
A Syntax-Aware Re-ranker for Microblog Retrieval

Aliaksei Severyn
DISI, University of Trento
severyn@disi.unitn.it

Alessandro Moschitti
QCRI, Qatar

amoschitti@qf.org.qa

Manos Tsagkias
University of Amsterdam
e.tsagkias@uva.nl

Richard Berendsen
University of Amsterdam

r.w.berendsen@uva.nl

Maarten de Rijke
University of Amsterdam

derijke@uva.nl

ABSTRACT
We tackle the problem of improving microblog retrieval algorithms
by proposing a robust structural representation of (query, tweet)
pairs. We employ these structures in a principled kernel learning
framework that automatically extracts and learns highly discrimi-
native features. We test the generalization power of our approach
on the TREC Microblog 2011 and 2012 tasks. We find that rela-
tional syntactic features generated by structural kernels are effec-
tive for learning to rank (L2R) and can easily be combined with
those of other existing systems to boost their accuracy. In particu-
lar, the results show that our L2R approach improves on almost all
the participating systems at TREC, only using their raw scores as
a single feature. Our method yields an average increase of 5% in
retrieval effectiveness and 7 positions in system ranks.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: H.3.3 Information Search
and Retrieval

Keywords
Microblog search; semantic modeling; re-ranking

1. INTRODUCTION
Social media has become part of our daily lives, and is increas-

ingly growing into the main outlet for answering various informa-
tion needs, e.g., the query, Facebook privacy, may be answered
by the following tweet: Facebook Must Explain Privacy Practices
to Congress http://sns.ly/2Qbry7. Such queries have proven diffi-
cult to answer with a single retrieval model, and lead to models
that learn to combine a large number of rankers. Learning to rank
(L2R) methods have been shown to improve retrieval effectiveness
and they have recently been used for ranking short documents from
social media. However, L2R suffers from an important drawback:
different training data is needed for different applications. The re-
quired amount of training data critically depends on the task being
tackled and the quality of the used text representations, e.g., lexical
features are less powerful than search engine scores or other meta-
features. Optimal representations require considerable effort to be
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGIR ’14, July 06–11, 2014, Gold Coast, QLD, Australia.
Copyright 2014 ACM 978-1-4503-2257-7/14/07 ... $15.00.
http://dx.doi.org/10.1145/2600428.2609511 .

designed and implemented. Hence, flexible and adaptable features
can be valuable for rapid and effective designs of L2R systems.

Previous work has shown that one source of more adaptable
features comes from structural relations between object pairs [6],
which in the case of text mainly refers to its syntactic structure.
Unfortunately, the latter is subject to errors when it is automatically
generated. This problem is exacerbated when we deal with infor-
mal and unedited text typically prominent in social media. Most
importantly, it is not clear which part of the structure should be
considered to design effective features.

We tackle the problems noted above in the context of recent
TREC Microblog retrieval tasks by proposing relational shallow
syntactic structures to represent (query, tweet) pairs. Instead of try-
ing to explicitly encode salient features from syntactic structures,
we opt for a structural kernel learning framework, where the learn-
ing algorithm operates in rich feature spaces of tree fragments au-
tomatically generated by expressive tree kernel functions.

The following characterizes our approach: (i) it uses shallow
syntactic parsers developed for social media, which are robust and
shown to be accurate in such domains; (ii) tree kernels implicitly
generate all possible tree fragments, thus all of them are used as fea-
tures by the learning algorithm, solving the problem of engineering
task-specific features. We design experiments using the 2011 and
2012 editions of the TREC Microblog track to verify the follow-
ing: (i) relational syntactic features produced by a shallow syntactic
parser are effective for L2R; (ii) our automatic feature engineering
approach based on structural kernels is accurate and produces gen-
eral features, which are complementary to those typically used in
L2R models; and (iii) our structural representations can easily be
combined with existing systems to boost their accuracy.

Our results show that employing relational syntactic structures
improves on almost all the participating systems by only using their
raw scores along with our L2R model based on relational syntactic
structures. Our method boosts retrieval effectiveness by more than
5% on average and improves the rankings of participating systems
by at least 7 positions on average.

