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Abstract

This paper presents an empirical study on using syntactic and semantic information for Concept
Segmentation and Labeling (CSL), a well-known component in spoken language understand-
ing. Our approach is based on reranking N -best outputs from a state-of-the-art CSL parser. We
perform extensive experimentation by comparing different tree-based kernels with a variety of
representations of the available linguistic information, including semantic concepts, words, POS
tags, shallow and full syntax, and discourse trees. The results show that the structured representa-
tion with the semantic concepts yields significant improvement over the base CSL parser, much
larger compared to learning with an explicit feature vector representation. We also show that
shallow syntax helps improve the results and that discourse relations can be partially beneficial.

1 Introduction

Spoken Language Understanding aims to interpret user utterances and to convert them to logical forms,
or, equivalently, database queries, which can then be used to satisfy the user’s information needs. This
process is known as Concept Segmentation and Labeling (CSL): it maps utterances into meaning repre-
sentations based on semantic constituents. The latter are basically sequences of semantic entities, often
referred to as concepts, attributes or semantic tags. Traditionally, grammar-based methods have been
used for CSL, but more recently machine learning approaches to semantic structure computation have
been shown to yield higher accuracy. However, most previous work did not exploit syntactic/semantic
structures of the utterances, and the state-of-the-art is represented by conditional models for sequence la-
beling, such as Conditional Random Fields (Lafferty et al., 2001) trained with simple morphological and
lexical features. In our study, we measure the impact of syntactic and discourse structures by also com-
bining them with innovative features. In the following subsections, we present the application context
for our CSL task and then we outline the challenges and the findings of our research.

1.1 Semantic parsing for the “restaurant” domain
We experiment with the dataset of McGraw et al. (2012), containing spoken and typed questions about
restaurants, which are to be answered using a database of free text such as reviews, categorical data such
as names and locations, and semi-categorical data such as user-reported cuisines and amenities.

Semantic parsing, in the form of sequential segmentation and labeling, makes it easy to convert spoken
and typed questions such as “cheap lebanese restaurants in doha with take out” into database queries.
First, a language-specific semantic parser tokenizes, segments and labels the question:

[Price cheap] [Cuisine lebanese] [Other restaurants in] [City doha] [Other with] [Amenity take out]

Then, label-specific normalizers are applied to the segments, with the option to possibly relabel mis-
labeled segments; at this point, discourse history may be incorporated as well.

[Price low] [Cuisine lebanese] [City doha] [Amenity carry out]
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Finally, a database query is formed from the list of labels and values, and is then executed against the
database, e.g., MongoDB; a backoff mechanism may be used if the query does not succeed.

{$and [{cuisine:"lebanese"}, {city:"doha"}, {price:"low"}, {amenity:"carry out"}]}

1.2 Related work on CSL

Pieraccini et al. (1991) used Hidden Markov Models (HMMs) for CSL, where the observations were
word sequences and the hidden states were meaning units, i.e, concepts. In subsequent work (Rubinstein
and Hastie, 1997; Santafé et al., 2007; Raymond and Riccardi, 2007; De Mori et al., 2008), other genera-
tive models were applied, which model the joint probability of a word sequence and a concept sequence,
as well as discriminative models, which directly model a conditional probability over the concepts in the
input text.

Seneff (1989) and Miller et al. (1994) used stochastic grammars for CSL. In particular, they applied
stochastic Finite State Transducers (FST) for recognizing constituent annotations. FSTs describe local
syntactic structures with a sequence of words, e.g., noun phrases or even constituents. Papineni et al.
(1998) proposed and evaluated exponential models, but, nowadays, Conditional Random Fields (Lafferty
et al., 2001) are considered to be the state-of-the-art. More recently, Wang et al. (2009) illustrated an
approach for CSL that is specific to query understanding for web applications. A general survey of CSL
approaches can be found in (De Mori et al., 2008). CSL is also connected to a large body of work on
shallow semantic parsing; see (Gildea and Jurafsky, 2002; Màrquez et al., 2008) for an overview.

