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Tutorial Schedule

s 9:00 -10:30 First Part
= 10:30 —11:00 Break
= 11:00 — 12:30 Second Part




Outline: Part | — Kernel Machines

= Outline and Motivation (10 min)

= Kernel Machines (25 min)
» Perceptron
» Support Vector Machines
» Kernel Definition (Kernel Trick)
» Mercer's Conditions
» Kernel Operators
» Efficiency issue: when can we use kernels?




Outline: Part | — Basic Kernels

= Basic Kernels and their Feature Spaces (30 min)
» Linear Kernels
» Polynomial Kernels
r Lexical Semantic Kernels
» String and Word Sequence Kernels
» Syntactic Tree Kernel, Partial Tree kernel (PTK), Semantic

Syntactic Tree Kernel, Smoothed PTK
= Simple Kernel Applications (25 min)
» Question Classification in TREC

¥ Cue Classification in Jeopardy!
» Question and Answer Classification

= Break (30 min)




Outline: Part Il — Applications with Simple
Kernels

= Practical Exercise with SVM-Light-TK (15 min)

» Question Classification with dependency and constituency trees

= NLP applications with simple kernels (15 min)
» Semantic Role Labeling (SRL): FrameNet and PropBank
» Relation Extraction: ACE
» Coreference Resolution




Outline: Part |l — Joint Kernel Models

= Reranking for (15 min)
» Preference kernel framework
» Concept Segmentation and Classification of speech
» Named Entity Recognition
» Predicate Argument Structure Extraction

= Relational Kernels (15 min)

» Recognizing Textual Entailment
» Answer Reranking




Outline: Part Il - Advanced Topics

= Fast learning and classification approaches (10 min)
» Cutting Plane Algorithm for SVMs
» Sampling methods (USVMs)
» Compacting space with DAGs

= Reverse Kernel Engineering (15 min)

» Model linearization
» Semantic Role Labeling
r Question Classification

= Conclusions and Future Research (5 min)




Motivation (1)

= Feature design most difficult aspect in designing a
learning system

» complex and difficult phase, e.g., structural feature
representation:

» deep knowledge and intuitions are required

» design problems when the phenomenon is described
by many features




Motivation (2)

= Kernel methods alleviate such problems

» Structures represented in terms of substructures
» High dimensional feature spaces

» Implicit and abstract feature spaces
= Generate high number of features
» Support Vector Machines “select” the relevant features

» Automatic feature engineering side-effect




Motivation (3)

= High accuracy especially for new applications and new
domains
» Manual engineering still poor, e.g., Arabic SRL

= Inherent higher accuracy when many structural patterns
are needed, e.g. Relation Extraction

= Fast prototyping and adaptation for new domains and
applications

= [he major contribution of kernels is to make easier system
modeling.




What can really kernels do?

= Optimistic view:
» better feature spaces not manually designable

» the overall feature space produced by kernel is essential for a
given task

» features impractical to be manually designed

s Bottom line view

» faster feature engineering approach

» higher level feature engineering, e.g., structures instead of vector
components

» automatic feature engineering
» explicit representation: are more meaningful when inspected




Why and when using kernels?

= Using them is very simple: much simpler than feature vector

= They are like any other machine learning approach simply
better than feature vector

= Small training data: absolutely no reason for not using them
» many features provide back-off models
» structural features provide domain adaptation

= Large training data: new methods enable them
» using large data many features become important
» kernels become very effective




Part I: Kernel Machines




Binary Classification Problem (on text)

s Given:
» acategory: C
» and a set T of documents,

define
f:T —={C,C}

= VSM (Salton89’)

» Features are dimensions of a Vector Space.
» Documents and Categories are vectors of feature weights.

» disassignedto C if d-C>th




More in detail

= |In Text Categorization documents are word vectors

dd)=x=(0,..,1,..0,..0,..1,..,0,..,0,..,.1,...0,..,0,..,1,..,0,..,1)

buy  acquisition  stocks sell  market
dd)=z=(,.1,.0,.1,.0,.0,.0,.1,.0,.0,.1,.,0,.,0)
buy company stocks sell

= The dot product X *Z counts the number of features in
common

= This provides a sort of similarity




Linear Classifier

= [he equation of a hyperplane is
f(X)=Xw+b=0, S WER" HER

= X is the vector representing the classifying example
= Wis the gradient of the hyperplane
= [he classification function is

W) =sign(/(0) o e
- 1.0 ® .0‘0
Basically d-C >th ‘.. ® o




The main idea of Kernel Functions

s Mapping vectors in a space where they are linearly
separable, x — ¢(x)




A kernel-based Machine:
Perceptron training

W, < 6;]90 <— 0;k <= O0;R <— max
do
fori= 1to/
ify,(w, - X, +b,) <0 then

[EA

1=i<!

Wi =W, +NYyX,
b =b,+my.R’
k=k+1
endif
endfor
while an error 1s found

return k,(w,,b,)




Graphic interpretation of the Perceptron




Dual Representation for Classification

= |n each step of perceptron only training data is added with a

certain weight
W= Eajy it
j=1..

s Hence the classification function results:

sgn(w* X + b) =sgn Eajyjic’j-)_c’+b
j=1..0
= Note that data only appears in the scalar product




Dual Representation for Learning

= as well as the updating function

ifyi(z a,yXx;"x;+b)<0 then o, =, +n

j=l1..0

= The learning rate 1 only affects the re-scaling of the
hyperplane, it does not affect the algorithm, so we can fix

n=1.




Dual Perceptron algorithm and Kernel
functions

s \We can rewrite the classification function as

h(x) =sgn(w, * §(¥) + b,) = sgn( Y &,y $(% )+ $(X) +b,) =

j=1.0

= sgn( Zajyjk(z_c’j,)_c’) +b,)

i=1..0
= As well as the updating function

ifyl.( Y oy k(% %) +b )s 0 then &, = o, +7
j=1..0




Support Vector Machines

Var, o
The margin is equal to




Support Vector Machines

Var, 2

The margin is equal to HWH

We need to solve

2

Ilw I

w X+

max

=+1, if X 1s positive

b
w-X+b=-1, if X is negative




Optimization Problem

= Optimal Hyperplane:
U ST
Minimize r(w)=EHwH2
Subjectto Y, (W' X, +b)zLi=1,..,1

= The dual problem is simpler




Dual Transformation

= Given the Lagrangian asso%ated with our problem

1

1=1
= [0 solve the dual problem we need to evaluate:

— —

9(527 6) — Z.nf’wGVV L(U_J), 0_27 ﬁ)

= Let us impose the derivatives to 0, with respect to

W
OL(W,b,&) . ~— L= L
I :w—;yz‘%%:o = w:Zyi




Dual Transformation (cont’d)

= andwrthb

OL(w,b,@) ~ B
BT — ;yzaz =0

= Then we substituted them in the objective function

— — 1 =3 - S n -
L(w,b,a) = SW-w— Zaz[yz(wxz +0) —1] =
i=1
1 m
T2 > Yoy - T — Z YiYj Qe Ty - Tj + ZO‘Z
i,j=1 b=l

= E Oéz__ § Yilj Qi Ty - X

1,]=1




The Final Dual Optimization Problem

m 1 m
maximaize g o — 5 E yiyjaiajfi ' f]

subject to «o; >0, 1=1,...m

m
Z yic; = 0
i=1




Soft Margin optimization problem

m 1 m 1
maximaize Z i =5 Z yiyjoic (i - T + 55@')
i=1

ij=1
subject to o, >0, Vi=1,..m
D e Yici =0




Kernels in Support Vector Machines

= |n Soft Margin SVMs we maximize:

Zaz -3 Z yzyjazaj it édw)

1,7=1

= By using kernel functions we rewrite the problem as:

1
mammzzez gy — — Z yzygaz&j 027 OJ) + 05’6])

1,7=1

g
\
=

Vz =1,...m




Soft Margin Support Vector Machines

mlnlllv_&llz +C2_§i yi(W’Xl-'Fb)Zl—Si V.xi
= The algorithm tries to keep &; low and maximize the margin

= NB: the number of error is not directly minimized (NP-complete
problem); the distances from the hyperplane are minimized

= |If C—oo, the solution tends to the one of the hard-margin
algorithm

» If Cincreases the number of error decreases. When C tends to infinite
the number of errors must be 0, i.e. the hard-margin formulation




Trade-off between Generalization and
Empirical Error

ﬂu
Var, : Var,

Var, Var,

W X4b=0 wex+b=0

Soft Margin SVM Hard Margin SVM




Parameters

1, - 1, - + + _ -
min - 11 ¥ I +CY & = min -1 I +C Y& +C Y

_ min% dls +C(J2§l—+ +E,§i_)

s C: trade-off parameter

s J: cost factor




Kernel Function Definition

Def. 2.26 A kernel is a function k, such thatV ©,Z € X
k(Z,2) = ¢(T) - p(2)

where @ is a mapping from X to an (inner product) feature space.