2. A SYNTAX-AWARE RE-RANKER
Our syntax-aware re-ranker consists of two components: (i) a

syntactic model that encodes tweets into shallow linguistic trees to
ease feature extraction, and (ii) a tree kernel learning framework
that computes similarities between (query, tweet) pairs. We also
define a shallow tree kernel to enable efficient kernel computations.

2.1 A syntactic model for tweets
Our approach to extract features from (query, tweet) pairs goes

beyond traditional feature vectors. We employ structural syntactic
models (STRUCT) that encode each tweet into shallow syntactic

Figure 1: Shallow tree representation for an example (query,
tweet) pair: (“Facebook privacy”, “Facebook Must Explain Pri-
vacy Practices to Congress http://sns.ly/2Qbry7”) (in the original
tree we use word stems). Part-of-speech tag ˆ refers to a com-
mon noun. Note that an additional REL tag links the words
(stems) common between the query and the candidate tweet,
Facebook and privacy).

trees. The latter are input to tree kernel functions for generating
structural features. Our structures are specifically adapted to the
noisy tweets and encode important query/tweet relations.

In particular, our shallow tree structure (inspired by [6–8]) is a
two-level syntactic hierarchy built from word lemmas (leaves) and
part-of-speech tags that are grouped into chunks (Fig. 1). While
full syntactic parsers would significantly degrade in performance
on noisy texts such as tweets, our choice for shallow structure relies
on simpler and more robust components: a part-of-speech (POS)
tagger and a chunker. For POS tagging we use the CMU tagger [3]
trained on Twitter data and an off-the-shelf OpenNLP chunker.

Fig. 1 provides an example of a candidate (query, tweet) pair
each of which is encoded into a shallow linguistic structure. To up-
weight the tree fragments spanning words that are found in both the
query and the tweet we introduce a special REL tag at the level of
part-of-speech and chunk nodes. This step is important to generate
syntactic patterns that carry additional semantics of sharing com-
mon terms between a query and a tweet. To find matching word
pairs we lowercase and stem words and use plain string matching.

2.2 Learning
We employ a pointwise approach to re-ranking where a binary

classifier is used to learn a model to discriminate between rele-
vant and non-relevant (query, tweet) pairs. The prediction scores
from a classifier are then used to re-rank candidates. We define a
novel and efficient tree kernel function, namely, Shallow syntactic
Tree Kernel (SHTK), which is as expressive as Partial Tree Kernel
(PTK) [4] to handle feature engineering over the structural repre-
sentations of the STRUCT model. For feature vectors we use a
linear kernel.

Computing similarity between (query, tweet) pairs. A typical
kernel machine classifies a test input example x using the following
prediction function: h(x) =

∑
i αiyiK(x,xi), where αi are the

model parameters estimated from the training data, yi are target
variables, xi are support vectors, and K(·, ·) is a kernel function
that computes the similarity between two input objects.

We represent each (query, tweet) pair x as a triple composed of
a query tree Tq and a tweet tree Ttw together with a traditional
feature vector v, i.e., x = 〈Tq,Ttw,v〉. Given two (query, tweet)
pairs xi and xj , we define the following similarity kernel:

K(xi,xj) = KTK (Ti
q,T

j
q) +KTK (Ti

q,T
j
tw)

+KTK (Ti
tw,T

j
tw) +KTK (Tj

q,T
i
tw)

+Kv(v
i,vj),

(1)

where KTK computes a tree kernel similarity between linguistic
trees and Kv is a kernel over feature vectors. It computes an all-vs-
all tree kernel similarity between two (query, tweet) pairs.

Shallow syntactic tree kernel. Following the convolution ker-
nel framework, we define the new SHTK function from Eq. 1 to
compute the similarity between tree structures. It counts the num-
ber of common substructures between two trees T1 and T2 with-
out explicitly considering the whole fragment space. The gen-
eral equation for Convolution Tree Kernels is: KTK (T1, T2) =∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2), where NT1 and NT2 are the sets
of the nodes in T1 and T2, respectively, and ∆(n1, n2) is equal to
the number of common fragments rooted in the n1 and n2 nodes,
according to several possible definitions of the atomic fragments.