Another relevant line of research with a considerable body of work is reranking in NLP. Tree kernels
for reranking syntactic parse trees were first proposed in (Collins and Duffy, 2002). Some variants used
explicit spaces (Kudo et al., 2005), and feature vector approaches were proposed in (Koo and Collins,
2005). Other reranking work using tree kernels regards predicate argument structures (Moschitti et al.,
2006) and named entities (Nguyen and Moschitti, 2012). In (Dinarelli et al., 2011), we rerank CSL
hypotheses using structures built on top of concepts, words and features that are simpler than those
studied in this paper. The work of Ge and Mooney (2006) and Kate and Mooney (2006) is also similar
to ours, as it models the extraction of semantics as a reranking task using string kernels.

1.3 Syntactic and semantic structures for CSL

The related work has highlighted that automatic CSL is mostly based on powerful machine learning al-
gorithms and simple feature representations based on word and tag n-grams. In this paper, we study the
impact of more advanced linguistic processing on CSL, such as shallow and full syntactic parsing and
discourse structure. We use a reranking approach to select the best hypothesis annotated with concepts
derived by a local model, where the hypotheses are represented as trees enriched with semantic con-
cepts similarly to (Dinarelli et al., 2011). These tree-based structures can capture dependencies between
sentence constituents and concepts. However, extracting features from them is rather difficult as their
number is exponentially large. Thus, we rely on structural kernels (e.g., see (Moschitti, 2006)) for au-
tomatically encoding tree fragments, which represent syntactic and semantic dependencies from words
and concepts, and we train the reranking functions with Support Vector Machines (e.g., see (Joachims,
1999)). Additionally, we experiment with several types of kernels and newly designed feature vectors.

We test our models on the above-mentioned Restaurant domain. The results show that (i) the basic
CRF model, in fact semi-CRF (see below), is very accurate, achieving more than 83% in F1-score, which
indicates that improving over the semi-CRF approach is very hard; (ii) the upper-bound performance
of the reranking approach is very high as well, i.e., the correct annotation is generated in the first 100
hypotheses in 98.72% of the cases; (iii) our feature vectors show improvement only when all feature
groups are used together; otherwise, we only observe marginal improvement; (iv) structural kernels yield
a 10% relative error reduction from the semi-CRF baseline, which is more than double the feature vector
result; (v) syntactic information significantly improves on the best model, but only when using shallow
syntax; and finally, (vi) although, discourse structures provide good improvement over the semi-CRF
model, they perform lower than shallow syntax (thus, a valuable use of discourse features is still an open
problem that we plan to pursue in future work).



2 CSL reranking

Reranking is based on a list of N annotation hypotheses, which are generated and sorted by probability
using local classifiers. Then a reranker, typically a meta-classifier, tries to select the best hypothesis from
the list. The reranker can exploit global information, and, specifically, the dependencies between the
different concepts that are made available by the local model. We use semi-CRF as our local model since
it yields the highest accuracy in CSL (when using a single model), and preference reranking with kernel
machines to rerank the N hypotheses generated by the semi-CRF.

2.1 Basic parser using semi-CRF

We use a semi-Markov CRF (Sarawagi and Cohen, 2004), or semi-CRF, a variation of a linear-chain
CRF (Lafferty et al., 2001), to produce the N -best list of labeled segment hypotheses that serve as the
input to reranking. In a linear-chain CRF, with a sequence of tokens x and labels y, we approximate
p(y|x) as a product of factors of the form p(yi|yi−1, x), which corresponds to features of the form
fj(yi−1, yi, i, x), where i iterates over the token/label positions. This supports a Viterbi search for the
approximateN best values of y. WithM label values, if for each label ym we know the bestN sequences
of labels y1, y2, . . . , yi−1 = ym, then we can use p(yi|yi−1, x) to get the probability for extending each
path by each possible label yi = y′m. Then for each label y′m, we will have MN paths and scores, one
from each of the paths of length i− 1 ending with ym. For each y′m, we pick the N best extended paths.

With semi-CRF, we want a labeled segmentation s rather than a sequence of labels. Each segment
si = (yi, ti, ui) has a label yi as well as a starting and ending token position for the segment, ti and
ui respectively, where ui + 1 = ti+1. We approximate p(s|x), with factors of the form p(si|si−1, x),
which we simplify to p(yi, ui|yi−1, ti), so features take the form fj(yi−1, yi, ti, ui), i.e., they can use the
previous segment’s label and the current segment’s label and endpoints. The Viterbi search is extended
to search for a pair of label and segment end. Whereas for M labels we kept track of MN paths, we
must keep track of MLN paths, where L is the maximum segment length.

