
Fast Linearization of Tree Kernels over Large-Scale Data

Aliaksei Severyn1

1University of Trento, DISI
38123 Povo (TN), Italy

severyn@disi.unitn.it

Alessandro Moschitti1,2
2Qatar Computing Research Institute

Qatar Foundation, Doha, Qatar
amoschitti@qf.org.qa

Abstract
Convolution tree kernels have been successfully ap-
plied to many language processing tasks for achiev-
ing state-of-the-art accuracy. Unfortunately, higher
computational complexity of learning with kernels
w.r.t. using explicit feature vectors makes them
less attractive for large-scale data. In this paper,
we study the latest approaches to solve such prob-
lems ranging from feature hashing to reverse kernel
engineering and approximate cutting plane train-
ing with model compression. We derive a novel
method that relies on reverse-kernel engineering
together with an efficient kernel learning method.
The approach gives the advantage of using tree ker-
nels to automatically generate rich structured fea-
ture spaces and working in the linear space where
learning and testing is fast. We experimented with
training sets up to 4 million examples from Seman-
tic Role Labeling. The results show that (i) the
choice of correct structural features is essential and
(ii) we can speed-up training from weeks to less
than 20 minutes.

1 Introduction
Structural kernels are an important aspect of applied machine
learning, since rich feature sets can be generated automati-
cally, thus alleviating the need for tedious manual feature en-
gineering. They have been successfully used in many NLP
tasks, e.g. [Kate and Mooney, 2006; Daumé III and Marcu,
2004]. According to the current research in kernel meth-
ods, the optimization can be carried out either in the dual
space, where the scaling is in the order of O(n2), or (simi-
lar to linear-time algorithms with linear kernel) can also be
performed in the primal [Chapelle, 2007], which, in turn, re-
quires to precompute and keep the entire Gram matrix in the
memory. Both methods pose computational problems for ap-
plying kernels on datasets with millions of examples. Conse-
quently, several approaches that attempt to trade-off accuracy
for speed have been proposed: (i) linearization of the kernel
space, i.e., extraction of the most important features to build
explicit feature vectors, e.g., [Kudo and Matsumoto, 2003;
Cumby and Roth, 2003]. (ii) Feature selection in kernel
spaces [Kudo et al., 2005], where the implicit computa-
tion of feature weights allows one to avoid full computation

of the kernel functions; (iii) hybrid approaches mixing ker-
nel computations with on-line linearization of trees [Kazama
and Torisawa, 2005]; (iv) feature hashing [Shi et al., 2009;
Ganchev and Dredze, 2008], which can highly decrease the
size of the linearized space; (v) linearization using reverse-
kernel engineering (RKE) approach [Pighin and Moschitti,
2009], which exploits SVM models to extract the most im-
portant features from the kernel space; and (vi) recent ad-
vances in fast SVM learning with structural kernels [Severyn
and Moschitti, 2011] (SDAG), which, thanks to the approxi-
mate cutting plane algorithm and its model compression via
directed acyclic graphs, provides significant speedups over
conventional SVM training methods. While kernel-based
learning have been shown to deliver more accurate models
for complex NLP tasks, none of the methods above seem to be
optimal when dealing with large-scale datasets without com-
promising the accuracy of their exact counterparts.

In this paper, we study the latest approaches to large-scale
learning with convolution tree kernels (TKs) by deriving the
following findings: first, it is computationally prohibitive
to naı̈vely enumerate all structural features, which is often
mandatory for tackling high-level semantic tasks such as the
extraction of predicate argument structures in Semantic Role
Labeling (SRL). Indeed, (i) enumerating all possible sub-
structures quickly becomes intractable as their number grows
exponentially with the size of the input structure; (ii) hashed
feature vectors tend to be very dense; and (iii) the feature col-
lisions due to hashing cause the model to underperform w.r.t.
structural kernels.

