s ”MASH”. BM25 re-
trieved the wrong clue, Actress Pflug who played
Lt. Dish in ”MASH”, at the top since it has a larger
bag-of-words overlap with the query clue.

2.3 Reranking with Kernels

We applied our reranking framework for question
answering systems (Moschitti, 2008; Severyn and
Moschitti, 2012; Severyn et al., 2013a; Severyn
et al., 2013b; Severyn and Moschitti, 2013). This
retrieves a list of related clues by using the tar-
get clue as a query in an SE (applied to the Web
or to a DB). Then, both query and candidates are
represented by shallow syntactic structures (gen-
erated by running a set of NLP parsers) and tradi-

tional similarity features which are fed to a kernel-
based reranker. Hereafter, we give a brief descrip-
tion of our models for clue reranking whereas the
reader can refer to our previous work (Barlacchi
et al., 2014a; Nicosia et al., 2015; Barlacchi et al.,
2014b) for more specific details.

Given a query clue qc and two retrieved clues
c1, c2, we can rank them by using a classifi-
cation approach: the two clues c1 and c2 are
reranked by comparing their classification scores:
SVM(〈q, c1〉) and SVM(〈q, c2〉). The SVM classi-
fier uses the following kernel applied to two pairs
of query/clues, p = 〈q, ci〉 and p′ = 〈q′, c′j〉:

K(p, p′) = TK(q, q′) + TK(ci, c
′
j)+

FV (q, ci) · FV (q′, c′j),

where TK can be any tree kernel, e.g., the syntac-
tic tree kernel (STK) also called SST by Moschitti
(2006), and FV is the feature vector representation
of the input pair, e.g., 〈q, ci〉 or 〈q′, c′j〉. STK maps
trees into the space of all possible tree fragments
constrained by the rule that the sibling nodes from
their parents cannot be separated. It enables the
exploitation of structural features, which can be
effectively combined with more traditional fea-
tures (described hereafter).

Feature Vectors (FV). We compute the following
similarity features between clues: (i) tree kernel
similarity applied to intra-pairs, i.e., between the
query and the retrieved clues; (ii) DKPro Simi-
larity, which defines features used in the context
of the Semantic Textual Similarity (STS) chal-
lenge (Bär et al., 2013); and (iii) WebCrow fea-
tures (WC), which are the similarity measures
computed on the clue pairs by WebCrow (using
the Levenshtein distance) and the SE score.

3 Distributional models for clue
reranking

The architecture of our distributional matching
model for measuring similarity between clues is
presented in Fig. 1. Its main components are:

(i) sentence matrices sci ∈ Rd×|ci| obtained by
the concatenation of the word vectors wj ∈
Rd (with d being the size of the embeddings)
of the corresponding words wj from the input
clues ci;

(ii) a distributional sentence model
f : Rd×|ci| → Rm that maps the sentence



Figure 1: Distributional sentence matching model for computing similarity between clues.

matrix of an input clue ci to a fixed-size
vector representations xci of size m;

(iii) a layer for computing the similarity between
the obtained intermediate vector representa-
tions of the input clues, using a similarity ma-
trix M ∈ Rm×m – an intermediate vector
representation xc1 of a clue c1 is projected to
a x̃c1 = xc1M, which is then matched with
xc2 (Bordes et al., 2014), i.e., by computing a
dot-product x̃c1xc2 , thus resulting in a single
similarity score xsim;

(vi) a set of fully-connected hidden layers that
models the similarity between clues using
their vector representations produced by the
sentence model (also integrating the single
similarity score from the previous layer); and

(v) a softmax layer that outputs probability
scores reflecting how well the clues match
with each other.

The choice of the sentence model plays a cru-
cial role as the resulting intermediate representa-
tions of the input clues will affect the successive
step of computing their similarity. Recently, dis-
tributional sentence models, where f(s) is rep-
resented by a sequence of convolutional-pooling
feature maps, have shown state-of-the-art results
on many NLP tasks, e.g., (Kalchbrenner et al.,

2014; Kim, 2014). In this paper, we opt for a sim-
ple solution where f(sci) =

∑
iwi/|ci|, i.e., the

word vectors, are averaged to a single fixed-sized
vector x ∈ Rd. Our preliminary experiments re-
vealed that this simpler model works just as well
as more complicated single or multi-layer convo-
lutional architectures. We conjecture that this is
largely due to the nature of the language used in
clues, which is very dense and where the syntactic
information plays a minor role.