We use token n-gram features relative to the segment boundaries, n-grams within the segment, token
regular expression and lexicon features within a segment. Each of these features also includes the labels
of the previous and current segment, and the segment length.

2.2 Preference reranking with kernel machines

Preference reranking (PR) uses a classifier C of pairs of hypotheses 〈Hi, Hj〉, which decides if Hi is
better thanHj . Given each training question Q, positive and negative examples are generated for training
the classifier. We adopt the following approach for example generation: the pairs 〈H1, Hi〉 constitute
positive examples, where H1 has the lowest error rate with respect to the gold standard among the
hypotheses for Q, and vice versa, 〈Hi, H1〉 are considered as negative examples. At testing time, given
a new question Q′, C classifies all pairs 〈Hi, Hj〉 generated from the annotation hypotheses of Q′: a
positive classification is a vote for Hi, otherwise the vote is for Hj . Also, the classifier score can be used
as a weighted vote. Hk are then ranked according to the number (sum) of the (weighted) votes they get.

We build our reranker with kernel machines. The latter, e.g., SVMs, classify an input object o using
the following function: C(o) =

∑
i αiyiK(o, oi), where αi are model parameters estimated from the

training data, oi are support objects and yi are the labels of the support objects. K(·, ·) is a kernel
function, which computes the scalar product between the two objects in an implicit vector space. In the
case of the reranker, the objects o are 〈Hi, Hj〉, and the kernel is defined as follow:
K(〈H1, H2〉, 〈H ′1, H ′2〉) = S(H1, H

′
1) + S(H2, H

′
2)− S(H1, H

′
2)− S(H2, H

′
1).

Our reranker also includes traditional feature vectors in addition to the trees. Therefore, we define each
hypothesis H as a tuple 〈T,~v〉 composed of a tree T and a feature vector ~v. We then define a structural
kernel (similarity) between two hypotheses H and H ′ as follows: S(H,H ′) = STK(T, T

′) + Sv(~v,~v
′),

where STK is one of the tree kernel functions defined in Section 3.1, and Sv is a kernel over feature
vectors (see Section 3.3), e.g., linear, polynomial, gaussian, etc.



(a) Basic Tree (BT). (b) Discourse Tree (DT).

(c) Shallow Syntactic Tree (ShT).

(d) Syntactic Tree (ST).

(e) BT with POS (BTP).

Figure 1: Syntactic/semantic trees. The numeric semantic tagset is defined in Table 7.

3 Structural kernels for semantic parsing

In this section, we briefly describe the kernels we use in S(H,H ′) for preference reranking. We engineer
them by combining three aspects: (i) different types of existing tree kernels, (ii) new syntactic/semantic
structures for representing CSL, and (iii) new feature vectors.

3.1 Tree kernels

Structural kernels, e.g., tree and sequence kernels, measure the similarity between two structures in terms
of their shared substructures. One interesting aspect is that these kernels correspond to a scalar product
in the fragment space, where each substructure is a feature. Therefore, they can be used in the training
and testing algorithms of kernel machines (see Section 2.2). Below, we briefly describe different types of
kernels we tested in our study, which are made available in the SVM-Light-TK toolkit (Moschitti, 2006).
Subtree Kernel (K0) is one of the simplest tree kernels, as it only generates complete subtrees, i.e., tree
fragments that, given any arbitrary starting node, necessarily include all its descendants.
Syntactic Tree Kernel (K1), also known as a subset tree kernel (Collins and Duffy, 2002), maps ob-
jects in the space of all possible tree fragments constrained by the rule that the sibling nodes cannot
be separated from their parents. In other words, substructures are composed of atomic building blocks
corresponding to nodes, along with all of their direct children. In the case of a syntactic parse tree, these
are complete production rules for the associated parser grammar.
Syntactic Tree Kernel + BOW (K2) extends ST by allowing leaf nodes to be part of the feature space.
The leaves of the trees correspond to words, i.e., we allow bag-of-words (BOW).
Partial Tree Kernel (K3) can be effectively applied to both constituency and dependency parse trees.
It generates all possible connected tree fragments, e.g., sibling nodes can be also separated and be part
of different tree fragments. In other words, a fragment is any possible tree path from whose nodes other
tree paths can depart. Thus, it can generate a very rich feature space.
Sequence Kernel (K4) is the traditional string kernel applied to the words of a sentence. In our case, we
apply it to the sequence of concepts.