Secondly, we show that reverse-kernel engineering is a
principled way to linearize exponentially large tree kernel
spaces for tasks where models encoding complex structural
features yield better accuracy. However, this approach in-
herits the computational burden of training an SVM model,
which is required by its greedy mining procedure. We attack
the major computational bottleneck of this approach by (i) re-
placing the slow SVM training with a much faster SDAG al-
gorithm, which produces a more compact model in a form of
a directed acyclic graph (DAG); and (ii) we define a lineariza-
tion approach based on fragment extraction directly from the
DAG model. This approach achieves the same accuracy as
the traditional SVM learning with structural kernels. We pro-
vide an explanation of such surprising result by showing that
the SDAG and the SVM models are rather similar, as their



most important features have a large overlap. Therefore, we
can use fast algorithms to learn a tree kernel model and work
in the linear space where learning and testing is fast.

Thirdly, we propose a distributed system to further speed
up RKE of SDAG, which includes: (a) splitting the training
set into smaller subsets and (b) using multiple CPUs to learn
individual SDAG models. In particular, we show that: (i)
the merged feature space can be used to learn the final linear
model whose accuracy is just few tens of a point lower than
that of the traditional SVMs using tree kernels; and (ii) the
entire process takes less than an hour. For example, on the
4 million examples from SRL dataset, the entire linearization
process takes less than 20 minutes achieving an F1 of 84.5%
vs. 84.8% achieved by SDAG.

Finally, we could carry out large-scale experiments,
e.g., using the entire 4 million instances of the SRL
dataset (boundary detection from CoNLL 2005 [Carreras and
Màrquez, 2005]), in a few hours. This does not produce any
loss in accuracy w.r.t. the traditional SVMs.

2 Related Work

Linearization methods aim to convert exponentially large fea-
ture spaces implicitly generated by kernels into explicit vector
spaces of a reasonable size (e.g., ranging from a few thou-
sands to a tens of millions of features). For this purpose two
important assumptions should hold: (i) it is possible to define
greedy algorithms that constructively extract features work-
ing in the top-down fashion starting from the most relevant
fragments and progressing to the least relevant ones; and (ii)
only a small percentage of the features suffices to train accu-
rate models.

The approach in [Kudo and Matsumoto, 2003] is based on
the first hypothesis. The authors suggest that a similar method
to the PrefixSpan algorithm [Pei et al., 2001] can be applied
to tree kernels. However, it is efficient only on a limited
size of support examples. When the number of support vec-
tors becomes very large, e.g., millions of instances, mining
the most frequent substructures [Zaki, 2002] becomes slow.
Additionally, the assumption of point (i), the most frequent
tree is the most relevant, is problematic. Suzuki and Isozaki
[2005] present a feature selection method for convolution ker-
nels based on a distribution-driven relevance assessment. The
kernel function is extended to embed substructure mining and
techniques for the evaluation of a fragment’s χ2.

Another recent set of approaches is based on feature hash-
ing, e.g. [Shi et al., 2009]. It enables a large number of fea-
tures to be generated and efficiently stored in feature vectors
of limited size (i.e., millions of dimensions). The main idea
is that features hashing to the same value will contribute to
the same component of a feature vector. The resulting infor-
mation loss due to the collisions is supposed to be backed up
by the assumption in point (ii).

A rather comprehensive overview of feature selection tech-
niques is carried out in [Guyon and Elisseeff, 2003]. How-
ever, most of them cannot be applied to the large-scale learn-
ing in implicit kernel spaces.

3 Learning with Structural Kernels
A Tree Kernel (TK) function is a convolution kernel [Haus-
sler, 1999] defined over pairs of trees. Given two trees it eval-
uates the number of substructures (or fragments) they have
in common, i.e., it is a measure of their overlap. The func-
tion can be computed recursively in closed form and its effi-
cient implementation is available [Moschitti, 2006]. Different
TK functions are characterized by alternative fragment defini-
tions, e.g. [Collins and Duffy, 2002b]. In this paper we focus
on the Syntactic Tree kernel (STK) described in [Collins and
Duffy, 2002b], since this kernel is particularly suitable for ex-
tracting relevant features from the syntactic parse trees. For
each node in a given a tree it generates all possible substruc-
tures rooted at that node with the constraint that production
rules can not be broken (i.e. any node in a fragment must
include either all or none of its children).