= Kernels are the product of mapping functions such as

ER",  F) =($(3),0,(F),....0, () ER"




The Kernel Gram Matrix

= With KM-based learning, the sole information used from
the training data set is the Kernel Gram Matrix

-k(xlaxl) k(xnxz) k(xlaxm)-

X B k(X,,X))  k(Xp,X,) .. Kk(X,,X,)

training ~

k(x ,x,) k(x ,X,) .. k(x ,X)

= |f the kernel is valid, K is symmetric definite-positive




Valid Kernels

Def. B.11 Eigen Values

Given a matrix A € R™ x R", an egeinvalue \ and an egeinvector T €
R™ — {0} are such that

AT = \x

Def. B.12 Symmetric Matrix
A square matrix A € R" xR" is symmetriciff A;; = Ajifori #ji=1,..,m
and j =1,..,n, ie iff A=A

Def. B.13 Positive (Semi-) definite Matrix
A square matrix A € R" x R" is said to be positive (semi-) definite if its
eigenvalues are all positive (non-negative).




Valid Kernels cont’d

Proposition 1. (Mercer’s conditions)
Let X be a finite input space and let K(x,z) be a symmetric function on X. Then
K (x, z) is a kernel function if and only if the matrix

k(x,z) = ¢(x) - p(2)

is positive semi-definite (has non-negative eigenvalues).

= |f the matrix is positive semi-definite then we can find a
mapping ¢ implementing the kernel function




Mercer’s Theorem (finite space)

= Letus consider K = (K()_c’i,)_c’j))

n
i, j=1

= K symmetric=3V: K =VAV' for Takagi factorization of a
complex-symmetric matrix, where:

= A is the diagonal matrix of the eigenvalues A, of K

n
sV, = (Vt,- )l.=1 are the eigenvectors, i.e. the columns of V

= Let us assume lambda values non-negative

¢:xX, — (\/Zvﬁ)il eN',i=1,..,n




Mercer’s Theorem
(sufficient conditions)

= [ herefore

D(%,) - D(X,) = E)\.V v, =(VAV'), =K, = K(%,,%))

tti

= Wwhich implies that K is a kernel function




Mercer’s Theorem
(necessary conditions)

= Suppose we have negative eigenvalues A, and
eigenvectors Vv_ the following point

7 = ivﬂ. D(X,) = ivﬂ. ( AV, )t =\/XV'VS
1 i=1

I=

= has the following norm:

2" =72 =VAV'VAAV'Y, = 7! VAAVAV'Y, =

e o a = A (=12
Vs KVS_ Vs )\’SVS_)\'S VSH <O

this contradicts the geometry of the space.




Is it a valid kernel?

= It may not be a kernel so we can use MM
Proposition B.14 Let A be a symmetric matrix. Then A is positive (semi-)
definite iff for any vector T # 0
TATZ > \E (>0).

From the previous proposition it follows that: If we find a decomposition
A in M'M, then A is semi-definite positive matrix as

TAZ =2 M MZ=(MZ)(MZ) =Mz - MZ = ||MZ||* > 0.




Valid Kernel operations

s K(X,2) = k,(x,2)+k,(x,Z)
s k(X,z) = ky(X,2)*k,(X,2)
s kK(X,2) = a ky(X,2)

= K(X,z) = f(x)f(z)

s K(X,z) = Xx'Bz

o k(x,2) = ky(p(x),9(2))




Object Transformation [Moschitti et al, CLJ 2008]

" K(0,,0,) =¢(0) 9(0,) = 9, (¢,, () ¢(9,,(0,))
= ¢E(Sl)°¢E(S2) = KE(SlaSz)

" Canonical Mapping, ¢,/()
» object transformation,

» €. (., asyntactic parse tree into a verb subcategorization frame
tree.

" Feature Extraction, ()
¥ maps the canonical structure in all its fragments
» different fragment spaces, e.g. String and Tree Kernels




Part |: Basic Kernels
(Feature Extraction Functions)




Basic Kernels for unstructured data

= Linear Kernel

= Polynomial Kernel
= Lexical Kernel

= String Kernel

= Tree Kernels: Subtree, Syntactic, Partial Tree Kernels
(PTK), and Smoothed PTK




Linear Kernel

= In Text Categorization documents are word vectors

dd)=x=(0,..,1,..0,..0,..1,..,0,..,0,..,.1,...0,..,0,..,1,..,0,..,1)

buy  acquisition  stocks sell  market
dd)=z=(,.1,.0,.1,.0,.0,.0,.1,.0,.0,.1,.,0,.,0)
buy company stocks sell

= The dot product X *Z counts the number of features in
common

= This provides a sort of similarity




Feature Conjunction (polynomial Kernel)

= [The initial vectors are mapped in a higher space
D(< x,x,>) — (xfaxzza\/lexzn‘/leﬂ/zxzal)

= More expressive, as (x,x,) encodes
Stock+Market vS. Downtown+Market features

= We can smartly compute the scalar product as

D(x) D(z) =
= (xlszzza'\/lexz,'\/le,'\/zxz,l) '(212,222,'\/52122,—\/521,—\/522,1) —
=Xz} +X;2; +2X,%,2,2, + 2X,2, + 2,2, + 1 =
=(xz, +x,z, +1)’ = (X Z+1)° = Kpy, (X, Z)




Sub-hierarchies in WordNet

\
\
\
\

motorcar
compact

( {thing, entity} ]

/\

[{Iiving thing, organism}J [{non-living thing, ob]ect}]

[{plant.flora}] [{animal,fauna}] {{naturalobject}]

{substance}

[{person. human being}] [ {artifact} ] ( {food} J




Similarity based on WordNet

Inverted Path Length: |

(1 +d(c1,c2))

simrpr(ci,ce) =

Wu & Palmer:
simwup(ci,c2) =
2dep(lso(ci,c2))
d(c1,lso(c1,c2)) + d(ca,lso(ci,c2)) + 2dep(lso(ci, c2))
Resnik:
simres(ci,c2) = —log P(lso(ci,c2))
Lin:

simpiv (e, ca) = 2 log P(lso(ci,c2))
PINAEL 220 1og P(c1) + log P (c2)




ocument Similarity

Doc 1

industry @g-------———_____

~ T ——
~ —_—————
~ ————

telephone @#~~~ e

Doc 2




Lexical Semantic Kernels

= [he document similarity is the SK function:

SK(dy.dy) = Y s(w,.w,)

w,Ed, w,Ed,

= Where s is any similarity function between words, e.qg.
WordNet [Basili et al.,2005] similarity or LSA [Cristianini et
al., 2002]

= Good results when training data is small




String Kernel

Given two strings, the number of matches between their
substrings is evaluated

E.g. Bank and Rank

¥ B, a, n, k, Ba, Ban, Bank, Bk, an, ank, nk,..

r R, a,n,k, Ra, Ran, Rank, Rk, an, ank, nk,..
String kernel over sentences and texts

Huge space but there are efficient algorithms




Using character sequences

¢("bank")=x=(0,...1,..,0,..1,..,0,.....1,...0,...1,..,0,...1,..,0)
bank ank bnk bk b

¢("rank")=7-=(1,..0,..0,...1,..,0,....0,...1,...0,...1,..,0,..,1)

rank ank rnk rk r

= X *Z counts the number of common substrings




Formal Definition

§ =81, S|s|> I = (i, 7Z|u|)

Z AT  where [(I) = iy — 21 +1

Tu=s[I]
EDWCRYIES 9 R L
(IS UEL™ [iyy= s[1 Jiu= tf

€L Ty=s[I] Jou=t[J]

Y Y Z )‘Z(I)H , where >° — U Pk
n=0




Kernel between Bank and Rank

B, a, n, k, Ba, Ban, Bank, an, ank, nk, Bn, Bnk, Bk and ak are the
substrings of Bank.