To speed up the computation ofKTK , we consider pairs of nodes
(n1, n2) belonging to the same tree level. Thus, given H , the
height of the STRUCT trees, where each level h contains nodes
of the same type, i.e., chunk, POS, and lexical nodes, we define
SHTK as the following:

KSHTK (T1, T2) =
∑H

h=1

∑
n1∈Nh

T1

∑
n2∈Nh

T2

∆(n1, n2), (2)

where Nh
T1

and Nh
T2

are sets of nodes at height h.
The above equation can be applied with any ∆ function. To have

a more general and expressive kernel, we use ∆ from PTK, which
employs subsequence kernels, thus making it possible to generate
child subsets of the two nodes, i.e., it also allows for gaps, which
makes matching of syntactic patterns less rigid.

The resulting SHTK is a special case of PTK [4], adapted to
the shallow structural representation STRUCT. When applied to
STRUCT trees, SHTK computes the same feature space as PTK,
but faster (on average). Unlike PTK, where all combinations of
node pairs are considered, the kernel definition in (2) constrains
the node pairs being considered to be from the same level, i.e., the
matched nodes have to be of the same type—chunk, POS or lexi-
cals. Hence, the number of node pairs considered for matching by
SHTK is smaller, which results in faster kernel evaluation.

Finally, given its recursive definition in Eq. 2 and the use of
subsequences (with gaps), SHTK can derive useful dependencies
between its elements. E.g., it will generate the following subtree
fragments (in nested parenthesis format):

1. [ROOT [REL-NP[REL-^ facebook]][VP V][REL-NP

[REL-N privacy]]]

2. [ROOT [REL-NP[REL-^]][VP V][REL-NP [REL-N]]]

3. [ROOT [REL-NP][VP][REL-NP]]

4. [ROOT [VP[V explain]][NP[N privacy]]].

Subtree 3 generalizes Subtree 2, which, in turn, generalizes Sub-
tree 1. These structures are interesting when paired with the query
structure. E.g., given the query pattern, [REL-NP [REL-^][REL-N]],
which means a famous proper noun (^) followed by a noun, if the
tweet contains Subtree 2, i.e., a famous proper noun (matched in
the query) followed by a verbal phrase (VP) and a common noun
(also matched in the query), the candidate tweet may be relevant.

3. EXPERIMENTS AND EVALUATION
To evaluate the utility of our structural syntactic re-ranker for

microblog search we focus on the 2011 and 2012 editions of the
ad-hoc retrieval task at TREC microblog tracks [5, 9]. Our main
research question is: Does the use of relational syntactic features
produced by our shallow syntactic parser, and the automatic feature
engineering approach based on structural kernels lead to improve-
ments in state-of-the-art L2R and retrieval algorithms?

To answer this question, we test our model in two settings. In the
first, we re-implement an accurate recent L2R-based approach and
add our features alongside its features. This will allow us to see
directly if our features are complementary to the other features. We

opted for the L2R approach in [2] (“the UvA model”), because of
its comprehensiveness. It uses pseudo-test collections [1] to learn
to fuse ten well-established retrieval algorithms and implements a
number of query, tweet, and query-tweet features. It is a strong
baseline, its performance ranks sixth and 26th in the 2011 and 2012
editions of the microblog track, respectively. In the second setting,
we use the participant systems in the TREC microblog task as a
black-box, and implement our model on top of them using only us-
ing their raw scores (ranks) as a single feature in our model. This
allows us to see whether our features add information to the ap-
proaches these retrieval algorithms use.

3.1 Experimental setup
Dataset. Our dataset is the tweet corpus used in the TREC Mi-
croblog track in both 2011 (TMB2011) and 2012 (TMB2012). It
consists of 16M tweets spread over two weeks, and a set of 49
(TMB2011) and 60 (TMB2012) timestamped topics. We mini-
mally preprocess the tweets—we normalize elongations (e.g., sooo
→ so) and normalize URLs and author ids. For the second set of
experiments, we also use the system runs submitted at TMB2011
and TMB2012, which contain 184 and 120 models, respectively.

