
A Retrieval Model for Automatic Resolution of Crossword Puzzles
in Italian Language

Gianni Barlacchi1 and Massimo Nicosia2,1 and Alessandro Moschitti2,1
1Department of Information Engineering and Computer Science, University of Trento,

2Qatar Computing Research Institute
{gianni.barlacchi, m.nicosia, amoschitti}@gmail.com

Abstract
English. In this paper we study methods
for improving the quality of automatic ex-
traction of answer candidates for an ex-
tremely challenging task: the automatic
resolution of crossword puzzles for Italian
language. Many automatic crossword puz-
zle solvers are based on database system
accessing previously resolved crossword
puzzles. Our approach consists in query-
ing the database (DB) with a search engine
and converting its output into a probability
score, which combines in a single scoring
model, i.e., a logistic regression model,
both the search engine score and statisti-
cal similarity features. This improved re-
trieval model greatly impacts the resolu-
tion accuracy of crossword puzzles.

Italiano. In questo lavoro abbiamo stu-
diato metodi per migliorare la qualità
dell’estrazione automatica di risposte da
utilizzare nella risoluzione di cruciverba
in lingua italiana. Molti risolutori auto-
matici utilizzano database di definizioni e
risposte provenienti da cruciverba risolti
in precedenza. Il nostro approccio con-
siste nell’applicare tecniche di Informa-
tion Retrieval alla base di dati, accedendo
a questa per mezzo di un motore di ricerca.
Gli score associati ai risultati sono com-
binati con altre misure di similiarità in
un singolo modello di regressione logis-
tica, che li convertite in probabilità. Il
risultante modello é in grado di individ-
uare con piú affidabilità definizioni simili e
migliora significativamente l’accuratezza
nella risoluzione dei cruciverba.

1 Introduction
Crossword Puzzles (CPs) are probably one of
the most popular language game. Automatic CP

solvers have been mainly targeted by the artificial
intelligence (AI) community, who has mostly fo-
cused on AI techniques for filling the puzzle grid,
given a set of answer candidates for each clue. The
basic idea is to optimize the overall probability of
correctly filling the entire grid by exploiting the
likelihood of each candidate answer, fulfilling at
the same time the grid constraints. After several
failures in approaching the human expert perfor-
mance, it has become clear that designing more
accurate solvers would not have provided a win-
ning system. In contrast, the Precision and Recall
of the answer candidates are obviously a key fac-
tor: very high values for these performance mea-
sures would enable the solver to quickly find the
correct solution.

Similarly to the Jeopardy! challenge case (Fer-
rucci et al., 2010), the solution relies on Ques-
tion Answering (QA) research. However, although
some CP clues are rather similar to standard ques-
tions, there are some specific differences: (i) clues
can be in interrogative form or not, e.g., �Capi-
tale d’Italia: Roma�; (ii) they can contain riddles
or be deliberately ambiguous and misleading (e.g.,
�Se fugge sono guai: gas�); (iii) the exact length
of the answer keyword is known in advance; and
(vi) the confidence in the answers is an extremely
important input for the CP solver.

There have been many attempts to build auto-
matic CP solving systems. Their goal is to outper-
form human players in solving crosswords more
accurately and in less time. Proverb (Littman et
al., 2002) was the first system for the automatic
resolution of CPs. It includes several modules
for generating lists of candidate answers. These
lists are merged and used to solve a Probabilistic-
Constraint Satisfaction Problem. Proverb relies on
a very large crossword database as well as sev-
eral expert modules, each of them mainly based
on domain-specific databases (e.g., movies, writ-
ers and geography). WebCrow (Ernandes et al.,

2005) is based on Proverb. In addition to its prede-
cessor, WebCrow carries out basic linguistic anal-
ysis such as Part-Of-Speech tagging and lemma-
tization. It takes advantage of semantic relations
contained in WordNet, dictionaries and gazetteers.
Its Web module is constituted by a search engine,
which can retrieve text snippets or documents re-
lated to the clue. WebCrow uses a WA* algorithm
(Pohl, 1970) for Probabilistic-Constraint Satisfac-
tion Problems, adapted for CP resolution. To the
best of our knowledge, the state-of-the-art system
for automatic CP solving is Dr. Fill (Ginsberg,
2011). It targets the crossword filling task with a
Weighted-Constraint Satisfaction Problem. Con-
straint violations are weighted and can be toler-
ated. It heavily relies on huge databases of clues.