R, a, n, k, Ra, Ran, Rank, an, ank, nk, Rn, Rnk, Rk and ak are the
substrings of Rank.




An example of string kernel computation

- ¢a(Bank) = da(Rank) = A=+l — \(2=2+1)

bJ

A
A,
A

- ¢n(Bank) = én(Rank) = A=t = \B=3+1)

- Ok(Bank) = (*)k(Rank) — /\(‘i1—i1-{—1) _ )\(4_4+1)

9

- ¢an(Bank) = ¢an(Rank) = A2=it+1) — \(3-2+1) — \2,
- Gank(Bank) = dank(Rank) = A=+l = \(4=2+1) — \3

- ¢nx(Bank) = dpx(Rank) = A2=itl) = \(@4=3+1) — )2

dax (Bank) = day (Rank) = A2=ith) = \(4=241) — )3

K (Bank,Rank) = (A, A, A, A%, A%, A2, 0%)- (4, 4,4, A2, 0%, A%, 0%)
— 3>\2 1L oM 49N




Efficient Evaluation: Intuition

= Dynamic Programming technique
= Evaluate the spectrum string kernels
= Substrings of size p
= Sum the contribution of the different spectra




Efficient Evaluation

Given two sequences sia and sob, we define:

|s1]| |s2]

Dy([s1], |sal) = > > Alslmitleel=r o S, (sa[1 1], s2[1 1 7)),

=1 r=1

s1|1 : i] and sa|1 : r] are their subsequences from 1 to 7 and 1 to 7.

A* X Dp([s1], |s2]) if a = b;

0 otherwise.

SKy(sia, sob) = {

D, satisfies the recursive relation:

Dp(k,l) — SKp_1(81[1 : k], 82[1 : l]) + )\Dp(k,l — 1)—|—
+AD,(k—1,1) = N*D,(k — 1,1 — 1)



Evaluating DP2

= Evaluate the weight of the string of size p in case a
character will be matched

= Thisis done by multiplying the double summation by the
number of substrings of size p-1

[s1] |s2]

Dp(Jsal, |s2]) =) ) A=t 10, o (sq[1 2], so[1 2 7))

i1=1 r=1




Tree kernels

= Syntactic Tree Kernel, Partial Tree kernel (PTK), Semantic
Syntactic Tree Kernel, Smoothed PTK

= Efficient computation




Example of a parse tree

= John delivers a talk in Rome”

/S \ S— N VP
N VP
| /I QeVNPPP
Vv NP

John PP

VAR / \ PP—INN

delivers D N IN N
‘ \ ‘ N — Rome

a talk 1n Rome




The Syntactic Tree Kernel (STK)
[Collins and Duffy, 2002]

/VP

|

N4 NP

| /\
N

delivers D \

a talk




The overall fragment set

VP VP VP VP NP NP NP
/N N
A R A U A W U B |
/ i a talk a talk
]‘) delivers I|) T D N I|) 1\|I v p D I\|I
. 2 talk 2 talk | / \

AAlicraw~ N AT a talk

/| Children are not d|V|ded vp

V NP NP V NP /) /
/ \V /\ \|/ /NP\ \|/ /NP\ V NP v I\|IP

[l) N'D I\|I delivers D Ndelivers D N . | | / \

| \ delivers delivers D N

a talk a e
ta




Explicit kernel space

p(r)=x=(,..,1,..0,...1,...0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0)
VP VP NP NP NP
/| /| STy N N o N
2 A N A |
delivers D 1\|T D N Il) 1\|I & talk a talk
a talk a talk
¢(7—;) = Z = (19“903“909"919“909"919”909"919“909"909"919“909"90)
VP VP VP NP NP
| /| Sy o' N
A\ NP Vv NP Vv NP | |
| | / \ / \ a  talk
delivers N D N Il) 1\|I
tallk a talk

—

= X *Z counts the number of common substructures




Efficient evaluation of the scalar product

%% = (1) §(T.) = K(T,.T,) =




Efficient evaluation of the scalar product

%-Z=(T,) §(I.) =K(T,.T.) =

= E EA(nx,nZ)

n.€l, n &I,
= [Collins and Duffy, ACL 2002] evaluate A in O(n?):

A(n,,n_) =0, if the productions are different else

A(n n_) =1, 1if pre-terminals else

nce(n,

)
A(n,.n)= | |1+ Alch(n,.j).ch(n. j)))




Other Adjustments

= Decay factor

A(n_,n )= A, if pre-terminals else

nc(n, )

A(n.n) =2 | |+ Alch(n,.j).ch(n..j))

= Normalization
K(T,.T))
JK(T.,T)xK(T,.T)

K(T.T) =




Observations

= We order the production rules used in T, and T,, at
loading time

= At learning time we can evaluate NP In
IT.|+|T,| running time [Moschitti, EACL 20006]

= If 7_and T, are generated by only one production rule =
O(T.|x|T,|)...Very Unlikely!!!!




Labeled Ordered Tree Kernel

= STK satisfies the constraint “remove 0 or all children at a
time”.

= |f we relax such constraint we get more general
substructures [Kashima and Koyanagi, 2002]

VP VP VP VP VP VP VP VP
7 7 | I I N
N4 NP \% NP NP NP NP NP NP NP
A N /N /N /N /] N\
gives D N D D N D ND D N
| I | N NP NP
a talk a talk a talk a a |/ \ 7/




Weighting Problems

VP VP . .
7 e = Both matched pairs give the same
A M contribution
gives DN gives b N . . .
. | |lk = Gap based weighting is needed
a talk a ta
= A novel efficient evaluation has to
VP VP .
7 7 be defined
Vv NP Vv NP
I /I
gives ]|)fFI\~I \E I|\I gives [|) :r J| i T
a i\ | a i a J talk

|

P ——




Partial Tree Kernel (PTK)
[Moschitti, ECML 2006]

= STK + String Kernel with weighted gaps on nodes’
children

VP VP VP VP VP VP VP VP
7 7 | I R
Vv NP Vv NP NP NP NP NP NP NP
o\ = SN /N N
brought D N D N D N D ND D N
| [ e N T | NP NP NP
a cat a cat a cat a a / \ \ /




Partial Tree Kernel - Definition

- if the node labels of ny and no are different then
A(ni,ng) = 0;

- else [(J1)

N D Y | EXCRE AT

J1,J2.0(J1)=1(J2)

= By adding two decay factors we obtain:

[(J1)

“<>\2+ Z )\d(ji)—l-d(jz) H A(Cnl []—11]. Cns [];,]))

Ty, Ja,U(J1)=1(J3) =1




Efficient Evaluation (1)

= In [Taylor and Cristianini, 2004 book], sequence kernels with
weighted gaps are factorized with respect to different

subsequence sizes.
= We treat children as sequences and apply the same theory

A(nla n2) — M()‘Q - Z;?Zl AP(C’nlacnz))

Given the two child sequences sja = ¢,,, and s20 = ¢,,,
(a and b are the last children), A,(s1a, s2b) = D

|.S‘1| |52’

A(a,b) X Zz/\‘sl‘_”m""’ X Ap_1(s1[1: 1], s2[1:7])

=1 r=1




Efficient Evaluation (2)

A(a,b)Dy(|s1], |s2]) if @ = by
A])(Sla,82b> _{ ( ) T(l 1’ ‘ 2‘)

0 otherw:ise.