Considering recent deep learning models for
matching sentences, our network is most similar
to the models in Hu et al. (2014) applied for com-
puting sentence similarity and in Yu et al.(2014)
(answer sentence selection in Question Answer-
ing) with the following differences:

(i) In contrast to more complex convolutional
sentence models explored in (Hu et al., 2014)
and in (Yu et al., 2014), our sentence model
is composed of a single averaging operation.

(ii) To compute the similarity between the vec-
tor representation of the input sentences, our
network uses two methods: (i) computing the
similarity score obtained by transforming one
clue into another using a similarity matrix M
(explored in (Yu et al., 2014)), and (ii) di-
rectly modelling interactions between inter-
mediate vector representations of the input



clues via fully-connected hidden layers (used
by (Hu et al., 2014)).

4 Experiments

Our experiments compare different ranking mod-
els, i.e., BM25 as the IR baseline, and several
rerankers, and our distributional neural network
(DNN) for the task of clue reranking.

4.1 Experimental setup

Data. We compiled our crossword corpus combin-
ing (i) CPs downloaded from the Web2 and (ii) the
clue database provided by Otsys3. We removed
duplicates, fill-in-the-blank clues (which are better
solved by using other strategies) and clues repre-
senting anagrams or linguistic games.

We collected over 6.3M pairs of clue/answer
and after removal of duplicates, we obtained a
compressed dataset containing 2M unique and
standard clues, with associated answers, which we
called CPDB. We used these clues to build a Small
Dataset (SD) and a Large Dataset (LD) for rerank-
ing. The two datasets are based on pairs of clues:
query and retrieved clues. Such clues are retrieved
using a BM25 model on CPDB.

For creating SD, we used 8k clues that (i) were
randomly extracting from CPDB and (ii) satisfy-
ing the property that at least one correct clue (i.e.,
having the same answer of the query clue) is in
the first retrieved 10 clues (of course the query
clue is eliminated from the ranked list provided
by BM25). In total we got about 120K examples,
84,040 negative and 35,960 positive clue4.

For building LD, we collected 200k clues with
the same property above. More precisely we
obtained 1,999,756 pairs (10×200k minus few
problematic examples) with 599,025 positive and
140,0731 negative pairs of queries with their re-
trieved clues. Given the large number of examples,
we only used such dataset in classification modal-
ity, i.e., we did not form reranking examples (pairs
of pairs).

2http://www.crosswordgiant.com
3http://www.otsys.com/clue
4A true reranker should be built using pairs of clue pairs,

where the positive pairs are those having the correct pair as
the first member. This led to form 127,109 reranking exam-
ples, with 66,011 positive and 61,098 negative pairs. How-
ever, in some experiments, which we do not report in the
paper, we observed that the performance both of the simple
classifier as well as the true reranker were similar, thus we
decided to use the simpler classifier.

Structural model. We use SVM-light-TK5,
which enables the use of structural kernels (Mos-
chitti, 2006). We applied structural kernels to shal-
low tree representations and a polynomial kernel
of degree 3 to feature vectors (FV).

Distributional neural network model. We pre-
initialize the word embeddings by running the
word2vec tool (Mikolov et al., 2013) on the En-
glish Wikipedia dump. We opt for a skipgram
model with window size 5 and filtering words with
frequency less than 5. The dimensionality of the
embeddings is set to 50. The input sentences are
mapped to fixed-sized vectors by computing the
average of their word embeddings. We use a sin-
gle non-linear hidden layer (with rectified linear
(ReLU) activation function) whose size is equal to
the size of the previous layer.

The network is trained using SGD with shuf-
fled mini-batches using the Adagrad update
rule (Duchi et al., 2011). The batch size is set to
100 examples. We used 25 epochs with early stop-
ping, i.e., we stop the training if no update to the
best accuracy on the dev set (we create the dev
set by allocating 10% of the training set) is made
for the last 5 epochs. The accuracy computed on
the dev set is the Mean Average Precision (MAP)
score. To extract the DNN features we simply take
the output of the hidden layer just before the soft-
max.