Training and testing an L2R algorithm. For learning to rank
we use SVM-light-TK1 with no parameter tuning. In our first set
of experiments, we train on TMB2011 topics, test on TMB2012
topics, and vice versa. In the second set, where we build upon
the TREC participant runs, we train our system only on the runs
submitted at TMB2011, and test on the TMB2012 runs. We focus
on one direction only to avoid training bias, since TMB2011 topics
were already used for learning systems in TMB2012.

Feature normalization. When combining our features with those
of the UvA model, while training and testing we use the features of
the latter model as v in Eq. 1; these features are already normalized.
In contrast, we use the output of participant systems as follows.
We use rank positions of each tweet rather than raw scores, since
scores for each system are scaled differently, while ranks are uni-
form across systems. We apply the following transformation of the
rank r: 1/ log (r + 1). In the training phase, we take the top {10,
20, or 30} systems from the TMB2011 track (in terms of P@30).
For each (query, tweet) pair we average the transformed rank over
the top systems to yield a single score. This score is then used as a
single feature in v from Eq. 1. In the testing phase, for each partic-
ipant system we want to improve, we use the transformed rank of
the (query, tweet) pairs as the single feature in v.

Evaluation. We report on the official evaluation metric for the
TREC 2012 Microblog track, i.e., precision at 30 (P@30), and
also on mean average precision (MAP). Following [2, 5], we re-
gard minimally and highly relevant documents as relevant and use
the TMB2012 evaluation script. For significance testing, we use a
pairwise t-test, where M and N denote significance at α = 0.05 and
α = 0.01, respectively. Triangles point up for improvement over
the baseline, and down otherwise. We also report the improvement
in the absolute rank (R) in the official TMB2012 ranking.

3.2 Results
Table 1 lists the outcome of our first set of experiments, where

we use our syntactic features alongside the features of the UvA
model. It shows the obtained MAP and P@30 scores when we
train on TMB2011 and test on TMB2012 topics, and vice versa.
The STRUCT model yields a significant improvement in P@30 and
MAP scores on TMB2012 pushing up the system by 15 positions
in the official ranking, and making it second best in TMB2011. The
1http://disi.unitn.it/moschitti/Tree-Kernel.htm

Table 1: System performance (P@30, MAP; higher is better)
and system rank (R; lower is better) for UvA’s L2R system [2]
(UvA), our re-implementation (UvA*), and a UVA* system us-
ing our STRUCT model (+STRUCT). We report on relative im-
provement (Impr) and statisical significance against UvA*.

Model TMB2011 TMB2012

MAP P@30 R MAP P@30 R

UVA .3880 .4460 6 .2450 .3920 26
UVA∗ .3845 .4456 6 .2467 .3870 28
+ STRUCT .3991 .4571 2 .2683 .4277 13

Change +3.8%M +2.6% +4 +8.8%N +10.5%N +15

result support our claim that learning useful syntactic patterns from
noisy tweets is possible and that relational syntactic features gen-
erated by our shallow syntactic tree kernel improve over a strong
feature-based L2R baseline.

Table 2 reports on the application of our syntax-aware re-ranker
on participant systems. It has results for re-ranking runs of the best
30 systems from TMB2012 (based on their P@30 score) when we
train our system using the top {10, 20, or 30} runs from TMB2011.
Our re-ranker improves P@30 for all systems with a relative im-
provement ranging from several points up to 10%—about 5% on
average. This is remarkable, given that the pool of participants in
TMB2012 was large, and the top systems are therefore likely to be
very strong baselines. We observe that our syntactic model has a
precision-enhancing effect. In cases where MAP drops a bit it can
be seen that our model sometimes lowers relevant documents in the
runs. It is possible that our model favors tweets with a higher syn-
tactic quality, and that it down-ranks tweets that contain less syn-
tactic structure but are nonetheless relevant. This is an interesting
direction for analysis in future work.