Note that D, satisfies the recursive relation:

Dp<k7 l) = A])_l(sl[l : k] 82[1 : l]) -+ )\Dp(k,l — 1)
+AD,(k—1,1) + N>D,(k — 1,1 —1).

= The complexity of finding the subsequences is O(p|s1]|s2])

)

= Therefore the overall complexity is O(pp?| N7, || N7,
where p is the maximum branching factor (p = p)




useconds

Running Time of Tree Kernel Functions

120 //
100 /
80 ®  FSTK
A~ STK
= FPTK
60

40

20

0o

5 10 15 20 25 30 35 40 45 50 55
Number of Tree Nodes

= STK vs. Fast STK (FSTK) and Fast PTK (FPTK)




Syntactic/Semantic Tree Kernels (SSTK)
[Bloehdorn & Moschitti, ECIR 2007 & CIKM 2007]

R
/N V2N

D JJ] N

a good talk a solid talk

= Similarity between the fragment leaves
» Tree kernel + Lexical Similarity Kernel




Equations of SSTK

Definition 4 (Tree Fragment Similarity Kernel). For two tree fragments
f1, fa € F, we define the Tree Fragment Similarity Kernel as®:

nt(f1)
kr(fr f2) = comp(fr, f2) [ ws(fi(t), fo(t))
t=1

Tl,TQ Z Z An17n2

n1ENT, n2€NT,

where A(ny,ng) = Z'ﬂ Zlﬂ Li(n1)Li(n2)5x(fis f).




Example of an SSTK evaluation

VP VP
7 7 K<(gives,gives)*Ks(a,a)*
i /NP\ i /NP\ K< (good,solid)*Ks(talk,talk)
gives 0N &ves [ % =1%*1%*05*1=05
| | | |
a good talk a solid talk

Tl,TQ Z Z A n17n2

where A(ny,na) = Y2y S Ti(ma) I (na) sz (i, £5).




Delta Evaluation is very simple

0. if n; and ngy are pre-terminals and label(ni) = label(ns) then A(nq,ng) =
Aks(chy ,chy,),

ni?
1. if the productions at n; and ns are different then A(nq,ns) = 0;

2. A(nl,ng) — )\,
3. A(ny,ng) = A[T7U) (14 A(ehd,, chi)).

g=1




Smoothed Partial Tree Kernels
[Moschitti, EACL 2009; Croce et al., 2011]

= Same idea of Syntactic Semantic Tree Kernel but
the similarity is extended to any node of the tree

= The tree fragments are those generated by PTK

= Basically it extends PTK with similarities




Examples of Dependency Trees

= What is the width of a football field?
= What is the length of the biggest tennis court

~ be
what -wi\ th) <

the  of

(field) - (court

éf[foo‘tball the blggest tennls]

\ /




Equation of SPTK

If n; and n, are leaves then A,(ni,ng)= pAo(ni,ne)

else

‘ —

Ao, ma) = (i, na) x (0 + 37 XEE) TT Ao(en, (7). a1
' I, 1o, U(1h)=U(I2) j=1

— Lexical Similarity — PTK




Different versions of Computational
Dependency Trees for PTK/SPTK

be::v be::v
)
what::w width::n - what::w width::n ?::. ROOT VBZ
the(\of. -i SBIWP the:d f:i  PRDNN 1A
7 felden NMOD DT field::n NMOD IN
LOCT § T
m 1l a::.d football::n PMOD NN
a.. ootoall::n /\ /\
NMOD DT NMOD NN \

LCT

TOP

%‘\

LPST | WP VBZ DT NN IN DT NN NN

what::w be::v the::d width::n of::1 a::d football::n field::n ?::.




Tree Kernel Efficiency

120

100

microseconds
o oo
o o

D
o

N
o

LCT-PTK y =0,0513x5/=
% LCT-SPTK a
LPST-PTK | y = 0.081x"{%
-LPST-SPTK /
X
Nz X
y =0.068x1-213
=
10 20 30 40 50 60

Number of Nodes



Simple Kernel
Applications




A QA Pipeline: Watson Overview

Question Que.:?tior_\ | .
‘ _ Classification
Models
Question |[<— Hypothesis] J Hypothesis and L[Candidate
Analysis GenerationJ lEvidence Scoring L Ranking
Primary | |Candidate Supporting [?eep Y
~ Search Answer Evidence || Evidence Ans";c’.er and
Generation Retrieval Scoring Confidence

Evidence
Sources

Answer
Sources




Question Classification

= Definition: What does HTML stand for?

= Description: What's the final line in the Edgar Allan Poe
poem "The Raven"?

= Entity: What foods can cause allergic reaction in people?
= Human: Who won the Nobel Peace Prize in 19927

= Location: Where is the Statue of Liberty?

= Manner: How did Bob Marley die?

= Numeric: When was Martin Luther King Jr. born?

= Organization: What company makes Bentley cars?




Question Classifier based on Tree Kernels

= Question dataset (http://12r.cs.uiuc.edu/~cogcomp/Data/QA/QC/)
[Lin and Roth, 2005])

» Distributed on 6 categories: Abbreviations, Descriptions, Entity,
Human, Location, and Numeric.

= Fixed split 5500 training and 500 test questions

= Using the whole question parse trees
» Constituent parsing
» Example

“What is an offer of direct stock purchase plan ?”




Syntactic Parse Trees (PT)

SBARQ

WHNP 50

w v ?

Who AUX VP

did V NP

deliver D N

|
a talk




Some fragments

VP VP VP NP NP NP
/ \ /N /N
/ /] /| e e
\lf /NP\ \% /NP\ \Y /NP\ | | | |
delives D ND N D N ¢ y talk a . talk
I | | NP |
a  talk a  talk / \

D
delivers D N a talk
\Y

V|P VP VP VP up i
ARVANANre e /N M
\ /NP\ Y /NP\V NP\|7 /NP\ \lf NP v NP v |
NP
[l) N I\|I delivers D N delivers D/ \N | | / \

\ delivers delivers D N

a talk a "
ta




Explicit kernel space

p(r)=x=(,..,1,..0,...1,...0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0)

VP VP VP NP NP NP
e J JN SN L\
\lf /NP\ \Y% /NP\ Y% /Np\ | | | |
delivers D 1\|T D N Il) 1\|I a talk a talk
a talk a talk
¢(7—;) = 2 = (1""O’”’O""l9"909"91 9"909"919“909 ,O,..,l ,--,O,..,O)
VP VP VP NP NP
] yd yd VAN AN
Y NP VvV NP VvV NP | |
| l / \ / \ a talk
delivers N D N Il) 1\|I
| a talk

talk

= X°Z counts the number of common substructures $




Question Classification with SSTK

[Blohedorn&Moschitti, CIKM2007]

Accuracy

A parameter 0.4 | 0.05 | 0.01 |{0.005]0.001
linear (bow) 0.905

string matching|0.890| 0.910 |0.914{0.914|0.912
full 0.904(0.924(0.918 1 0.922 [ 0.920
full-ic 0.908(0.922(0.916 1 0.918 | 0.918
path-1 0.906(0.918(0.912 10.918|0.916
path-2 0.896(0.914 ({0.914 10.916|0.916
lin 0.908(0.924(0.918 1 0.922 ] 0.922
wup 0.908(0.926(0.918 1 0.922 ] 0.922




Same Task with PTK, SPTK and
Dependency Trees

be::v be::v
)
what::w width::n 9 what::w width::n ?2::. ROOT VBZ
the(\of. -i SBIWP the:d f:i  PRDNN 1A
7 felden NMOD DT field::n NMOD IN
LOCT g T
m 1l a::.d football::n PMOD NN
a.. ootoall::n /\ /\
NMOD DT NMOD NN \

LCT

TOP

%‘m

LPST | WP VBZ DT NN IN

what::w be::v the::d width::n of::1 a::d football::n field::n ?::.




State-of-the-art Results
[Croce et al., EMNLP 2011]

STK PTK  SPTK(LSA)
CT 91.20% 90.80%  91.00%

LOCT - 89.20% 93.20%
LCT - 90.80% 94.80 %
LPST - 89.40% 89.60%

BOW 88.80%







Classification in Definition vs not
Definition in Jeopardy!