3.2 Semantic/syntactic structures
As mentioned before, tree kernels allow us to compute structural similarities between two trees without
explicitly representing them as feature vectors. For the CSL task, we experimented with a number of tree
representations that incorporate different levels of syntactic and semantic information.

To capture the structural dependencies between the semantic tags, we use a basic tree (Figure 1a)
where the words of a sentence are tagged with their semantic tags. More specifically, the words in the
sentence constitute the leaves of the tree, which are in turn connected to the pre-terminals containing the
semantic tags in BIO notation (‘B’=begin, ‘I’=inside, ‘O’=outside). The BIO tags are then generalized
in the upper level, and so on. The basic tree does not include any syntactic information.



However, part-of-speech (POS) and phrasal information could be informative for both segmentation
and labeling in semantic parsing. To incorporate this information, we use two extensions of the basic
tree: one that includes the POS tags of the words (Figure 1e), and another one that includes both POS
tags and syntactic chunks (Figure 1c). The POS tags are children of the semantic tags, whereas the
chunks (i.e., phrasal information) are included as parents of the semantic tags.

We also experiment with full syntactic trees (Figure 1d) to see the impact of deep syntactic informa-
tion. The semantic tags are attached to the pre-terminals (i.e., POS tags) in the syntactic tree. We use the
Stanford POS tagger and syntactic parser and the Twitter NLP tool1 for the shallow trees.

A sentence containing multiple clauses exhibits a coherence structure. For instance, in our example,
the first clause “along my route tell me the next steak house” is elaborated by the second clause “that is
within a mile”. The relations by which clauses in a text are linked are called coherence relations (e.g.,
Elaboration, Contrast). Discourse structures capture this coherence structure of text and provide addi-
tional semantic information that could be useful for the CSL task (Stede, 2011). To build the discourse
structure of a sentence, we use a state-of-the-art discourse parser (Joty et al., 2012) which generates
discourse trees in accordance with the Rhetorical Structure Theory of discourse (Mann and Thompson,
1988), as exemplified in Figure 1b. Notice that a text span linked by a coherence relation can be either a
nucleus (i.e., the core part) or a satellite (i.e., a supportive one) depending on how central the claim is.

3.3 New features
In order to compare to the structured representation, we also devoted significant effort towards engineer-
ing a set of features to be used in a flat feature-vector representation; they can be used in isolation or in
combination with the kernel-based approach (as a composite kernel using a linear combination):
CRF-based: these include the basic features used to train the initial semi-CRF model (cf. Section 2.1).
n-gram based: we collected 3- and 4-grams of the output label sequence at the level of concepts, with
artificial tags inserted to identify the start (‘S’) and end (‘E’) of the sequence.2

Probability-based: two features computing the probability of the label sequence as an average of the
probabilities at the word level p(li|wi) (i.e., assuming independence between words). The unigram prob-
abilities are estimated by frequency counts using maximum likelihood in two ways: (i) from the complete
100-best list of hypotheses; (ii) from the training set (according to the gold standard annotation).
DB-based: a single feature encoding the number of results returned from the database when constructing
a query using the conjunction of all semantic segments in the hypothesis. Three possible values are
considered by using a threshold t: 0 (if the query result is void), 1 (if the number of results is in [1, t]),
and 2 (if the number of results is greater than t). In our case, t is empirically set to 10,000.

4 Experiments
The experiments aim at investigating which structures, and thus which linguistic models and combination
with other models, are the most appropriate for our reranker. We first calculate the oracle accuracy in
order to compute an upper bound of the reranker. Then we present experiments with the feature vectors,
tree kernels, and representations of linguistic information introduced in the previous sections.

4.1 Experimental setup
In our experiments, we use questions annotated with semantic tags in the restaurant domain,3 which were
collected by McGraw et al. (2012) through crowdsourcing on Amazon Mechanical Turk.4 We split the
dataset into training, development and test sets. Table 1 shows statistics about the dataset and about the
size of the parts we used for training, development and testing (see the semi-CRF line).