Looking at the improvement in absolute position in the official
ranking (R), we see that, on average, using our re-ranker boosts
the absolute position in the official ranking for top 30 systems by 7
positions. All in all, the results suggest that using syntactic features
adds useful information to many state-of-the-art microblog search
algorithms.

Finally, using aggregate scores from the best 10, 20 or 30 sys-
tems from TMB2011 does not reveal large differences, which sug-
gests that our syntax-aware re-ranker is robust w.r.t. the exact re-
trieval models used in the training stage.

While improving the top systems from 2012 represents a chal-
lenging task, it is also interesting to assess the potential improve-
ment for systems that ranked lower. For this purpose, we select
30 systems from the middle and the bottom of the official ranking.
Table 3 summarizes the average improvement in P@30 for three
groups of 30 systems each: top-30, middle-30, and bottom-30. We
find that the improvement over underperforming systems is much
larger than for stronger systems. In particular, for the bottom 30
systems, our approach achieves an average relative improvement of
20% in both MAP and P@30. These results further support our hy-
pothesis that syntactic patterns automatically extracted and learned
by our re-ranker can provide an additional benefit for learning to
rank methods on microblog data.

4. CONCLUSIONS
To the best of our knowledge, this work is the first to study the

utility of syntactic patterns for microblog retrieval. We propose
an efficient way to encode tweets into linguistic structures and use
kernels for automatic feature engineering and learning. Our experi-

http://disi.unitn.it/moschitti/Tree-Kernel.htm

Table 2: System performance on the top 30 runs from TMB2012, using the top 10, 20 or 30 runs from TMB2011 for training.

