
Learning Semantic Textual Similarity with Structural Representations

Aliaksei Severyn(1) and Massimo Nicosia(1) and Alessandro Moschitti1,2
(1)DISI, University of Trento, 38123 Povo (TN), Italy

{severyn,m.nicosia,moschitti}@disi.unitn.it
(2)QCRI, Qatar Foundation, Doha, Qatar

amoschitti@qf.org.qa

Abstract
Measuring semantic textual similarity
(STS) is at the cornerstone of many NLP
applications. Different from the major-
ity of approaches, where a large number
of pairwise similarity features are used to
represent a text pair, our model features
the following: (i) it directly encodes input
texts into relational syntactic structures;
(ii) relies on tree kernels to handle feature
engineering automatically; (iii) combines
both structural and feature vector repre-
sentations in a single scoring model, i.e.,
in Support Vector Regression (SVR); and
(iv) delivers significant improvement over
the best STS systems.

1 Introduction
In STS the goal is to learn a scoring model that
given a pair of two short texts returns a similar-
ity score that correlates with human judgement.
Hence, the key aspect of having an accurate STS
framework is the design of features that can ade-
quately represent various aspects of the similarity
between texts, e.g., using lexical, syntactic and se-
mantic similarity metrics.

The majority of approaches treat input text pairs
as feature vectors where each feature is a score
corresponding to a certain type of similarity. This
approach is conceptually easy to implement and
the STS shared task at SemEval 2012 (Agirre et
al., 2012) (STS-2012) has shown that the best sys-
tems were built following this idea, i.e., a num-
ber of features encoding similarity of an input text
pair were combined in a single scoring model, e.g.,
SVR. Nevertheless, one limitation of using only
similarity features to represent a text pair is that of
low representation power.

The novelty of our approach is that we treat the
input text pairs as structural objects and rely on the
power of kernel learning to extract relevant struc-
tures. To link the documents in a pair we mark the

nodes in the related structures with a special rela-
tional tag. This way effective structural relational
patterns are implicitly encoded in the trees and
can be automatically learned by the kernel-based
machines. We combine our relational structural
model with the features from two best systems of
STS-2012. Finally, we use the approach of classi-
fier stacking to combine several structural models
into the feature vector representation.

The contribution of this paper is as follows: (i) it
provides a convincing evidence that adding struc-
tural features automatically extracted by structural
kernels yields a significant improvement in accu-
racy; (ii) we define a combination kernel that inte-
grates both structural and feature vector represen-
tations within a single scoring model, e.g., Sup-
port Vector Regression; (iii) we provide a sim-
ple way to construct relational structural models
that can be built using off-the-shelf NLP tools;
(iv) we experiment with four structural representa-
tions and show that constituency and dependency
trees represent the best source for learning struc-
tural relationships; and (v) using a classifier stack-
ing approach, structural models can be easily com-
bined and integrated into existing feature-based
STS models.

2 Structural Relational Similarity
The approach of relating pairs of input struc-
tures by learning predictable syntactic transforma-
tions has shown to deliver state-of-the-art results
in question answering, recognizing textual entail-
ment, and paraphrase detection, e.g. (Wang et al.,
2007; Wang and Manning, 2010; Heilman and
Smith, 2010). Previous work relied on fairly com-
plex approaches, e.g. applying quasi-synchronous
grammar formalism and variations of tree edit dis-
tance alignments, to extract syntactic patterns re-
lating pairs of input structures. Our approach
is conceptually simpler, as it regards the prob-
lem within the kernel learning framework, where
we first encode salient syntactic/semantic proper-

moka
Typewritten Text
ACL 2013



ties of the input text pairs into tree structures and
rely on tree kernels to automatically generate rich
feature spaces. This work extends in several di-
rections our earlier work in question answering,
e.g., (Moschitti et al., 2007; Moschitti and Quar-
teroni, 2008), in textual entailment recognition,
e.g., (Zanzotto and Moschitti, 2006; Moschitti and
Zanzotto, 2007), and more in general in relational
text categorization (Moschitti, 2008; Severyn and
Moschitti, 2012).

In this section we describe: (i) a kernel frame-
work to combine structural and vector models; (ii)
structural kernels to handle feature engineering;
and (iii) suitable structural representations for re-
lational learning.