All of these systems queries the DB of previ-
ously solved CP clues using standard techniques,
e.g., SQL Full-Text query. The DB is a very rich
and important knowledge base. In order to im-
prove the quality of the automatic extraction of
answer candidate lists from DB, we provide for
the Italian language a completely novel solution,
by substituting the DB and the SQL function with
a search engine for retrieving clues similar to the
target one. In particular, we define a reranking
function for the retrieved clues based on a logis-
tic regression model (LRM), which combines the
search engine score with other similarity features.
To carry out our study, we created a clue similar-
ity dataset for the Italian language. This dataset
constitutes an interesting resource that we made
available to the research community1.

2 WebCrow Architecture
We compare our methods with one of the best sys-
tems for automatic CP resolution, WebCrow (Er-
nandes et al., 2005). It was kindly made avail-
able by the authors. The solving process is divided
in two phases: in the first phase, the coordinator
module forwards the clues of an input CP to a set
of modules for the generation of several candidate
answer lists. Each module returns a list of possible
solutions for each clue. Such individual clue lists
are then merged by a specific Merger component,
which uses list confidence values and the probabil-
ities of correctness of each candidate in the lists.
Eventually, a single list of candidate-probability
pairs is generated for each input clue. During the
second phase WebCrow fills the crossword grid

1http://ikernels-portal.disi.unitn.it/
projects/webcrow/

Figure 1: Overview of WebCrow’s architecture.

by solving a constraint-satisfaction problem. We-
bCrow selects a single answer from each candi-
date merged list, trying to satisfy the imposed con-
straints. The goal of this phase is to find an admis-
sible solution maximizing the number of correctly
inserted words. In this paper, we focus on the DB
module, and we describe it here.

Knowledge about previous CPs is essential for
solving new ones. Indeed, clues often repeat
in different CPs, thus the availability of a large
DB of clue-answer pairs allows for easily finding
the answers to previously used clues. To exploit
the database of clue-answer pairs, WebCrow uses
three different modules:

CWDB-EXACT, which simply checks for an
exact match between the target clue and those in
the DB. The score of the match is computed using
the number of occurrences of the matched clue.

CWDB-PARTIAL, which employs MySQL’s
partial matching, query expansion and positional
term distances to compute clue-similarity scores,
along with the Full-Text search functions.

CWDB-DICTIO, which simply returns the full
list of words of correct length, ranked by their
number of occurrences in the initial list.

We compare our method with the CWDB-
PARTIAL module. We improved it by applying
a different retrieval function and using a linear
model for scoring each possible answer.

3 Clue Retrieval from Database
This work is inspired by our earlier paper on learn-
ing to rank models for the automatic resolution of
crossword puzzles for English language (Barlac-

Rank Clue Answer Score
1 L’ente dei petroli eni 8.835
2 Un colosso del petrolio eni 8.835
3 Il petrolio americano oil 8.835
4 Il petrolio della Mobil oil 8.835
5 Il petrolio della Shell oil 8.835

Table 1: Clue ranking for the query: Il petrolio
BP: oil

chi et al., 2014). In that work, we showed that
learning to rank models based on relational syn-
tactic structures defined between the clues and the
similar clue candidates can improve the retrieval
of clues from a database of solved crossword puz-
zles. We cannot yet use our learning to rank model
for the Italian language as we are implementing
the needed syntactic/semantic parsers for such lan-
guage. However, we have integrated the same
search engine based on BM25 for Italian. Then,
the completely new contribution is the use of su-
pervised LRM to convert the Lucene scores into
probabilities.

3.1 Clue Similarity for Italian language
WebCrow creates answer lists by retrieving clues
from the DB of previously solved crosswords.
As described before, it simply uses the classical
SQL operator and full-text search. We verified
the hypothesis that a search engine could achieve
better results and we opted for indexing the DB
of clues and their answers. We used the Open
Source search engine Lucene (McCandless et al.,
2010), its state-of-the-art BM25 retrieval model
and the provided Italian Analyzer for processing
the query. The analyzer performs basic operations,
such as stemming and tokenization, over the input
text. However, although this alone improved the
quality of the retrieved clue list, a post-processing
step is necessary for weighting the answer can-
didates appearing multiple times in the list. For
example, Table 1 shows the first five clues, re-
trieved for a query originated by the clue: �ll
petrolio BP: oil� (literally: The petroleum BP).
Three answers out of five are correct, but they are
not ranked before the others in the list. The Lucene
scores of repeated candidates are not probabilities,
thus their sum is typically not meaningful, i.e., it
does not produce aggregated scores comparable
between different answer candidates. For this rea-
son, a LRM converts the Lucene score associated
with each word into a probability. This way, we
can sum the probabilities of the same answer can-
didates in the list and then normalize them consid-
ering the size of the list. We apply the following

formula to obtain a single final score for each dif-
ferent answer candidate:

Score(G) =
∑
c∈G

PLR(y = 1|~xc)
n

where c is the answer candidate, G is the set of an-
swers matching exactly with c and n is the size of
the answer candidate list. ~xc is the feature vector
associated with c ∈ G, y ∈ {0, 1} is the binary
class label (y = 1 when c is the correct answer).
The conditional probability computed with the lin-
ear model is the following:

PLR(y = 1|c) = 1

1 + e−y ~wT ~xc

where ~w ∈ Rn is a weight vector (Yu et al., 2011).
In order to capture the distribution of the Lucene

scores over the answer candidates list, we used the
following simple features.
Lucene scores. These features are useful to
characterize the distribution of the BM25 scores
over the list. They include: the BM25 score of the
target candidate and the maximum and minimum
BM25 scores of the entire list. In particular, the
last two features give the model information about
the Lucene score range.
Rank. For each candidate answer c we include
the rank r ∈ [1, n] provided by the search engine
Lucene. n is the size of the answer candidate list.
Clue distance. It quantifies how dissimilar the
input clue and the retrieved clue are. This formula
is mainly based on the well known Levenshtein
distance.

For building the training set, we used a set of
clues to query the search engine. We obtained
candidates from the indexed clues and we marked
them using the available ground truth. Clues shar-
ing the same answer of the query clue are positive
examples. During testing, clues are again used as
search queries and the retrieved clue lists are clas-
sified.

4 Experiments
In this section, we present the results of our model.
Our referring database of Italian clues is composed
by 46,270 unique pairs of clue-answer, which be-
long to three different crossword editors.

4.1 Experimental Setup
For training the classifier we used Scikit-learn
LRM implementation (Pedregosa et al., 2011)
with default parameters. To measure the impact
of the rerankers as well as the baselines, we used
well known metrics for assessing the accuracy of

Model MRR AvgRec REC@1 REC@5 REC@10

WebCrow 73.00 78.13 64.93 83.51 86.11
BM25 77.27 86.30 65.75 93.40 100.00
BM25+LRM 81.20 88.94 71.12 95.70 100.00

Table 2: Clue retrieval

QA and retrieval systems, i.e.: Recall at rank 1
(R@1, 5 and 10), Mean Reciprocal Rank (MRR),
the average Recall (AvgRec). R@k is the percent-
age of questions with a correct answer ranked at
the first position. MRR is computed as follows:
MRR = 1

|Q|
∑|Q|

q=1
1

rank(q) , where rank(q) is the
position of the first correct answer in the candidate
list. AvgRec and all the measures are evaluated on
the first 10 retrieved clues.

4.2 Similar clue retrieval
We created the training and test sets using the
clues contained in the database. The database of
clues can be indexed for retrieving similar clues.
The training set contains 10,000 clues whose an-
swer may be found in the first ten position. With
the same approach, we created a test set containing
1,000 clues that (i) are not in the training set and
(ii) have at least an answer in the first ten position.
We used the search engine to retrieve the clues in
both training and test dataset creation.

We experimented with two simple different
models: (i) BM25 and (ii) BM25 + LRM. How-
ever, since WebCrow includes a database module,
in Tab. 2, we have an extra row indicating its accu-
racy evaluated using the CWDB-PARTIAL mod-
ule. We note that in the BM25 model the list is
ranked using the Lucene score while, in the BM25
+ LRM the list is ranked using the probability
score as described in the previous section. The re-
sult derived from the test set show that:
(i) BM25 is very accurate, i.e., an MRR of
77.27%. It improves on WebCrow about 4.5 abso-
lute percent points, demonstrating the superiority
of an IR approach over DB methods.
(ii) LRM achieves higher MRR, up to 4 absolute
percent points of improvement over BM25 and
thus about 8.5 points more than WebCrow.
(iii) Finally, the relative improvement on REC@1
is up to 9.5% (6.19% absolute). This high result is
promising in the light of improving WebCrow for
the end-to-end task of solving complete CPs.