TMB2012 TOP10 TOP20 TOP30

runs MAP P@30 MAP P@30 R% MAP P@30 R% MAP P@30 R%

1 hitURLrun3 .3469 .4695 .3307 (-4.7%)O .4831 (2.9%) 0 .3378 (-2.6%) .4864 (3.6%)M 0 .3328 (-4.1%)O .4774 (1.7%) 0
2 kobeMHC2 .3070 .4689 .3029 (-1.3%) .4740 (1.1%) 1 .3065 (-0.2%) .4768 (1.7%) 1 .3037 (-1.1%) .4768 (1.7%) 1
3 kobeMHC .2986 .4616 .2956 (-1.0%) .4706 (2.0%) 2 .2989 (0.1%) .4734 (2.6%) 2 .2965 (-0.7%) .4718 (2.2%) 2
4 uwatgclrman .2836 .4571 .3010 (6.1%)N .4729 (3.5%)M 3 .3032 (6.9%)N .4729 (3.5%)N 3 .2995 (5.6%)N .4712 (3.1%)M 3
5 kobeL2R .2767 .4429 .2734 (-1.2%) .4452 (0.5%) 0 .2785 (0.7%) .4514 (1.9%) 0 .2744 (-0.8%) .4463 (0.8%) 0
6 hitQryFBrun4 .3186 .4424 .3102 (-2.6%) .4554 (2.9%) 1 .3145 (-1.3%) .4582 (3.6%)M 2 .3118 (-2.1%) .4554 (2.9%) 2
7 hitLRrun1 .3355 .4379 .3200 (-4.6%)O .4508 (3.0%) 2 .3266 (-2.7%) .4542 (3.7%)M 2 .3226 (-3.9%)O .4525 (3.3%) 2
8 FASILKOM01 .2682 .4367 .2827 (5.4%)N .4548 (4.1%)N 3 .2841 (5.9%)N .4525 (3.6%)N 3 .2820 (5.2%)N .4531 (3.8%)N 3
9 hitDELMrun2 .3197 .4345 .3090 (-3.4%)O .4446 (2.3%) 4 .3142 (-1.7%) .4458 (2.6%) 4 .3105 (-2.9%) .4424 (1.8%) 4
10 tsqe .2843 .4339 .2832 (-0.4%) .4435 (2.2%) 5 .2865 (0.8%) .4458 (2.7%) 5 .2836 (-0.3%) .4441 (2.4%) 5
11 ICTWDSERUN1 .2715 .4299 .2873 (5.8%)N .4610 (7.2%)N 7 .2885 (6.3%)N .4576 (6.4%)N 7 .2862 (5.4%)N .4582 (6.6%)N 7
12 ICTWDSERUN2 .2671 .4266 .2809 (5.2%)M .4503 (5.6%)N 7 .2808 (5.1%)M .4508 (5.7%)N 7 .2785 (4.3%)M .4475 (4.9%)N 7
13 cmuPrfPhrE .3179 .4254 .3159 (-0.6%) .4486 (5.5%)N 8 .3190 (0.4%) .4452 (4.7%)N 8 .3172 (-0.2%) .4469 (5.1%)N 8
14 cmuPrfPhrENo .3198 .4249 .3167 (-1.0%) .4497 (5.8%)N 9 .3201 (0.1%) .4480 (5.4%)N 9 .3179 (-0.6%) .4486 (5.6%)N 9
15 cmuPrfPhr .3167 .4198 .3117 (-1.6%) .4441 (5.8%)N 10 .3154 (-0.4%) .4407 (5.0%)N 8 .3130 (-1.2%) .4379 (4.3%)M 8
16 FASILKOM02 .2454 .4141 .2725 (11.0%)N .4497 (8.6%)N 11 .2721 (10.9%)N .4497 (8.6%)N 11 .2718 (10.8%)N .4508 (8.9%)N 11
17 IBMLTR .2630 .4136 .2734 (4.0%)M .4424 (7.0%)N 10 .2758 (4.9%)N .4412 (6.7%)N 10 .2734 (4.0%)M .4441 (7.4%)N 10
18 otM12ihe .2995 .4124 .2968 (-0.9%) .4333 (5.1%)N 7 .3015 (0.7%) .4339 (5.2%)N 7 .2969 (-0.9%) .4322 (4.8%)N 7
19 FASILKOM03 .2716 .4124 .2861 (5.3%)N .4407 (6.9%)N 12 .2879 (6.0%)N .4469 (8.4%)N 14 .2859 (5.3%)N .4452 (8.0%)N 14
20 FASILKOM04 .2461 .4113 .2584 (5.0%)N .4362 (6.1%)N 11 .2596 (5.5%)N .4322 (5.1%)N 9 .2575 (4.6%)N .4294 (4.4%)N 9
21 IBMLTRFuture .2731 .4090 .2803 (2.6%) .4384 (7.2%)N 14 .2830 (3.6%)M .4328 (5.8%)N 10 .2808 (2.8%) .4311 (5.4%)N 10
22 uiucGSLIS01 .2445 .4073 .2574 (5.3%)M .4271 (4.9%)M 10 .2612 (6.8%)N .4260 (4.6%)N 9 .2575 (5.3%)N .4260 (4.6%)N 9
23 PKUICST4 .2786 .4062 .2913 (4.6%)M .4537 (11.7%)N 18 .2931 (5.2%)N .4486 (10.4%)N 18 .2909 (4.4%)M .4514 (11.1%)N 18
24 uogTrLsE .2909 .4028 .2983 (2.5%) .4282 (6.3%)N 12 .3015 (3.6%)M .4243 (5.3%)N 9 .2977 (2.3%) .4282 (6.3%)N 9
25 otM12ih .2777 .3989 .2807 (1.1%) .4260 (6.8%)N 12 .2839 (2.2%) .4232 (6.1%)N 10 .2810 (1.2%) .4175 (4.7%)N 10
26 ICTWDSERUN4 .1877 .3887 .1995 (6.3%)N .4136 (6.4%)N 8 .1992 (6.1%)N .4164 (7.1%)N 10 .1985 (5.8%)N .4164 (7.1%)N 10
27 uwatrrfall .2620 .3881 .2829 (8.0%)N .4158 (7.1%)N 11 .2841 (8.4%)N .4136 (6.6%)N 9 .2812 (7.3%)N .4136 (6.6%)N 9
28 cmuPhrE .2731 .3842 .2792 (2.2%) .4130 (7.5%)N 10 .2810 (2.9%) .4164 (8.4%)N 12 .2797 (2.4%) .4136 (7.7%)N 12
29 AIrun1 .2237 .3842 .2350 (5.1%)N .4085 (6.3%)N 7 .2359 (5.5%)N .4056 (5.6%)N 5 .2339 (4.6%)N .4102 (6.8%)N 5
30 PKUICST3 .2118 .3825 .2320 (9.5%)N .4220 (10.3%)N 15 .2324 (9.7%)N .4181 (9.3%)N 14 .2318 (9.4%)N .4119 (7.7%)N 14