= Definition: Usually, to do this is to lose a game
without playing it
(solution: forfeit)

= Non Definition: When hit by electrons, a

phosphor gives off electromagnetic enerqgy in this
form

= Complex linguistic problem: let us learn it from
training examples using a syntactic similarity




Automatic Learning of a Question
Classifier

= Similarity between definition vs non definition
guestions

= Instead of using features-based similarity we use
kernels

= Combining several linguistic structures with
several kernels for representing a question q:

" Ki(94,02)+Ka(<aq4,0)+- .. +K((<04,02))
= Iree kernels measure similarity between trees




Syntactic Tree Kernel (STK)
(Collins and Duffy 2002)

/VP
|
V NP

/ N\
D N

a phosphor

hit




Syntactic Tree Kernel (STK)
(Collins and Duffy 2002)

VP VP VP NP NP NP
V/1\|1P /| /l D/ \N D/ \N D/ \N

V NP V NP | | | |

hi|t D/ \N D/ \N D/ \N a phosphor a phosphor
a phosphor a phosphor | / \ | |

hit D N a phosphor
VP VP VP VP
/| |/ M VP VP
V. NP V/NPV NPV/| a AN

/N /N | /NP\ \|/ NP voNe v

| N D I\|I hit [|) N hit D N

a phosphor a phosphor




The resulting explicit kernel space

p(r)=x=(,..,1,..0,...1,...0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0)

VP VP VP NP NP
/ \ / \ / \
\lf /NP\ A% /NP\ Vv /NP\ | | | |
delivers D 1\|I D N ]|3 1\|T a talk a talk
a talk a talk

¢(7—;) = Z = (19"909“909"919”909"91 9°°909°-1<T19"909"909"919"909"90)
N

VP VP VP P P
] /| 1w o’ W
\lf NP v /NP v /NP | |
hit 1|\I D \N D \N a phosphor

| L

phosphor 2 phosphor

= X ' Z counts the number of common substructures




Experimental setup

Corpus: a random sample from 33 Jeopardy!
Games

306 definition and 4,964 non-definition clues

Tools:
r SVM-Light-TK
» Charniak’s constituency parser

» Syntactic/Semantic parser by Johansson and Nugues
(2008)

Measures derived with leave-on-out




Constituency Tree (CT)

ROOT

SBARQ

‘WHADVP/////Ej:EE;;; NP \\\\\\\\\\\\‘\\
l ! Df/ \NN //// \\\\\\\\\\

WRB VP VBZ PRP
AN | / \
When VBN PP NP a phosphor gives RP
| / \ | / \
hit IN  NNS off JJ NN in DT NN

by electrons electromagnetic ~ energy this form




Dependency Tree (DT)

RO|OT
VBZ
e S
T1\|/[P I|) S]|3J gives P1|%T O]|3J
VBN , NN RP NN
T~ N | T
T1\|/[P hit LC|}S NM|OD phosphor off NM|OD energy NM|OD
WRB IN DT JJ IN
| RN | | N
when by PM|OD a electromag. in PM|OD
NNS NN
| N
electrons NM|OD form
DT




Predicate Argument Structure Set
(PASS)

PASS
N T
P P P
A0 AM-TMP PR Al Al  AM-MNR PR PR A0 Al

phosphor hit give energy phosphor electromag. energy hit electron phosphor




Sequence Kernels

WSK: [when][hit][by][electrons][,][a][phosphor][gives]
[off][electromagnetic][energy|[in][this][form]

PSK: [wrb][vbn][in][nns][,][dt][nn][vbz][rp][jj][nn][1n]
[dt][nn]

CSK: [general][science]
(category sequence kernel)




Individual models

Kernel Space | Prec. | Rec. F1

RBC 2827 | 70.59 | 40.38
BOW 47.67 | 46.73 | 47.20
WSK 47.11 | 50.65 | 48.82
STK-CT 50.51 | 32.35 | 39.44
PTK-CT 47.84 | 57.84 | 52.37
PTK-DT 4481 | 57.84 | 50.50
PASS 33.50 | 21.90 | 26.49
PSK 390.88 | 45.10 | 42.33
CSK 39.07 | 77.12 | 51.86




Model Combinations

Kernel Space Prec. | Rec. K1

WSK+CSK 70.00 | 57.19 | 62.95
PTK-CT+CSK 69.43 | 60.13 | 64.45
PTK-CT+WSK+CSK 68.59 | 62.09 | 65.18
CSK+RBC 47.80 | 74.51 | 58.23
PTK-CT+CSK+RBC 59.33 | 74.84 | 65.79
BOW+CSK+RBC 60.65 | 73.53 | 66.47
PTK-CT+WSK+CSK+RBC | 67.66 | 66.99 | 67.32
PTK-CT+PASS+CSK+RBC | 62.46 | 71.24 | 66.56
WSK+CSK+RBC 69.26 | 66.99 | 68.11
ALL 61.42 | 67.65 | 64.38




Impact of QC in Watson

= Specific evaluation on definition questions
» 1,000 unseen games (60,000 questions)
» Two test sets of 1,606 and 1,875 questions derived with:
o Statistical model (StatDef)
o RBC (RuleDef)

» Direct comparison only with NoDef

= All questions evaluation
» Selected 66 unseen Jeopardy! games
» 3,546 questions




Watson’s Accuracy, Precision and
Earnings

= Comparison between use or not QC
= Different set of questions

NoDef | StatDef || NoDef | RuleDef
# Questions 1606 1606 1875 1875
Accuracy 63.76% | 65.57% || 56.64% | 57.51%
P@70 82.22% | 84.53% || 72.73% | T74.87%

# Def Q’s | Accuracy | P@70 | Earnings

NoDef 0 69.71% 86.79% | $24.818
RuleDef 480 69.23% 86.31% | $24,397

StatDef 131 69.85% 87.19% | $25,109




Error Analysis " w» . PTK

S T ~ similarity
/NP e
,/‘:‘”//N 9
Test Example JJ % JJ NN VBN PP
 PTK ok | R . | | N .
« STK not ok artificial green grass ‘used Ill\I NP o
R /j\ S