We subsequently split the training data randomly into ten folds. We generated the N -best lists on
the training set in a cross-validation fashion, i.e., iteratively training on nine folds and annotating the
remaining fold. We computed the 100-best hypotheses for each example.

1Available from http://nlp.stanford.edu/software/index.shtml and https://github.com/aritter/twitter nlp, respectively.
2For instance, if the output sequence is Other-Rating-Other-Amenity the 3-gram patterns would be: S-Other-Rating, Other-

Rating-Other, Rating-Other-Amenity, and Other-Amenity-E.
3http://www.sls.csail.mit.edu/downloads/restaurant
4We could not use the datasets used by Dinarelli et al. (2011), because they use French and Italian corpora for which there

are no reliable syntactic and discourse parsers.



Train Devel. Test Total
semi-CRF 6,922 739 1,521 9,182
Reranker 28,482 3,695 7,605 39,782

Table 1: Number of instances and pairs used to
train the semi-CRF and rerankers, respectively.

N 1 2 5 10 100
F1 83.03 87.76 92.63 95.23 98.72

Table 2: Oracle F1-score for N -best lists
of different lengths.

We used the development set to experiment and tune the hyper-parameters of the reranking model. The
results on the development set presented in Section 4.2 were obtained by semi-CRF and reranking models
learned on the training set. The results on the test set were obtained by models trained on the training
plus development sets. Similarly, the N -best lists for the development and test sets were generated using
a single semi-CRF model trained on the training set and the training+development sets, respectively.

Each generated hypothesis is represented using a semantic tree and a feature vector (explained in
Section 3) and two extra features accounting for (i) the semi-CRF probability of the hypothesis, and
(ii) the hypothesis reciprocal rank in the N -best list. SVM-Light-TK5 is used to train the reranker with
a combination of tree kernels and feature vectors (Moschitti, 2006; Joachims, 1999). Although we
tried several parameters on the validation set, we observed that the default values yielded the highest
results. Thus, we used the default c (trade-off) and tree kernel parameters and a linear kernel for the
feature vectors. Table 1 shows the sizes of the train, the development and the test sets used for the
semi-CRF as well as the number of pairs generated for the reranker. As a baseline, we picked the best-
scored hypothesis in the list, according to the semi-CRF tagger. The evaluation measure used in all
the experiments is the harmonic mean of precision and recall, i.e., the F1-score (van Rijsbergen, 1979),
computed at the token level and micro-averaged over the different semantic types.6 We used paired t-test
to measure the statistical significance of the improvements: we split the test set into 31 equally-sized
samples and performed t-tests based on the F1-scores of different models on the resulting samples.

4.2 Results
Oracle accuracy. Table 2 shows the oracle F1-score for N -best lists of different lengths, i.e., which
can be achieved by picking the best candidate of the N -best list for various values of N . We can see that
going to 5-best increases the oracle F1-score by almost ten points absolute. Going down to 10-best only
adds 2.5 extra F1 points absolute, and a 100-best list adds 3.5 F1 points more to yield a respectable F1-
score of 98.72. This high result can be explained considering that the size of the complete hypothesis set
is smaller than 100 for most questions. Thus, we can conclude that theN -best lists do include many good
options and do offer quite a large space for potential improvement. We can further observe that going to
5-best lists offers a good balance between the length of the list and the possibility to improve F1-score:
generally, we do not want too long N -best lists since they slow down computation and also introduce
more opportunities to make the wrong choice for a reranker (since there are just more candidates to
choose from). In our experiments with larger N , we observed improvements only for 10 and only on the
development set; thus, we will focus on 5-best lists in our experiments below.

K0 K1 K2 K3 K4
Dev 84.21 82.92 83.07 85.07 83.78
Test 84.08 83.19 83.20 84.61 82.93

Table 3: Results for using different tree kernels on the basic tree (BT) representation.