Implicitly, a TK function establishes a correspondence be-
tween distinct tree fragments and dimensions in some frag-
ment space, i.e., the space of all the possible tree fragments.
To simplify, a tree t can be represented as a vector whose
attributes count the occurrences of each fragment within the
tree. The kernel between two trees is then equivalent to the
scalar product between pairs of such vectors.

3.1 Kernel Machines
Kernelized SVMs learn a decision function which is defined
by the inner product between the weight vector of the learned
model and a test example:

f(~x) =

n∑
i=1

αiyiφ(~xi) · φ(~x) =
n∑

i=1

αiyiK(~xi, ~x) (1)

where φ(·) is a feature mapping defining a kernel functionK.
The major bottleneck in the application of SVMs with kernels
to large data stems from the necessity to carry out learning in
the dual space, which makes the learning time scale quadrat-
ically with the number of training examples.

3.2 Faster SVMs with Structural Kernels
Recently, a number of efficient cutting plane algorithms
have been proposed [Joachims, 2006; Franc and Sonnenburg,
2008]. Unfortunately, these algorithms scale well only when
linear kernels are used. To address slow learning with non-
linear kernels [Yu and Joachims, 2008] proposed to use sam-
pling to reduce the number of kernel evaluations. [Severyn
and Moschitti, 2011] showed that same algorithm can be suc-
cessfully applied to SVM learning with structural kernels on
very large data obtaining speedup factors up to 10 over con-
ventional SVMs. Furthermore, the approach uses Directed
Acyclic Graphs (DAGs) to efficiently represent a set of trees
by including only the unique subtrees and accounting for the
frequency of the repeated substructures. It is shown that when
using DAGs, evaluating the decision function in Eq. 1 is re-
duced to a single kernel evaluation:

f(~x) =

n∑
i=1

αiyiK(~xi, ~x) = Kdag( ~dag, ~xi) (2)

where ~dag is an equivalent representation of the learned
model. It compactly encodes a collection of support vectors



in the model, s.t. repeating sub-structures are uniquely repre-
sented in the DAG.

In this paper, we make use of the DAG approach to show
that SVMs with structural kernels, e.g., tree kernels, can be
efficiently trained on large data.

4 Linearization
4.1 Feature enumeration aka feature hashing
Recently, much attention has been drawn to feature hash-
ing approaches, e.g. [Shi et al., 2009; Ganchev and Dredze,
2008], that aim at transforming high dimensional kernel
spaces into the linear space, where fast learning methods can
be applied. The approach forces multiple features to collide,
thus achieving drastic reduction in the effective dimension of
the feature space. Still, such approaches may introduce sev-
eral problems: (i) enumerating a huge number (exponential
in the input size) of substructures encoded by the structural
kernels may become intractable; and (ii) the noise introduced
by feature collisions1 may have a negative effect on problems
where few complex structural features are essential for the
learning system.

4.2 Reverse Kernel Engineering
A more principled feature extraction algorithm for Tree Ker-
nel (TK) spaces has been proposed in [Pighin and Mos-
chitti, 2009]. Its greedy mining algorithm relies on the model
learned by an SVM to extract the most relevant features (tree
fragments).

Different from the naı̈ve feature enumeration method, the
support vectors of the model along with their weights are used
to guide the greedy mining to extract the most relevant tree
fragments. In particular, the greedy mining approach extracts
the fragments fj from support vectors (trees) ti based on the
relevance score defined as follows:

n∑
i=1

αiyiti,jλ
l(fj)/||ti|| (3)

where αi are the Lagrange multipliers of the learned model,
λ - kernel decay factor, l(fj) - depth of the fragment fj , yi -
example label and ti,j is the frequency of the fragment j in
the ti.