_on DT{ VBG NN "

~~~~~ R R
STK USRS (1 I;playlllg ﬁeld

similarity 7 np

. NP ~ VP
Training DIT J|J NIN V]?N /PP\\\
Example a flat-bottomed boat ! used IN /,__N_E___“;
————————— TN
011 DT NN

a canal



Question and Answer
Classification




Answer/Passage Reranking

Question Answer/Passage

‘ _ Reranking

J_

= .3
Trained
Models

[Question}_)[l;lypothesis]

‘[ Hypothesis and
Analysis GenerationJ

'lEvidence Scoring

2N

\Z

2 [Candidate]

LRanking

Primary | |Candidate Supporting ]?eep
~ Search Answer Evidence || Evidence
Generation Retrieval Scoring

Y

Answer and
Confidence

1
I
I

Evidence
Sources

Answer
Sources




TASK: Question/Answer Classification
[Moschitti, CIKM 2008]

= The classifier detects if a pair (question and answer) is
correct or not

= A representation for the pair is needed

= [The classifier can be used to re-rank the output of a basic
QA system




Bags of words (BOW) and POS-tags (POS)

= To save time, apply tree kernels to these trees:




Word and POS Sequences

= What is an offer of...? (word sequence, WSK)
=2 What is offer
= What is

= WHNP VBZ DT NN IN...(POS sequence, POSSK)
=» WHNP VBZ NN
=» WHNP NN IN




Predicate Argument Structures for
describing answers (PAS;y)

= [ARG1 Antigens] were [AM—TMP originally] [rel defined] [ARG2 as non-
self molecules].

= [ARGO Researchers] [rel describe] [ARG1 antigens][ARG2 as foreign
molecules] [ARGM—LOC in the body]

PAS

PN

rel ARGI ARG2 ARGM-TMP
I I | |

define antigens as non-self molecules originally

PAS

/// \
rel ARGO ARG ARG2 ARGM-LOC

describe researchers antigens as foreign molecules in the body




Dataset 2: TREC data

= 138 TREC 2001 test questions labeled as “description”

= 2,256 sentences, extracted from the best ranked
paragraphs (using a basic QA system based on Lucene
search engine on TREC dataset)

= 216 of which labeled as correct by one annotator




Kernels and Combinations

= Exploiting the property: k(x,z) = k,(x,z)+k,(x,z)
= Given: BOW, POS, WSK, POSSK, PT, PAS«
= BOW+POS, BOW+PT, PT+POS, ...




F1-measure

Results on TREC Data
(5 folds cross validation)
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F1-measure

Results on TREC Data

(5 folds cross validation)

40
38
36

34 BOW =~ 24

32

o POSSK+STK+PAS PTK= 39

28 |

1 — =62 % of Improvement

24

A EEE N 'R
20 L

S < S
%O““ ¢© o0° :’%\ \“6\(\ © 5‘5«\ ¢t <0




Break




Practical Exercise




SVM-light-TK Software

= Encodes STK, PTK and combination kernels
in SVM-light [Joachims, 1999]

= Available at http://disi.unitn.it/moschitti

= [ree forests, vector sets

= You can download the version | am using from:

= http://disi.unitn.it/moschitti/material/ACL2012-
Tutorial.Moschitti.zip




Data Format

= “What does S.0O.S. stand for?”

= | |BT|(SBARQ (WHNP (WP What))(SQ (AUX does)(NP (NNP S.0.S.))
(VP (VB stand)(PP (IN for))))(. ?))

BT| (BOW (What *)(does *)(S.0.S. *)(stand *)(for *)(? *))
BT| (BOP (WP *)(AUX *)(NNP *)(VB *)(IN *)(. *))

BT| (PAS (ARGO (R-A1 (What *)))(ARG1 (Al (S.0.S. NNP)))(ARG2 (rel
stand)))

IET| 1:1 21:2.742439465642236E-4 23:1 30:1 36:1 39:1 41:1 46:1 49:1 66:1
152:1 274:1 333:1

IBV| 2:121:1.4421347148614654E-4 23:1 31:1 36:1 39:1 41:1 46:1 49:1 52:1
66:1 152:1 246:1 333:1 392:1 |EV|




Kernel Combinations an example

3 .
K~ polynomial kernel of flat features

K.  Tree kernel

Tree

s Kernel Combinations:

3
KTree+P = y ><[<Tree + Kp ”
3
K =V X KTree + Kp
Tree+P ~— y K K3
‘ Tree ‘ p

3

KTreexP = KTree ><[<p
3

K _ KTreeXKp
TreexP — 3
‘KTree X‘Kp‘




Basic Commands

= [raining and classification
» ./svm_learn -t 5 -C T train.dat model
r ./svm_classify test.dat model

= Learning with a vector sequence
¥ ./Jsvm_learn -t 5 -C V train.dat model

= Learning with the sum of vector and kernel sequences
¢ ./Jsvm_learn -t 5 -C + train.dat model




More on kernel
applications




Semantic Role Labeling

= In an event:
» target words describe relation among different entities
» the participants are often seen as predicate's arguments.

= Example:
Paul gives a talk in Rome




Example on Predicate Argument
Classification

= In an event:

» target words describe relation among different entities

» the participants are often seen as predicate's arguments.
= Example:

[ Arg0 Paul] [ predicate gives ] [ Arg1 a talk] [ ArgM in Rome]




Predicate-Argument Feature
Representation

Given a sentence, a predicate p:

1. Derive the sentence parse tree S
h nod T\J N ~
2. For each node pair <N_,N_ > N 4
P P> X7 \ /| \
a. Extract a feature representation set Paul, V NP PP
F Arg. 0 | D/ \ /\
gives N IN N
b. If N, exactly covers the Arg-i, F is pregeae |1 1]
one of its positive examples ¢tk Rome,

] ] ] Arg. 1 Arg. M
c. Fis a negative example otherwise




Vector Representation for the linear kernel

Phrase Type

Predicate

Word

Head Word

Parse Tree talk in Rome
]P(aﬁhion nght Arg. 1

Voice Active




PAT Kernel [Moschitti, ACL 2004]

s Given the sentence:

[ Arg0 Paul] [ predicate delivers] | 11 Argh 1N formal Style]
a) ////é\\\ F b C
= \vargo ) /S\/</~\\Fv,arg.1 ) /S\
4 N WP N VP
/i / g \ T A | AT N
{Paul ’ PP Paul |\ V / Paul “V! . pp!
T VAN I B AR AN TN R Fuarem
Arg. 0% dehvers\,lf T Il|\l /NP\ (i delivers ﬁ) T\\ II|\I /NP\ :g_eﬂv_e_rg[r T lI\IN /NF;\\
S———" \\\\\__ | ' N
sk b ERECLN a  tak | ,i|i N
_ = \
formal style formal style

= lhese are Semantic Structures




In other words we consider...

/ &/\\\\
N -7 VP \
///// /
\ 4 /‘ /
Paul ‘) Vv NP/ PP
P /NN /N
e delivers D N\ IN NP

______
<~

formal style




Sub-Categorization Kernel (SCF)
[Moschitti, ACL 2004]

formal style

|
Arg. M




Experiments on Gold Standard Trees

= PropBank and PennTree bank
» about 53,700 sentences
» Sections from 2 to 21 train., 23 test., 1 and 22 dev.

» Arguments from Arg0 to Arg5, ArgA and ArgM for
a total of 122,774 and 7,359

= FrameNet and Collins’ automatic trees
r 24,558 sentences from the 40 frames of Senseval 3
» 18 roles (same names are mapped together)
¢ Only verbs
» 70% for training and 30% for testing




Accuracy

Argument Classification with Poly Kernel

0.91

—

0.9

0.89

0.88 /
0.87

—— FrameNet

¥ —¢ PropBank
0.86
0.85 -

/ \<>\

0.84 / —
0.83 /
0.82 7

1 2 3 4




PropBank Results

Args P3 PAT PAT+P | PATxP | SCF+P | SCFxP
Arg0 90.8 88.3 92.6 90.5 94.6 94.7
Argl 91.1 87.4 91.9 91.2 92.9 94.1
Arg? 80.0 68.5 77.5 74.7 77.4 82.0
Arg3 57.9 56.5 55.6 49.7 56.2 56.4
Arg4 70.5 68.7 71.2 62.7 69.6 71.1
ArgM 95.4 94.1 96.2 96.2 96.1 96.3
Global 90.5 88.7 91.3 90.4 92.4 93.2

Accuracy




Argument Classification on PAT using
different Tree Fragment Extractor

0.88
//

0.85 _ /// —

0.83 - e —

Accuracy

/
“
/// / | o tnesr o |

0.78 f///
0.75

0] 10 20 30 40 50 60 70 80 90 100