Evaluation. We used standard metrics widely
used in QA: the Mean Reciprocal Rank (MRR)
and Mean Average Precision (MAP).

4.2 Results

Table 2 summarizes the results of our different
reranking models trained on a small dataset (SD)
of 120k examples and a large dataset (LD) with
2M examples.

The first column reports the BM25 result; the
second column shows the performance of SVM
perf (SVMp), which is a very fast variant of SVM,
using FV; the third column reports the state-of-the-
art model for crossword clue reranking (Nicosia et
al., 2015), which uses FV vector and tree kernels,
i.e., SVM(TK).

Regarding the other systems: DNNMSD is the
DNN model trained on the small data (SD) of
120k training pairs; SVMp(DNNFLD) is SVM
perf trained with (i) the features derived from

5http://disi.unitn.it/moschitti/
Tree-Kernel.htm



Training classifiers with the Small Dataset (SD) (120K instances)

BM25 SVMp SVM(TK) DNNMSD SVMp(DNNFLD) SVM(DNNFLD ,TK)

MRR 37.57 41.95 43.59 40.08 46.12 45.50
MAP 27.76 30.06 31.79 28.25 33.75 33.71

Training classifiers with the Large Dataset (LD) (2 million instances)

BM25 SVMp SVM(TK) DNNMLD SVMp(DNNFLD ,−FV) SVMp(DNNFLD)

MRR 37.57 41.47 – 46.10 46.36 46.27
MAP 27.76 29.95 – 33.81 34.07 33.86

Table 2: SVM models and DNN trained on 120k (small dataset) and 2 millions (large dataset) examples.
Feature vectors are used with all models except when indicated by −FV

DNN trained on a large clue dataset LD and (ii)
the FV; and finally, SVM(DNNFLD,TK) is SVM
using DNN features (generated from LD), FV and
TK. It should be noted that:

(i) SVMp is largely improved by TK;

(ii) DNNMSD on relatively small data delivers
an accuracy lower than FV;

(iii) if SVMp is trained with DNNMLD, i.e., fea-
tures derived from the dataset of 2M clues,
the accuracy greatly increases; and

(iv) finally, the combination with TK, i.e.,
SVM(DNNFLD,TK), does not significantly
improve the previous results.

In summary, when a dataset is relatively small
DNNM fails to deliver any noticeable improve-
ment over the SE baseline even when combined
with additional similarity features. SVM and
TK models generalize much better on the smaller
dataset.

Additionally, it is interesting to see that training
an SVM on a small number of examples enriched
with the features produced by a DNN trained on
large data gives us the same results of DNN trained
on the large dataset. Hence, it is desired to use
larger training collections to build an accurate
distributional similarity matching model that can
be then effectively combined with other feature-
based or tree kernel models, although at the mo-
ment the combination does not significantly im-
prove TK models.

Regarding the LD training setting it can be ob-
served that:

(i) the second column shows that adding more
training examples to SVMp does not increase
accuracy (compared with SD result);

(ii) DNNMLD delivers high accuracy suggesting
that a large dataset is essential to its training;
and

(iii) again SVMp using DNN features deliver
state-of-the-art accuracy independently of us-
ing or not additional features (i.e., see −FV,
which excludes the latter).

5 Conclusions

In this paper, we have explored various reranker
models to improve automatic CP resolution. The
most important finding is that our distributional
neural network model is very effective in estab-
lishing similarity matching between clues. We
combine the features produced by our DNN model
with other rerankers to greatly improve over the
previous state-of-the-art results. Finally, we col-
lected a very large dataset composed of 2 millions
clue/answer pairs that can be useful to the NLP
community for developing semantic textual simi-
larity models.

Future research will be devoted to find models
to effectively combine TKs and DNN. In partic-
ular, our previous model exploiting Linked Open
Data in QA (Tymoshenko et al., 2014) seems very
promising to find correct answer to clues. This as
well as further research will be integrated in our
CP system described in (Barlacchi et al., 2015).
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