While originally proposed to extract features from SVs
of the SVM model, our Alg. 1 presents a simplified ver-
sion of the greedy mining algorithm in [Pighin and Mos-
chitti, 2009] that works directly on a DAG model. Each node
in the DAG is associated with a weight defined as follows:
νi = αiyifi/||ti||. This definition of the node weights is
convenient to simplify the mining procedure, since all the
components to compute the relevance weights from Eq. 3 are
already provided by the DAG. We iterate over all nodes in
the DAG calling the function frag(n), which generates the
smallest fragment rooted at node n. These base fragments are
further expanded by calling the function expand(f) which
enlarges the current fragment by adding direct children to
some of its nodes. This process is repeated until the index
is unchanged and the top K features are returned.

1This poses little to no penalty for some tasks where less complex
features suffice to build accurate models.

Algorithm 1 mineDAG( ~dag, K)

1: for all 〈ν, t〉 ∈ ~dag do
2: for all n ∈ Nt do
3: f ← frag(n);w = λ ∗ ν
4: updateIndex(〈f, w〉)
5: while Changed(Index) do
6: for all 〈f, w〉 ∈ Index do
7: for all χ ∈ expand(f) do
8: updateIndex(〈χ, λ ∗ w〉)
9: FK ← top(K)

10: return FK

The information about the most relevant fragments stored
in the index is then used to linearize both training and test
datasets. Each tree in the input data can the be explicitly rep-
resented by a feature vector, where each attribute corresponds
to one of the tree fragments as generated by TK.

5 Experiments
To assess the efficacy of the proposed approach, we focus
on the task of Semantic Role Labeling. The choice of SRL
task is motivated by the following: (i) it is currently a well-
defined task with a substantial amount of work and compar-
ative evaluation, (ii) it represents a complex NLP problem
with enough room for improvement w.r.t. to the current state-
of-the-art systems, and (iii) large amount of training data is
available to learn more accurate models.

5.1 Data and task
The dataset consists of the Penn Treebank texts [Marcus et
al., 1993], PropBank annotation [Palmer et al., 2005] and
Charniak parse trees [Charniak, 2000] as provided by the
CoNLL 2005 shared task on Semantic Role Labeling [Car-
reras and Màrquez, 2005]. The goal is to recognize seman-
tic roles of the target verbs in a given sentence. SRL is
a complex tasks where the state-of-the-art systems achieve
F1 at about 80% in CoNLL-2005 shared task [Carreras and
Màrquez, 2005], which indicates the importance of extracting
the best features. A common approach to tackle SRL problem
involves two steps: (i) detection of the verb arguments and (ii)
classification of identified arguments into their respective se-
mantic categories. In this paper, we focus on the first task
of argument identification (i.e., identification of the exact se-
quence of words spanning an argument). This corresponds
to the binary classification of parse tree nodes into correct or
not correct boundaries. The models are trained on the sub-
sets {250k, 500k, 1mil, and 4mil}. To evaluate the learned
models we report the F12 on two sections: 23 and 24 (used as
development and test sets in CoNLL-2005 task, respectively),
that contain 230k and 150k examples respectively.

5.2 Setup
For all our experiments we used Syntactic Tree Kernel
(STK) [Collins and Duffy, 2002a]. Learning in the linear
input space is carried out with LibLinear solver [Fan et al.,

2The reported scores correspond to the accuracy of the binary
classifier, which upper bounds than the accuracy of the overall
boundary detection due to errors in parsing.



2008]. Models that use tree kernels and their combination
with feature vectors are trained by SDAG software3 [Sev-
eryn and Moschitti, 2011], which couples approximate cut-
ting plane algorithm and the DAG approach. It has an addi-
tional parameter q that controls the number of examples used
to approximate cuts at each iteration. We fix q at {1k, 5k, and
10k} for training on {500k, 1mil, and 4mil} subsets of data,
respectively.