Average 2.4% 5.4% 7.7 3.3% 5.3% 7.3 2.4% 5.0% 7.1

Table 3: System performance for top, middle (mid), and bot-
tom (btm) 30 systems from TMB2012 system ranking and rela-
tive improvements using our method trained on top 20 (TOP20)
performing systems in TMB2011.

TMB2012 TOP20
band MAP P@30 MAP P@30

top .2794 .4209 .2876 (3.3%) .4430 (5.3%)
mid .2193 .3460 .2461 (12.2%) .3906 (12.9%)
btm .1332 .2636 .1626 (22.1%) .3298 (25.1%)

mental findings show that our model: (i) improves in both MAP and
P@30 when coupled with the features from a strong L2R baseline;
(ii) provides a complementary source of features general enough to
improve the best 30 systems from TMB2012; (iii) the performance
gains are stable when we use run scores from the top 10, 20 or 30
best systems for learning; and (iv) the improvement becomes larger
for underperforming systems achieving an average 20% of relative
improvement in MAP and P@30 for bottom 30 systems.

Acknowledgments. This research was partially supported by the
Google Europe Doctoral Fellowship Award 2013, the European
Community’s Seventh Framework Programme (FP7/2007-2013) un-
der grant agreements nr 288024 (LiMoSINe) and nr 312827 (VOX-
Pol), the Netherlands Organisation for Scientific Research under
nrs 727.011.005, 612.001.116, HOR-11-10, 640.006.013, the Cen-
ter for Creation, Content and Technology (CCCT), the QuaMerdes
project funded by the CLARIN-nl program, the TROVe project
funded by the CLARIAH program, the Dutch national program
COMMIT, the ESF Research Network Program ELIAS, the Elite

Network Shifts project funded by the Royal Dutch Academy of
Sciences (KNAW), the Netherlands eScience Center under number
027.012.105 the Yahoo! Faculty Research and Engagement Pro-
gram, the Microsoft Research PhD program, and the HPC Fund.

REFERENCES
[1] L. Azzopardi, M. de Rijke, and K. Balog. Building simulated

queries for known-item topics: An analysis using six
European languages. In SIGIR, 2007.

[2] R. Berendsen, M. Tsagkias, W. Weerkamp, and M. de Rijke.
Pseudo test collections for training and tuning microblog
rankers. In SIGIR, 2013.

[3] K. Gimpel, N. Schneider, B. O’Connor, D. Das, D. Mills,
J. Eisenstein, M. Heilman, D. Yogatama, J. Flanigan, and
N. A. Smith. Part-of-speech tagging for twitter: Annotation,
features, and experiments. In ACL, 2011.

[4] A. Moschitti. Efficient convolution kernels for dependency
and constituent syntactic trees. In ECML, 2006.

[5] I. Ounis, C. Macdonald, J. Lin, and I. Soboroff. Overview of
the TREC-2011 microblog track. In TREC, 2011.

[6] A. Severyn and A. Moschitti. Structural relationships for
large-scale learning of answer re-ranking. In SIGIR, 2012.

[7] A. Severyn, M. Nicosia, and A. Moschitti. Learning semantic
textual similarity with structural representations. In ACL,
2013.

[8] A. Severyn, M. Nicosia, and A. Moschitti. Building structures
from classifiers for passage reranking. In CIKM, 2013.

[9] I. Soboroff, I. Ounis, J. Lin, and I. Soboroff. Overview of the
TREC-2012 microblog track. In TREC, 2012.

	1 Introduction
	2 A syntax-aware re-ranker
	2.1 A syntactic model for tweets
	2.2 Learning

	3 Experiments and Evaluation
	3.1 Experimental setup
	3.2 Results

	4 Conclusions