% Training Data

~




Boundary Detection

S
/ &/‘\\\\
N TvP Y
///// /
\ 4 /‘ /
Paul ‘) Vv NP/ PP
P /NN /N
’ delivers D N\ IN NP

______
<~

formal style




Improvement by Marking Boundary nodes

PAF+

D N
|
a

delivers talk

PAF-
VP

delivers talk

MPAF +
VP

N
v @@
N

D N

delivers a talk

MPAF-

delivers

|
(w8

talk




Node Marking Effect

C) VP

TN

Vv NP VP Vv N

| N | !

delivers V NP  delivers talk

common PAF features

D) Y,
common MPAF features

delivers




Experiments

= PropBank and PennTree bank

» about 53,700 sentences
¥ Charniak trees from CoNLL 2005

= Boundary detection:
» Section 2 training

r Section 24 testing
» PAF and MPAF




Number of examples/nodes of Section 2

Section 2 Section 24
Nodes pos neg tot pos neg tot
Internal 11,847 | 71,126 | 82973 || 7.525 | 50,123 | 57.648
Pre-terminal 894 | 114,052 | 114946 || 709 | 80,366 | &1.075
Both 12,741 | 185,178 | 197919 | 8,234 | 130,489 | 138,723




Predicate Argument Feature (PAF) vs. Marked
PAF (MPAF) [Moschitti et al, CLJ 2008]

Tagging strategy CPUtime F1

PAF 5,179.18 75.24
MPAF 3,131.56 82.07




Results on FrameNet SRL
[Coppola and Moschitti, LREC 2010]

= 135,293 annotated and parsed sentences.

= /82 different frames (including split per pos-tag)
= 90% of training data for BD and BC 121,798 sentences

= 10% of testing data (1,345 sentences)

Enhanced PK+TK
Eval Setting P R Fy
BD (nodes) 1.0 732 847
BD (words) 963 702 813
BD+RC (nodes) | .784 .571 .66l
BD+RC (words) | .747 .545 .630




Experiments on Luna Corpus
[Coppola at al, SLT 2008]

= BD and RC over 50 Human-Human dialogs
» 1,677 target words spanning 162 different frames
»r manually-corrected syntactic trees
» Training 90% data and testing on remaining 10%

Evaluation Stage Precision | Recall F1
Boundary Detection | 0.905 0.873 0.889
Boundary Detection | 0.774 0.747 0.760
+ Role Classification

= Automatic SRL viable for Spoken Dialog Data




The Relation Extraction Problem

Last Wednesday, Eric EMPLOYMENT
Schmidt, the CEO of CEO < Google
Google, defended the )
search engine's

LOCATED

cooperation with
Chinese censorship as
he announced the
creation of a research

center in Beijin
Given a text with some available entities,

how to recognize relations ?

research center <= Beljing

I




Relation Extraction: The task

= [ ask definition: to label the semantic relation between
pairs of entities in a sentence
» The governor from Connecticut

M2 M := Entity Mention
type: LOC

r Is there a relation between M1 and M2?
If, so what kind of relation?




Relation Extraction defined in ACE

= Major relation types (from ACE 2004)

-

EMP-ORG Employment US president
PHYS Located, near, part-whole a military base in Germany
GPE-AFF Affiliation U.S. businessman
PER-SOC Social a spokesman for the senator
DISC Discourse each of whom
ART User, owner, inventor ... US helicopters
OTHER-AFF Ethnic, ideology ... Cuban-American people

= Entity types: PER, ORG, LOC, GPE, FAC, VEH, WEA




System Description (Nguyen et al, 2009)

___________________________

. Entities and

Relations
ACE do{uments i j
| Stanford
Raw texts —*—» Parser
T
) Multi-class
:_ Classification

RELATIONS

Parse Trees with
Entities

«— Tree Kernel-
based SVMs




Relation Representation
(Moschitti 2004;Zhang et al. 2006)

............... PP Ty
VP
PP PP

| mom T2-LOC | PER
' - L \ 4 A Y : A /\
DT |' | NNP VBN IN|| NNP | ;| IN | | NNP NNP
V‘ L A A 4 A A A

the | corporation | | established | | in || lowa

I
I 1
1 1
1 1
| i
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4 Tr;e Path-enclosed tree captures the “PHYSICAL.LOCATED” relation
between “corporation” and “lowa”




Comparison

Method Data P(%) | R(%) | F1(%)
Zhang et al Composite Kernel
98 | (linear) with Context- | ACE 2004 | 735 | 67.0 | 70.1
(2006)
Free Parse Tree
Composite Kernel
Ours (linear) with Context- | ACE 2004 | 69.6 68.2 69.2

Free Parse Tree

Both use the Path-Enclosed Tree for Relation Representation




Several Combination Kernels
[Vien et al, EMNLP 2009]

CKi=a-Kp+(1—a) K,
CKy=a-Kp+(1—-a) (Kssr+ Kpri)
CKz=a Kssr+(1—a) (Kp+Kprk)
CKy= Kprxk-pw + Kprx—cr

CKs = a-Kp+(1-a)(Kprx - pw+Kprg—cr)

SSK =Y,y _4SK,
CSK=a -Kp+(1—a) - (Kgsr+ SSK)




Results on ACE 2004

C' K1 with Heuristics

Kernel P R F
CK4 69.5 | 68.3 | 68.9
S K4 72.0 | 52.8 | 61.0
S Ko 61.7 | 60.0 | 60.8
S K3 62.6 | 60.7 | 61.6
SK, 73.1 | 50.3 | 59.7
S K5 59.0 | 60.7 | 59.8
S Kg 57.7 | 61.8 | 59.7
SK3z + SK4 75.0 | 63.4 | 68.8
SKs3+ SKg 66.8 | 65.1 | 65.9
SSK = > ; SKj 73.8 | 66.2 | 69.8
SST Kernel + SSK | 75.6 | 66.6 | 70.8
CK1 + SSK 76.6 | 67.0 | 71.5
(Zhou et al., 2007) 22| 702 | 758




Coreference Resolution

= Subtree that covers both anaphor and antecedent candidate

=> syntactic relations between anaphor & candidate (subject, object,
c-commanding, predicate structure)

= Include the nodes in path between anaphor and candidate, as
well as their first_level children

—*“the man 1n the room saw him”
— inst(“the man”, “him”)




Context Sequence Feature

= A word sequence representing the mention
expression and its context

» Create a sequence for a mention

—- “Even so, Bill Gates says that he just doesn’t
understand our infatuation with thin client versions of
Word ”

— (s0)(,) (Bill)(Gates)(says)(that)




Composite Kernel

= Different kernels for different features
» Poly Kernel for baseline flat features
» Tree Kernel for syntax trees
» Sequence Kernel for word sequences

= A composite kernel for all kinds of features
= Composite Kernel = TK*PolyK+PolyK+SK




Results for pronoun resolution
[Vesley et al, Coling 2008]

MUC-6 ACE-02-BNews

R |P |F R |P F

All attribute

64.3 |63.1 |63.7 58.9 |68.1 63.1
value features

+ Syntactic Tree

+ Word 65.2 [80.1 |71.9 65.6 |69.7 67.6
Sequence




Results on the overall Coreference

Resolution using SVMs

MUC-6 ACEO2-BNews

R | P | F R P F
Basic Features 615 | 67.2 | 64.2 | 54.8 | 66.1 | 59.9
SVMs
Basic Features + 634 | 67.5| 654 | 56.6 | 66.0 | 60.9
Syntax Tree
Basic Features + 644 | 67.8 | 66.0 | 57.1 | 654 | 61.0
SyntaxTree + Word
Sequences
All Sources of Knowledge | 60.1 | 76.2 | 67.2 | 60.0 | 65.4




Kernels for Reranking




Reranking framework

Hypotheses Pairs Hypotheses
H1 <~HI1,H2> H4
2 < =
g; H1.H3 H3 H4
Local Model |— — —p|Re-ranker| 51 |,
- <Hn,H1= H1
Hn <Hn,H2> Hn




More formally

Build a set of hypotheses: Q and A pairs
These are used to build pairs of pairs, <H Hf>

» positive instances if H' is correct and H' is not correct
A binary classifier decides if H' is more probable than H

Each candidate annotation H' is described by a structural
representation

This way kernels can exploit all dependencies between
features and labels