2.1 Structural Kernel Learning
In supervised learning, given labeled data
{(xxxi, yyyi)}ni=1, the goal is to estimate a decision
function h(xxx) = yyy that maps input examples to
their targets. A conventional approach is to rep-
resent a pair of texts as a set of similarity fea-
tures {fi}, s.t. the predictions are computed as
h(xxx) = www · xxx =

∑
iwifi, where www is the model

weight vector. Hence, the learning problem boils
down to estimating individual weights of each of
the similarity features fi. One downside of such
approach is that a great deal of similarity infor-
mation encoded in a given text pair is lost when
modeled by single real-valued scores.

A more versatile approach in terms of the input
representation relies on kernels. In a typical kernel
learning approach, e.g., SVM, the prediction func-
tion for a test input xxx takes on the following form
h(xxx) =

∑
i αiyiK(xxx,xxxi), where αi are the model

parameters estimated from the training data, yi are
target variables, xxxi are support vectors, andK(·, ·)
is a kernel function.

To encode both structural representation and
similarity feature vectors of a given text pair in a
single model we define each document in a pair
to be composed of a tree and a vector: 〈ttt, vvv〉.
To compute a kernel between two text pairs xxxi
and xxxj we define the following all-vs-all kernel,
where all possible combinations of components,
xxx(1) and xxx(2), from each text pair are consid-
ered: K(xxxi,xxxj) = K(xxx

(1)
i ,xxx

(1)
j )+K(xxx

(1)
i ,xxx

(2)
j )+

K(xxx
(2)
i ,xxx

(1)
j ) + K(xxx

(2)
i ,xxx

(2)
j ). Each of the ker-

nel computations K can be broken down into
the following: K(xxx(1),xxx(2)) = KTK(ttt

(1), ttt(2)) +
Kfvec(vvv

(1), vvv(2)), where KTK computes a struc-
tural kernel and Kfvec is a kernel over feature vec-

tors, e.g., linear, polynomial or RBF, etc. Further
in the text we refer to structural tree kernel models
as TK and explicit feature vector representation as
fvec.

Having defined a way to jointly model text pairs
using structural TK representations along with the
similarity features fvec, we next briefly review
tree kernels and our relational structures.

2.2 Tree Kernels
We use tree structures as our base representation
since they provide sufficient flexibility in repre-
sentation and allow for easier feature extraction
than, for example, graph structures. Hence, we
rely on tree kernels to compute KTK(·, ·). Given
two trees it evaluates the number of substructures
(or fragments) they have in common, i.e., it is a
measure of their overlap. Different TK functions
are characterized by alternative fragment defini-
tions. In particular, we focus on the Syntactic Tree
kernel (STK) (Collins and Duffy, 2002) and a Par-
tial Tree Kernel (PTK) (Moschitti, 2006).
STK generates all possible substructures rooted in
each node of the tree with the constraint that pro-
duction rules can not be broken (i.e., any node in a
tree fragment must include either all or none of its
children).
PTK can be more effectively applied to both con-
stituency and dependency parse trees. It general-
izes STK as the fragments it generates can contain
any subset of nodes, i.e., PTK allows for breaking
the production rules and generating an extremely
rich feature space, which results in higher gener-
alization ability.

2.3 Structural representations
In this paper, we define simple-to-build relational
structures based on: (i) a shallow syntactic tree,
(ii) constituency, (iii) dependency and (iv) phrase-
dependency trees.
Shallow tree is a two-level syntactic hierarchy
built from word lemmas (leaves), part-of-speech
tags (preterminals) that are further organized into
chunks. It was shown to significantly outperform
feature vector baselines for modeling relationships
between question answer pairs (Severyn and Mos-
chitti, 2012).
Constituency tree. While shallow syntactic pars-
ing is very fast, here we consider using con-
stituency structures as a potentially richer source
of syntactic/semantic information.
Dependency tree. We propose to use depen-
dency relations between words to derive an alter-



Figure 1: A phrase dependency-based structural representation of a text pair (s1, s2): A woman with a knife is slicing a pepper
(s1) vs. A women slicing green pepper (s2) with a high semantic similarity (human judgement score 4.0 out of 5.0). Related
tree fragments are linked with a REL tag.