To contrast the training time and accuracy obtained
by SDAG, we use the SVM-Light-TK4 [Moschitti, 2006]
(henceforth, referred to as SVM), which encodes tree ker-
nels into the SVM-Light solver [Joachims, 1999]. To lin-
earize the kernel space using the learned SVM model we use
reverse-kernel engineering framework FLINK5 [Pighin and
Moschitti, 2009]. For the kernel space mining procedure we
set the minimum fragment frequency to 3 and the threshold
factor to 1000.

5.3 Results
Feature-based learning. Manually designing useful feature
sets for complex tasks such as SRL is a highly nontrivial task.
Most of the feature-based learning systems for SRL rely on
the linear features extracted from the syntactic parse trees as
described in [Gildea and Jurafsky, 2002], which stresses the
necessity and importance of syntactic parsing to derive the
best features. We use these manually derived features (MF) as
a preliminary baseline to compare and augment more feature-
rich TK models.

As an alternative to manually designed features, we first
study a straightforward approach to linearize the input space
by simply enumerating all the STK features (henceforth, re-
ferred to as ETK). It is important to note that we work on
already preselected parts of the parse trees, i.e., AST subtrees
that by design contain predicate and target argument nodes.
This is an essential pre-filtering step for only selecting the
most relevant parts of the full parse trees. Features are gener-
ated by considering all STK fragments rooted at each node of
a tree up to a given depth d, s.t. each fragment contains a given
node as a root and all its descendants within the depth d. The
number of generated fragments increases exponentially with
d, hence to avoid long pre-processing times required to enu-
merate all possible STK features (which can be billions) we
consider fragments up to d = 5. For example, for a tree with
just 80 nodes for d ∈ {2, 3, 4, 5} the number of generated
STK features is respectively {340, 20k, 350k, 16mil}. Hence,
to further speed up the feature generation for values of d > 3
we limit the maximum number of features each node in a tree
can generate to 10k. To get a numeric representation of each
tree fragment we hash its string representation and project the
obtained numeric value into the linear feature space of the di-
mensionality 2k. The obtained linear feature vectors are fur-
ther normalized. We performed 5-fold cross-validation with
different values of k ∈ {16, 18, 20, 22} and found that k = 20
(which encodes up to 1 million features) to yield the most ac-

3We modified the software available at http://disi.
unitn.it/˜severyn/code.html

4http://disi.unitn.it/moschitti/Tree-Kernel.htm
5http://danielepighin.net/cms/software/flink

d 250k 500k 1mil
P/R F1 P/R F1 P/R F1

2 82.7/70.9 76.4 83.2/70.7 76.5 83.0/77.1 79.9
3 83.5/67.4 74.6 83.6/72.6 77.7 83.5/75.0 79.0
4 84.0/57.5 68.2 83.9/63.9 72.5 83.8/68.2 75.2
5 84.9/53.5 65.6 84.1/59.6 69.8 83.7/63.6 72.3

Table 1: Accuracy of LibLinear models for ETK model on
Section 24 of the SRL dataset.

curate results. Note that feature hashing approaches, e.g. [Shi
et al., 2009], provide an efficient way to reduce the dimen-
sionality of the resulting feature vector, while enumerating
an exponential number of all tree fragments is infeasible. In
the next section we discuss a principled approach to greatly
reduce the space of considered tree fragments by relying on
the relevance weights derived from a pre-trained SVM model.

Table 1 presents the results of training using ETK mod-
els on datasets containing {250k, 500k, and 1mil} examples
w.r.t. the maximum depth of the generated fragments. As
we can see, the recall of the classifiers goes down with larger
values of d, hence negatively affecting the F1 score. This
demonstrates the drawback of the feature hashing approach
failing to deal with exponential feature spaces where few rel-
evant features may get lost due to the hash collisions. Similar
findings for SRL were reported in [Kudo et al., 2005].