Choosing the best tree kernel. We first select the most appropriate tree kernel to limit the number
of experiment variables. Table 3 shows the results of different tree kernels using the basic tree (BT)
representation (see Figure 1a). We can observe that for both the development set and the test set, kernel
K3 (see Section 3.1) yields the highest F1-score.
Impact of feature vectors. Table 4 presents the results for the feature vector experiments in terms
of F1-scores and relative error reductions (row RER). The first column shows the baseline, when no
reranking is used; the following four columns contain the results when using vectors including different

5http://disi.unitn.it/moschitti/Tree-Kernel.htm
6‘Other’ is not considered a semantic type, thus ‘Other’ tokens are not included in the F1 calculation.



Baseline n-grams CRF features Count DB ProbBased AllFeat
Dev 83.86 83.79 83.96 83.80 83.86 83.87 84.49

RER -0.4 0.6 -0.4 0.0 0.0 3.9
Test 83.03 82.90 83.44 82.90 83.01 83.09 83.86

RER -0.7 2.4 -0.7 -0.1 0.3 4.8

Table 4: Feature vector experiments: F1 score and relative error reduction (in %).

Combining AllFeat and
Baseline BT BTP ShT ST AllFeat +BT +ShT +ShT +BT

Dev 83.86 85.07 85.41 85.06 84.30 84.49 85.57 85.58 85.33
RER 7.5 9.6 7.4 2.8 3.9 10.6 10.7 9.1

Test 83.03 84.61 84.63 84.07 83.81 83.86 84.67 84.79 84.76
RER 9.3 9.4 6.1 4.5 4.8 9.6 10.2 10.2
p.v. 0.00049 0.0002 0.012 0.032 0.00018 0.00028 0.00004 0.000023

Table 5: Tree kernel experiments: F1-score, relative error reduction (in %), and p-values.

kinds of features: (i) n-gram features, (ii) all features used by the semi-CRF, (iii) count features, and
(iv) database (DB) features. In each case, we include two additional features: the semi-CRF score
(i.e., the probability) and the reciprocal rank of the hypothesis in the N -best list. Among (i)–(iv), only
the semi-CRF features seem to help; the rest either show no improvements or degrade the performance.
However, putting all these features together (AllFeat) yields sizable gains in terms of F1-score and a
relative error reduction of 4-5%; the improvement is statistically significant, and it is slightly larger on
the test dataset compared to the development dataset.

Impact of structural kernels and combinations. Table 5 shows the results when experimenting with
various tree structures (see columns 2-5): (i) the basic tree (BT), (ii) the basic tree augmented with
part-of-speech information (BTP), (iii) shallow syntactic tree (ShT), and (iv) syntactic tree (ST). We
can see that the basic tree works rather well, yielding +1.6 F1-score on the test dataset, but adding POS
information can help a bit more, especially for the tuning dataset. Interestingly, the syntactic tree kernels,
ShT and ST, perform worse than BT and BTP, especially on the test dataset. The last three columns in the
table show the results when we combine the AllFeat feature vector (see Table 4) with BT and ShT. We can
see that combining AllFeat with ShT works better, on both development and test sets, than combining it
with BT or with both ShT and BT. Also note the big jump in performance from AllFeat to AllFeat+ShT.
Overall, we can conclude that shallow syntax has a lot to offer over AllFeat, and it is preferable over BT
in the combination with AllFeat. The improvements reported in Tables 5 and 6 are statistically significant
when compared to the semi-CRF baseline as shown by the p.v. (value) row. Moreover, the improvement
of AllFeat + ShT over BT is also statistically significant (p.v.<0.05).

Combining AllFeat and
Baseline DS +DS +DS +BT +DS +ShT

Dev 83.86 84.61 85.14 85.43 85.46
RER 4.7 7.9 9.7 9.9

Test 83.03 84.38 84.55 84.63 84.67
RER 7.9 8.9 9.4 9.6
p.v. 0.0005 0.0001 0.00066 0.00015

Table 6: Experiments with discourse kernels: F1 score, relative error reduction (in %), and p-values.

Discourse structure. Finally, Table 6 shows the results for the discourse tree kernel (DS), which we
designed and experimented with for the first time in this paper. We see that DS yields sizable improve-
ments over the baseline. We also see that further gains can be achieved by combining DS with AllFeat,
and also with BT and ShT, the best combination being AllFeat+DS+ShT (see last column). However,
comparing to Table 5, we see that it is better to use just AllFeat+ShT and leave DS out. We would like
to note though that the discourse parser produced non-trivial trees for only 30% of the hypotheses (due
to the short, simple nature of the questions); in the remaining cases, it probably hurt rather than helped.
We conclude that discourse structure has clear potential, but how to make best use of it, especially in the
case of short simple questions, remains an open question that deserves further investigation.