native structural representation. In particular, de-
pendency relations are used to link words in a way
that they are always at the leaf level. This reorder-
ing of the nodes helps to avoid the situation where
nodes with words tend to form long chains. This
is essential for PTK to extract meaningful frag-
ments. We also plug part-of-speech tags between
the word nodes and nodes carrying their grammat-
ical role.
Phrase-dependency tree. We explore a phrase-
dependency tree similar to the one defined in (Wu
et al., 2009). It represents an alternative struc-
ture derived from the dependency tree, where the
dependency relations between words belonging to
the same phrase (chunk) are collapsed in a unified
node. Different from (Wu et al., 2009), the col-
lapsed nodes are stored as a shallow subtree rooted
at the unified node. This node organization is par-
ticularly suitable for PTK that effectively runs a
sequence kernel on the tree fragments inside each
chunk subtree. Fig 1 gives an example of our vari-
ation of a phrase dependency tree.

As a final consideration, if a document contains
multiple sentences they are merged in a single tree
with a common root. To encode the structural
relationships between documents in a pair a spe-
cial REL tag is used to link the related structures.
We adopt a simple strategy to establish such links:
words from two documents that have a common
lemma get their parents (POS tags) and grandpar-
ents, non-terminals, marked with a REL tag.

3 Pairwise similarity features.
Along with the direct representation of input text
pairs as structural objects our framework is also
capable of encoding pairwise similarity feature
vectors (fvec), which we describe below.

Baseline features. (base) We adopt similar-
ity features from two best performing systems
of STS-2012, which were publicly released1:
namely, the Takelab2 system (Šarić et al., 2012)
and the UKP Lab’s system3 (Bar et al., 2012).
Both systems represent input texts with similarity
features combining multiple text similarity mea-
sures of varying complexity.

UKP (U) provides metrics based on match-
ing of character, word n-grams and common
subsequences. It also includes features derived
from Explicit Semantic Analysis (Gabrilovich and
Markovitch, 2007) and aggregation of word sim-
ilarity based on lexical-semantic resources, e.g.,
WordNet. In total it provides 18 features.

Takelab (T) includes n-gram matching of vary-
ing size, weighted word matching, length differ-
ence, WordNet similarity and vector space simi-
larity where pairs of input sentences are mapped
into Latent Semantic Analysis (LSA) space. The
features are computed over several sentence rep-
resentations where stop words are removed and/or
lemmas are used in place of raw tokens. The total
number of Takelab’s features is 21. The combined
system consists of 39 features.
Additional features. We also augment the U and
T feature sets, with an additional set of features (A)
which includes: a cosine similarity scores com-
puted over (i) n-grams of part-of-speech tags (up
to 4-grams), (ii) SuperSense tags (Ciaramita and
Altun, 2006), (iii) named entities, (iv) dependency

1Note that only a subset of the features used in the fi-
nal evaluation was released, which results in lower accuracy
when compared to the official rankings.

2http://takelab.fer.hr/sts/
3https://code.google.com/p/dkpro-similarity-

asl/wiki/SemEval2013



triplets, and (v) PTK syntactic similarity scores
computed between documents in a pair, where as
input representations we use raw dependency and
constituency trees. To alleviate the problem of do-
main adaptation, where datasets used for training
and testing are drawn from different sources, we
include additional features to represent the com-
bined text of a pair: (i) bags (B) of lemmas, de-
pendency triplets, production rules (from the con-
stituency parse tree) and a normalized length of
the entire pair; and (ii) a manually encoded cor-
pus type (M), where we use a binary feature with
a non-zero entry corresponding to a dataset type.
This helps the learning algorithm to learn implic-
itly the individual properties of each dataset.
Stacking. To integrate multiple TK representa-
tions into a single model we apply a classifier
stacking approach (Fast and Jensen, 2008). Each
of the learned TK models is used to generate pre-
dictions which are then plugged as features into
the final fvec representation, s.t. the final model
uses only explicit feature vector representation. To
obtain prediction scores, we apply 5-fold cross-
validation scheme, s.t. for each of the held-out
folds we obtain independent predictions.