Interestingly, as demonstrated by the learning curves in
Fig. 1, the features extracted by enumerating TK fragments
(LibLinearETK)6 still greatly outperforms carefully designed
manual features (LibLinearMF) used in many state-of-the-art
SRL systems. Nevertheless, much better accuracy obtained
by TK learning with SVMs (SVMTK) is a strong indication of
the high discriminative power of structural features. Unfortu-
nately, quadratic scaling behavior of conventional algorithms
to train kernelized SVMs prevented us to carry out experi-
ments on data larger than 1 million.

In the next experiment we use SDAG to make the training
with tree kernels tractable on large data. SDAG achieves its
speedup due to its faster approximate cutting plane algorithm
and model compression where trees are kept in an equivalent
DAG.
Learning with kernels. While widely applied across many
areas of NLP, purely feature-based methods are less expres-
sive in modeling structured features, which have been shown
important in complex NLP tasks such as SRL. Although
learning with kernels allows for training models with higher
discriminative power, it requires much larger training times.
First, we contrast the accuracy obtained by learning with ker-
nels w.r.t. to feature-based models presented previously.

Fig. 1 shows a learning curve for various models when
tested on Section 23 (Section 24 demonstrated similar behav-
ior). We first observe that the baseline MF model, indeed, is
the least accurate. A better accuracy can be achieved by ap-
plying polynomial kernel (of degree 3), but this incurs consid-
erably larger running times due to learning in kernel spaces.
As confirmed before, the ETK approach works much better
than MF, but still is unable to match the accuracy of learning
with tree kernels. Importantly, TK models trained by SDAG

6limited to the maximum depth 2



match the accuracy of SVM. Furthermore, using a combina-
tion of TKs with linear or polynomial kernels applied to MF
gives the highest F1 of 85.9% (when trained on 4 mil).

Another interesting dimension to compare TK models is
to look at the overlap of the most relevant tree fragments ex-
tracted by each model. We sort the fragments extracted by
each model according to the relevance score (Eq. (3)). Ta-
ble 2 reports the overlap percentage of the top k ∈ {1k, 5k,
10k} features. Features extracted by SVM serve as the base-
line to compare other models. We also include an experi-
ment with perceptron model, which shows that less accurate
training algorithm extracts different features. Interestingly,
SDAG, a completely different learning algorithm, has 90%
feature overlap with SVM for the top 1k features. This is
especially surprising considering that the size of the feature
space generated with feature enumeration (depth=3) is about
5.5 mil.

k SDAG ETK Perceptron
1,000 90% 17% 69%
5,000 80% 8% 50%
10,000 77% 5% 43%

Table 2: Feature overlap for the top k features w.r.t. SVM
when trained on 250k instances of SRL.

Next, we consider the training times for learning with ker-
nels. Linear models MF and ETK can be trained in linear
time and took less than 5 minutes (for the latter we need to
account for the time to extract TK features, which is about 1
hour with d = 2). The expressive power of kernelized mod-
els comes at a cost of much larger training times. However, as
Table 3 shows training with SDAG algorithm (using 4 CPUs)
makes learning with TK and combinations with feature vec-
tors tractable even on 4 million, which is prohibitively expen-
sive for SVM.

LibLinearMF
SDAGMFpoly

LibLinearETK
SVMTK
SDAGTK
SDAGTK+MF
SDAGTK+MFpoly

F1

78

79

80

81

82

83

84

85

86

training size
250k 500k 1mil 4mil

Figure 1: Learning curves for models tested on sec23. MF -
manual feature vectors, poly - polynomial kernel of degree 3;
ETK - enumeration of TKs (depth 2); TK+MF/MFpoly combi-
nation of TK with linear or polynomial kernel applied to MF.
Linear feature models are learned with LibLinear, while TK
models are trained with SDAG.