4.3 Impact on WebCrow
In these experiments, we used our retrieval model
for similar clues (BM25+LRM) using 5 complete
CPs (for a total of 397 clues) created for a past

Model MRR REC@1 REC@5 REC@10
WebCrow 30.89 27.63 35.17 36.14
Our Model 34.41 29.36 36.92 38.93

Table 3: Performance on the word list candidates
averaged over the clues of 5 entire CPs

Italian competition, organized by the authors of
WebCrow. This way, we could measure the im-
pact of our model on the complete task carried out
by WebCrow. More specifically, we give our list
of answers to WebCrow in place of the list that
would have been extracted by the CWDB module
. It should be noted that to evaluate the impact of
our list, we disabled the WebCrow access to other
lists, e.g., dictionaries. This means that the ab-
solute resolution accuracy of WebCrow using our
and its own lists can be higher (see (Ernandes et
al., 2008) for more details).

The first result that we derived is the accuracy
of the answer list produced from the new data,
i.e., constituted by the 5 entire CPs. The results
are reported in Tab. 3. We note that the improve-
ment of our model is lower than before as a non-
negligible percentage of clues are not solved using
the clue DB. Additionally, when we computed the
accuracy in solving the complete CPs, we noted a
small improvement: this happens because BM25
does not retrieve enough correct candidates for our
specific test set constituted of five entire crossword
puzzles.

5 Conclusions
In this paper, we improve the answer extraction
from DB for automatic CP resolution. We com-
bined the state-of-the-art BM25 retrieval model
and an LRM by converting the BM25 score into
a probability score for each answer candidate. For
our study and to test our methods, we created a
corpora for clue similarity containing clues in Ital-
ian. We improve on the lists generated by We-
bCrow by 8.5 absolute percent points in MRR.
However, the end-to-end CP resolution test does
not show a large improvement as the percentage
of retrieved clues is not high enough.

Acknowledgments
We would like to thank Marco Gori and Marco Er-
nandes for making available WebCrow. The re-
search described in this paper has been partially
supported by the EU FP7 grant #288024: LIMO-
SINE – Linguistically Motivated Semantic aggre-
gation engiNes. Many thanks to the anonymous
reviewers for their valuable work.

References
Gianni Barlacchi, Massimo Nicosia, and Alessandro

Moschitti. 2014. Learning to rank answer candi-
dates for automatic resolution of crossword puzzles.
CoNLL-2014.

Marco Ernandes, Giovanni Angelini, and Marco Gori.
2005. Webcrow: A web-based system for crossword
solving. In In Proc. of AAAI ’05, pages 1412–1417.
Menlo Park, Calif., AAAI Press.

Marco Ernandes, Giovanni Angelini, and Marco Gori.
2008. A web-based agent challenges human experts
on crosswords. AI Magazine, 29(1).

David A. Ferrucci, Eric W. Brown, Jennifer Chu-
Carroll, James Fan, David Gondek, Aditya Kalyan-
pur, Adam Lally, J. William Murdock, Eric Nyberg,
John M. Prager, Nico Schlaefer, and Christopher A.
Welty. 2010. Building watson: An overview of the
deepqa project. AI Magazine, 31(3):59–79.

Matthew L. Ginsberg. 2011. Dr.fill: Crosswords and
an implemented solver for singly weighted csps. J.
Artif. Int. Res., 42(1):851–886, September.

Michael L. Littman, Greg A. Keim, and Noam Shazeer.
2002. A probabilistic approach to solving crossword
puzzles. Artificial Intelligence, 134(1’Äı̀2):23 – 55.

Michael McCandless, Erik Hatcher, and Otis Gospod-
netic. 2010. Lucene in Action, Second Edition:
Covers Apache Lucene 3.0. Manning Publications
Co., Greenwich, CT, USA.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learn-
ing in Python. Journal of Machine Learning Re-
search, 12:2825–2830.

Ira Pohl. 1970. Heuristic search viewed as path finding
in a graph. Artificial Intelligence, 1(3–4):193 – 204.

Hsiang-Fu Yu, Fang-Lan Huang, and Chih-Jen Lin.
2011. Dual coordinate descent methods for logis-
tic regression and maximum entropy models. Mach.
Learn., 85(1-2):41–75, October.