4 Experiments
We present the results of our model tested on the
data from the Core STS task at SemEval 2012.

4.1 Setup
Data. To compare with the best systems of the
STS-2012 we followed the same setup used in
the final evaluation, where 3 datasets (MSRpar,
MSRvid and SMTeuroparl) are used for training
and 5 for testing (two “surprise” datasets were
added: OnWN and SMTnews). We use the entire
training data to obtain a single model for making
predictions on each test set.
Software. To encode TK models along with the
similarity feature vectors into a single regression
scoring model, we use an SVR framework imple-
mented in SVM-Light-TK4. We use the follow-
ing parameter settings -t 5 -F 1 -W A -C
+, which specifies a combination of trees and fea-
ture vectors (-C +), STK over trees (-F 1) (-F
3 for PTK) computed in all-vs-all mode (-W A)
and polynomial kernel of degree 3 for the feature
vector (active by default).
Metrics. We report the following metrics em-
ployed in the final evaluation: Pearson correlation

4http://disi.unitn.it/moschitti/Tree-Kernel.htm

for individual test sets5 and Mean – an average
score weighted by the test set size.

4.2 Results
Table 1 summarizes the results of combining TK
models with a strong feature vector model. We
test structures defined in Sec. 2.3 when using STK
and PTK. The results show that: (i) combining
all three features sets (U, T, A) provides a strong
baseline system that we attempt to further improve
with our relational structures; (ii) the generality of
PTK provides an advantage over STK for learn-
ing more versatile models; (iii) constituency and
dependency representations seem to perform bet-
ter than shallow and phrase-dependency trees; (iv)
using structures with no relational linking does not
work; (v) TK models provide a far superior source
of structural similarity than U + T + A that already
includes PTK similarity scores as features, and fi-
nally (vi) the domain adaptation problem can be
addressed by including corpus specific features,
which leads to a large improvement over the pre-
vious best system.

5 Conclusions and Future Work
We have presented an approach where text pairs
are directly treated as structural objects. This pro-
vides a much richer representation for the learning
algorithm to extract useful syntactic and shallow
semantic patterns. We have provided an exten-
sive experimental study of four different structural
representations, e.g. shallow, constituency, de-
pendency and phrase-dependency trees using STK
and PTK. The novelty of our approach is that it
goes beyond a simple combination of tree kernels
with feature vectors as: (i) it directly encodes input
text pairs into relationally linked structures; (ii) the
learned structural models are used to obtain pre-
diction scores thus making it easy to plug into ex-
isting feature-based models, e.g. via stacking; (iii)
to our knowledge, this work is the first to apply
structural kernels and combinations in a regres-
sion setting; and (iv) our model achieves the state
of the art in STS largely improving the best pre-
vious systems. Our structural learning approach
to STS is conceptually simple and does not re-
quire additional linguistic sources other than off-
the-shelf syntactic parsers. It is particularly suit-
able for NLP tasks where the input domain comes
as pairs of objects, e.g., question answering, para-
phrasing and recognizing textual entailment.

5we also report the results for a concatenation of all five
test sets (ALL)



Experiment U T A S C D P STK PTK B M ALL Mean MSRp MSRv SMTe OnWN SMTn

fvec
model

• .7060 .6087 .6080 .8390 .2540 .6820 .4470
• .7589 .6863 .6814 .8637 .4950 .7091 .5395

• • .8079 .7161 .7134 .8837 .5519 .7343 .5607
• • • .8187 .7137 .7157 .8833 .5131 .7355 .5809

TK
models
with STK
and PTK

• • • • • .8261 .6982 .7026 .8870 .4807 .7258 .5333
• • • • • .8326 .6970 .7020 .8925 .4826 .7190 .5253
• • • • • .8341 .7024 .7086 .8921 .4671 .7319 .5495
• • • • • .8211 .6693 .6994 .8903 .2980 .7035 .5603
• • • • • .8362 .7026 .6927 .8896 .5282 .7144 .5485
• • • • • .8458 .7047 .6935 .8953 .5080 .7101 .5834
• • • • • .8468 .6954 .6717 .8902 .4652 .7089 .6133
• • • • • .8326 .6693 .7108 .8879 .4922 .7215 .5156