Model Time (hours)
1mil 4mil

SDAGMFpoly 7.1 13.1
SVMTK 84.1 -
SDAGTK 4.4 7.2
SDAGTK+MF 4.9 8.1
SDAGTK+MFpoly 9.4 15.3

Table 3: Runtimes for kernelized models.

Tree Kernel Linearization. As shown above, fast SDAG
algorithm allows for efficient learning of TK models on the
dataset of 4 million examples, which is impossible for con-
ventional SVM training algorithms. Nevertheless, the train-
ing time for SDAG is still in the range of hours even when run
on multiple CPUs. Hence, even using very fast approaches
to learning in kernel spaces, the obtained runtimes are far
from matching the speed of learning in the linear spaces with
linear-time solvers such as LibLinear.

The first step towards reaching the speed of linear-time
SVM solvers is to linearize the input structures. Once trees
are converted into explicit feature vectors training and testing
becomes linear-time. Hence, we require an efficient yet ac-
curate method to perform linearization of TK spaces. Previ-
ous experiments with ETK have shown that applying a rather
naı̈ve technique to enumerate an exponential number of tree
fragments generated by STK suffers from a large drop of
accuracy, thus unable to encode complex structural features
essential for the task. Moreover the pre-processing time to
transform trees to explicit feature vectors exhibits exponen-
tial growth with the number of nodes in a tree and the depth
of the generated tree fragments.

A more principled approach to linearization of tree kernel
spaces, as described in Sec. 3.1, is to apply reverse kernel
(RKE) engineering where an SVM model is used as a source
of fragment weights to guide the greedy feature extraction.
Hence, in this experiment our goal is to assess the accuracy
of this method when linearizing TK spaces. In the follow-
ing experiment we first verify that indeed, linearizing the in-
put feature spaces generated by tree kernels does not incur
substantial loss of accuracy and is in the line with the results
demonstrated in [Pighin and Moschitti, 2009]. Table 4 reports
the accuracy of linearized models using RKE when fed with
TK models trained by SVM and SDAG. As we can see, RKE
does a good job on extracting most relevant features gener-
ated by TKs when converting to the explicit feature vector
representation.

While shown to be accurate, the greedy feature mining re-
quires to train a TK model. Hence, the total runtime of the
entire linearization procedure is lower-bound by the time to
learn a model, which is rather large even when using SDAG.
Conversely, the complexity of the successive steps in the lin-
earization pipeline are negligibly small: mining most relevant
tree fragments from the model learned on 4 million (about
250k support vectors) takes about 2 minutes. Linearizing
4 million examples took only 3 minutes. Finally, training
and classification with the linearized datasets using LibLin-
ear takes 2 minutes. Nevertheless, the bottleneck runtime im-



posed by learning a TK model can be overcome, which we
explore in the next set of experiments.

Model 1mil 4mil
F1 F1

sec23 sec24 sec23 sec24
SVMTK 84.1 81.8 - -
RKE-SVMTK 84.0 81.3 - -
SDAGTK 84.0 81.5 84.8 82.6
RKE-SDAGTK 83.9 81.3 84.5 82.5

Table 4: RKE applied to TK models trained by SVM and
SDAG. Linearized models are trained with LibLinear.

Distributed linearization. In the following, we take advan-
tage of the observation (also explored in [Pighin and Mos-
chitti, 2009]), where hefty training of the SVM model is sped
up by splitting the training set into smaller subsets. Previ-
ous work in [Graf et al., 2004] suggests that support vec-
tors collected from locally learned models can encode many
of the relevant features retained by models learned globally.
Thus, the quadratic scaling behavior of SVMs with kernels
can be conquered by carrying out learning on much smaller
subsets of the data, which also allows for learning the indi-
vidual models in parallel. This approach is justified by the
fact that the main purpose of the SVM learning in the orig-
inal kernel space is not to provide the final model that will
be used for classification on the test data but is rather used to
drive the feature mining process to extract the most relevant
features. Hence, the sub-optimal fragment weights derived
from the local models learned on the subsets of the original
training set still carry enough information to extract highly
discriminative features.