Tag ID Other Rating Restaurant Amenity Cuisine Dish Hours Location Price
0 Other 8260 35 43 110 15 19 55 113 9
1 Rating 29 266 0 14 3 6 0 0 8
2 Restaurant 72 6 657 20 19 15 0 5 0
3 Amenity 117 9 10 841 27 27 7 12 7
4 Cuisine 36 2 12 26 543 44 3 1 0
5 Dish 23 0 4 20 33 324 1 4 0
6 Hours 61 0 1 2 6 1 426 9 1
7 Location 104 1 14 20 2 1 1 1457 0
8 Price 22 1 0 7 0 2 0 1 204

Table 7: Confusion matrix for the output of the best performing system.

4.3 Error analysis and discussion
Table 7 shows the confusion matrix for our best-performing model AllFeat+ShT (rows = gold standard
tags; columns = system predicted tags). Given the good results of the semantic parser, the numbers in the
diagonal are clearly dominating the weight of the matrix. The largest errors correspond to missed (first
column) and over-generated (first row) entity tokens. Among the proper confusions between semantic
types, Dish and Cuisine tend to mislead each other most. This is due to the fact that these two tags
are semantically similar, thus making them hard to distinguish. We can also notice that it is difficult to
identify Amenity correctly, and the model mistakenly tags many other tags as Amenity. We looked into
some examples to further investigate the errors. Our findings are as follow:

Inaccuracies and inconsistencies in human annotations. Since the annotations were done in Me-
chanical Turk, they have many inaccuracies and inconsistencies. For example, the word good with
exactly the same sense was tagged as both Other and Rating by the Turkers in the following examples:

Gold: [Other any good] [Price cheap] [Cuisine german] [Other restaurants] [Location nearby]
Model: [Other any] [Rating good] [Price cheap] [Cuisine german] [Other restaurants] [Location nearby]

Gold: [Other any place] [Location along the road] [Other has a] [Rating good] [Dish beer] [Other selection that also serves] ...

Requires lexical semantics and more coverage. In some cases our model fails to generalize well. For
instance, it fails to correctly tag establishments and tameles for the following examples. This suggests
that we need to consider other forms of semantic information, e.g., distributional and compositional
semantics computed from large corpora and/or using Web resources such as Wikipedia.

Gold: [Other any] [Location dancing establishments] [Other with] [Price reasonable] [Other pricing]
Model: [Other any] [Amenity dancing] [Other establishments] [Other with] [Price reasonable] [Other pricing]

Gold: [Other any] [Cuisine mexican] [Other places have a] [Dish tameles] [Amenity special today]
Model: [Other any] [Cuisine mexican] [Other places have a] [Amenity tameles] [Other special] [Hours today]

5 Conclusions
We have presented a study on the usage of syntactic and semantic structured information for improved
Concept Segmentation and Labeling (CSL). Our approach is based on reranking a set of N -best se-
quences generated by a state-of-the-art semi-CRF model for CSL. The syntactic and semantic informa-
tion was encoded in tree-based structures, which we used to train a reranker with kernel-based Support
Vector Machines. We empirically compared several variants of syntactic/semantic structured representa-
tions and kernels, including also a vector of manually engineered features.

The first and foremost conclusion from our study is that structural kernels yield significant improve-
ment over the strong baseline system, with a relative error reduction of ∼10%. This more than doubles
the improvement when using the explicit feature vector. Second, we observed that shallow syntactic
information also improves results significantly over the best model. Unfortunately, the results obtained
using full syntax and discourse trees are not so clear. This is probably explained by the fact that user
queries are rather short and linguistically not very complex. We also observed that the upper bound per-
formance for the reranker still leaves large room for improvement. Thus, it remains to be seen whether
some alternative kernel representations can be devised to make better use of discourse and other syntac-
tic/semantic information. Also, we think that some innovative features based on analyzing the results
obtained from our database (or the Web) when querying with the segments represented in each hypothe-
ses have the potential to improve the results. All these concerns will be addressed in future work.
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