REL tag • • • ◦ .8218 .6899 .6644 .8726 .4846 .7228 .5684
• • • ◦ .8250 .7000 .6806 .8822 .5171 .7145 .5769

domain
adaptation

• • • • • .8539 .7132 .6993 .9005 .4772 .7189 .6481
• • • • • .8529 .7249 .7080 .8984 .5142 .7263 .6700
• • • • • • .8546 .7156 .6989 .8979 .4884 .7181 .6609
• • • • • • .8810 .7416 .7210 .8971 .5912 .7328 .6778
UKP (best system of STS-2012) .8239 .6773 .6830 .8739 .5280 .6641 .4937

Table 1: Results on STS-2012. First set of experiments studies the combination of fvec models from UKP (U), Takelab (T)
and (A). Next we show results for four structural representations: shallow (S), constituency (C), dependency (D) and phrase-
dependency (P) trees with STK and PTK; next row set demonstrates the necessity of relational linking for two best structures,
i.e. C and D (empty circle denotes a structures with no relational linking.); finally, domain adaptation via bags of features (B)
of the entire pair and (M) manually encoded dataset type show the state of the art results.

6 Acknowledgements
This research has been supported by the Euro-
pean Community’s Seventh Framework Program
(FP7/2007-2013) under the #288024 LIMOSINE

project.

References
Eneko Agirre, Daniel Cer, Mona Diab, and Gonzalez-

Agirre. 2012. Semeval-2012 task 6: A pilot on se-
mantic textual similarity. In *SEM.

Daniel Bar, Chris Biemann, Iryna Gurevych, and
Torsten Zesch. 2012. Ukp: Computing seman-
tic textual similarity by combining multiple content
similarity measures. In SemEval.

Massimiliano Ciaramita and Yasemin Altun. 2006.
Broad-coverage sense disambiguation and informa-
tion extraction with a supersense sequence tagger. In
EMNLP.

Michael Collins and Nigel Duffy. 2002. New Ranking
Algorithms for Parsing and Tagging: Kernels over
Discrete Structures, and the Voted Perceptron. In
ACL.

Andrew S. Fast and David Jensen. 2008. Why stacked
models perform effective collective classification.
In ICDM.

Evgeniy Gabrilovich and Shaul Markovitch. 2007.
Computing semantic relatedness using wikipedia-
based explicit semantic analysis. In IJCAI.

Michael Heilman and Noah A. Smith. 2010. Tree edit
models for recognizing textual entailments, para-
phrases, and answers to questions. In NAACL.

Alessandro Moschitti and Silvia Quarteroni. 2008.
Kernels on linguistic structures for answer extrac-
tion. In ACL.

Alessandro Moschitti and Fabio Massimo Zanzotto.
2007. Fast and effective kernels for relational learn-
ing from texts. In ICML.

Alessandro Moschitti, Silvia Quarteroni, Roberto
Basili, and Suresh Manandhar. 2007. Exploit-
ing syntactic and shallow semantic kernels for ques-
tion/answer classification. In ACL.

Alessandro Moschitti. 2006. Efficient convolution ker-
nels for dependency and constituent syntactic trees.
In ECML.

Alessandro Moschitti. 2008. Kernel methods, syntax
and semantics for relational text categorization. In
CIKM.

Aliaksei Severyn and Alessandro Moschitti. 2012.
Structural relationships for large-scale learning of
answer re-ranking. In SIGIR.

Frane Šarić, Goran Glavaš, Mladen Karan, Jan Šnajder,
and Bojana Dalbelo Bašić. 2012. Takelab: Systems
for measuring semantic text similarity. In SemEval.

Mengqiu Wang and Christopher D. Manning. 2010.
Probabilistic tree-edit models with structured latent
variables for textual entailment and question answer-
ing. In ACL.

Mengqiu Wang, Noah A. Smith, and Teruko Mitaura.
2007. What is the jeopardy model? a quasi-
synchronous grammar for qa. In EMNLP.

Yuanbin Wu, Qi Zhang, Xuanjing Huang, and Lide Wu.
2009. Phrase dependency parsing for opinion min-
ing. In EMNLP.

Fabio Massimo Zanzotto and Alessandro Moschitti.
2006. Automatic Learning of Textual Entailments
with Cross-Pair Similarities. In ACL.