Furthermore, splitting the training data into smaller subsets
allows for setting up a fully distributed system, e.g., MapRe-
duce. Each subset of the input data is mapped to individual
workers. Locally learned models are recombined and used in
the feature extraction and further linearization of the training
and test data. Finally, fast SVM solvers are used to produce
the final linear model for testing.

To test the efficacy of the distributed linearization approach
we split the entire dataset of 4mil into n ∈ {10, 20, 40, and
80} subsets, which corresponds to learning on the subsets of
size s ∈ {400k, 200k, 100k and 50k} respectively. We have
found that learning local models on subsets smaller than 100k
lead to a small drop of the final accuracy of the linearized
model, while using larger subsets did not provide any fur-
ther improvement. Hence, we fix n = 40. Table 5 reports
the running times to train a local model on a single subset of
100k and the overall time of the linearization approach (from
learning a TK model to linearization and training in the lin-
ear space) on the entire dataset of 4 million. Since learning
of local models is fully independent: all 40 jobs were dis-
tributed among 10 CPUs, which cut down the total time by
4x. We see that SDAG delivers much faster training times.
Interestingly, by using smaller sample sizes to approximate
the cutting planes inside the SDAG algorithm, we obtain the
same final accuracy while reducing the training time to only

Model Time (min) F1
sec23 sec24

SVMTK 57 / 233 84.2 82.2
SDAGTK (q=250) 3 / 17 84.4 82.4
SDAGTK (q=500) 7 / 33 84.4 82.4
SDAGTK (q=1000) 11 / 49 84.5 82.5

Table 5: RKE with local models on 4 mil of SRL (n = 40
subsets). First value in the 2nd column indicates the time to
learn a single model of 100k, while the second value is the
overall time for 4 mil (from learning a TK model to lineariza-
tion and training in the linear space).

3 minutes for learning one local model.
Hence, the proposed approach achieves remarkably low

runtime of only 17 minutes for the full set of activities re-
quired by linearization process on the entire 4 million dataset.

6 Conclusions
In this paper, we experimented with learning in linear spaces
using manual features, linearized kernel spaces through hash-
ing methods, reverse kernel engineering and approximate cut-
ting plane training with DAG model compression.

Our findings reveal that on a high-level semantic task such
as SRL: (i) the naı̈ve approach of enumerating all possible
sub-structures becomes intractable and hashed feature vec-
tors fail to achieve both the same accuracy of tree kernels
and high efficiency. (ii) In contrast, SDAG allows for achiev-
ing the same accuracy as SVMs and makes learning practi-
cal. However, the classification and learning time may still
not be appealing for large-scale experiments. (iii) Lineariza-
tion with RKE is rather effective as again there is almost no
loss in accuracy and it benefits from extracting complex and
highly discriminative features derived from learning in kernel
spaces.

As a result, we derive an efficient approach to kernel
learning: applying reverse-kernel engineering directly on the
SDAG model. This alleviates the major computational bottle-
neck of the original approach, where traditional SVM training
was used. Interestingly, the extracted features have high over-
lap with the baseline SVM. Additionally, we achieve a signif-
icant speedup with almost no loss in accuracy by splitting the
data into smaller subsets. This allows for more efficient ker-
nel space learning in a fully distributed manner.

Summing up, we can train an accurate tree kernel model on
4 million instances from SRL, in less than 20 minutes using
10 CPUs. We achieved F1 of 84.5% on Section 23, which
is the state-of-the-art performance of the binary classifier for
boundary detection without using ensembles of learners and
relying only one a single source of the syntactic information
from the parse trees.

7 Acknowledgements
This research has been supported by the European Commu-
nity’s Seventh Framework Program (FP7/2007-2013) under
the #288024 LIMOSINE project.



References
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