Preference Kernel

Pg(x,y) <¢(x1) P(x,),0(y,) - ¢(y2)>—
Pr({x1,m2), (Y1, y2)) = K(x1,91)+
K(x2,y2) — K(x1,y2) — K(22, 1),

where K is a kernels on the text, e.g., in case of
guestion and answer:

K()c1 , Y1) = PTK(%1 , qyl) + PTK(ax1 : ayl)




Syntactic Parsing Reranking

= Pairs of parse trees (Collins and Duffy, 2002)
= N-best parse generated by the Collins’ parser

= Re-ranking using STK in a perceptron algorithm




Concept Segmentation and Classification
of speech

= Given a transcription, i.e., a sequence of words, chunk
and label subsequences with concepts

= Air Travel Information System (ATIS)
» Dialog systems answering user questions
» Conceptually annotated dataset
» Frames




An example of concept annotation in ATIS

= User request: list TWA flights from Boston to
Philadelphia

list TWA flights from Boston to Philadelphia
—~ —— D Y—— =~o _

null airline_.code 11 null fromloc.city null tolchz'ty

= The concepts are used to build rules for the dialog manager

(e.g. actions for using the DB)

from location i
- list flights from boston to Philadelphia

= to location FRAME: FLIGHT
s airline code FROMLOC.CITY = boston
TOLOC.CITY = Philadelphia |




Our Approach
[Dinarelli et al., TASL 2012]

= Use of Finite State Transducer (or CRF) to generate word
sequences and concepts

= Probability of each annotation
= m best hypothesis can be generated

s ldea: use a discriminative model to choose the best one
» Re-ranking and selecting the top one




Reranking for SLU

Input
Utterance

l

ASR

'

FST

Hypotheses

Hl1
H2
H3

Hn

Pairs

<H1,H2>
<H1,H3>

<Hn,H1=
<HnH2>

Re-ranker |

Hypotheses

H4
H3
H1
Hn

H4




Reranking concept labeling

= [ have a problem with my monitor

H- T Nuir have NuLL a PROBLEM-B problem PROBLEM-I
p
with NurLL my HW-B monitor HW-I

H: I Nuir have NurL a NuLL problem HW-B with NULL

my NULL monitor




Luna Corpus

= Wizard of OZ, helpdesk scenario

Corpus LUNA Training set Test set

words concepts words concepts
Dialogs 183 67
Turns 1,019 373
Tokens 8,512 2,887 2,888 984
Vocabulary 1,172 34 - -
OOV rate - - 3.2% 0.1%




Media Corpus

training development test

# sentences 12,908 1,259 3,005
words  concepts | words  concepts | words  concepts
# tokens 94,466 43,078 | 10,849 4,705 | 25,606 11,383
# vocabulary 2,210 99 838 66 1,276 78
# OO0V rate [%] - - 1.33 0.02 1.39 0.04




Flat tree representation

ROOT
NULL NULL PROBLEM-B FROBLEM-I NULL HW-B HW-I

I have a problem with  my monitor




Cross-language approach: Italian version

ROOT
NULL PROBLEM-B PROBLEM-I HW-B HW-I

Ho un problema col monitor




Multilevel Tree

ROOT
NULL PROBLEM HW
Ho PROBLEM-B PROBLEM-I HW-B HW-I

un problema col mounitor




Enriched Multilevel Tree

ROOT

PROBLEM

NULL / \ //\
/\ PROBLEM-B PROBLEM-I HW-B HW-I

FO:Ho Fl:Ho FOun  FLAART  FO:problema  Fliproblema FO:col FLSPRE  FO:momtor  Fl:momtor




Results on LUNA

Text Input (CER) | Speech Input (CER)
Model Attr. | Attr.-Val. | Attr Attr.-Val.
FST 24.4% 27.4% 36.4% 39.9%
SVM 25.3% 27.1% 34.0% 36.7%
CRF 21.3% 23.5% 31.0% 34.2%
FST-RR 20.7% 22.8% 32.7% 36.2%
CRF-RR 19.9% 21.9% 29.0% 32.2%
FST + RRs | 19.2% 21.5% 30.4% 33.8%
CRF + RRg | 19.0% 21.1% 28.3% 31.4%




Results on Media

Text Input (CER) | Speech Input (CER)
Model Attr. | Attr.-Val. | Attr. Attr.-Val.
FST 14.2% 17.0% 28.9% 33.6%
SVM 13.4% 15.9% 25.8% 29.7%
CRF 11.7% 14.2% 24.3% 28.2%
FST-RR 11.9% 14.6% 25.4% 29.9%
CRF-RR 11.5% 14.1% 23.6% 27.2%
FST+ RRg | 11.3% 13.8% 24.5% 28.2%
CRF + RRs | 11.1% 13.1% 22.7% 26.3%




Reranking for Named-Entity Recognition
[Vien et al, 2010]

ORG.Type || NULL||NULL ORG.Type |NULL||ORG.Type || NULL

o e\
ORGJ[ORG[OR ORG ORG
\ \\ AN \

South|| Africa || Breweries ||Ltd | |bought || stakes the || Lech||and || Tychy || brewers

= CRF F1 from 84.86 to 88.16
= Best Italian system F1 82, improved to 84.33




Reranking Predicate Argument Structures
[Moschitti et al, CoNLL 2006]

= loday, a car was pushed into a ravine.

TREE

A S SN

ARGO ARG1 ARG2 ARG3 ARG4 ARG5 ARGS6

AM-TMP Al rel A2 null null null

Nl‘\TP N‘P pushed | NP = SVMs F1 from 75.89

Today a car a ravine to 77.25




Relational Kernels




Recognizing Textual Entailment

learning textual entailment recognition rules
from annotated examples

... the textual entailment recognition task:
determine whether or not a text T implies a hypothesis H

T,= H,
T, “At the end of the year, all solid companies pay dividends.”
H, “At the end of the year, all solid insurance companies pay dividends.”

“Traditional” machine learning approaches:

similarity-based methods = distance in feature spaces




Determine Intra-pair links
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Determine cross pair links

PP

—_— ‘
IN NP DT JJ
| e — /
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Our Model (Zzanzotto and Moschitti, ACL2006)

Defining a similarity between pairs based on:
Kend (T H),(T",H”))=
Ki((TH).(T"H))+Ks((T,H),(T7,H"))
r Intra-pair similarity
KT H),(T " ,H))=TK(T ,H)xTK(T"",H")
» Cross-pair similarity
Ks((T H),(T,H))=TK(T, T")+ TK(H ,H")




The final kernel

[er(<]—x/q Hl), (,T//’ H//)) —

max (KT (t(H',c),t(H",i)) + K- (t(T", ), t(T", z))

ce(C

where:

¥ ¢ is an assignment of placeholders

» ttransforms the trees according to the assigned
placeholders




Experimental Results

s RTE1 (1st Recognising Textual Entailment Challenge) [Dagan et al.,
2005]
» 567 training and 800 test examples

s RTEZ2, [Bar Haim et al., 2006]
» 800 training and 800 test examples

BOW+LS| +TK | +K,, |System
Avg.

RTE1 0.5888 | 0.6213 | 0.6300 0.54

RTEZ2 0.6038 | 0.6238 | 0.6388 0.59




Svstem

(Hickl et al., 2006)

( Tatu and Moldovan, 2006)
(Zanzotto et al., 2006)

( Adams, 2006)

(Bos and Markert, 2006)
(Kouylekov and Magnini, 2006)
( MacCartney et al.. 2006)
(Snow et al., 2006)

(Herrera et al., 2006)

( Nielsen et al., 2006)

( Marsi et al., 2006)

(Katrenko and Adriaans, 2006)
( Burchardt and Frank, 2006)
(Rus, 2006)

( Litkowski, 2006)

(Inkpen et al.. 2006)

(Ferrndez et al., 2006)

(Schilder and Mclnnes, 2006)

Strategy

lex syn.trg

lex

syn

lex
trg,lex

syn

lex svn

Decision

mlr
thr.inf
mlr
mlr
mlir.inf
thr.nlr
mlr
rul.mlr
mlr
mlr
thr
mlr
mlr
thr
thr
mlr
thr
mlr

An. Level

Ixs,synt
SUr,sem
Ixs,syn
sur,lxs
sur,lxs
Ixs,syn
Ixs,syn
Ixs,syn
lex svn
Sur,syn
Ixs,syn
syn
Ixs,syn
Ixs,syn
sur
Ixs,syn
lex svn

Ixs,syn

Knowledge Resources

WN,paraph, PropBank

WN.SUMO ExtWN. axioms

WN
WN
WN, axioms
WN.DIRT
WN
WN. MindNet, thes
WN

WN

WN FrameNet. SUMO
WN

WN
WN
WN

Acc.

0.7538
0.7375
0.6388
0.6262
0.6160
0.6050
0.6050
0.6025
0.5975
0.5960
0.5960
0.5900
0.5900
0.5900
0.5810
0.5800
0.5563

| 0.5550 |




Relational Kernels for
Answer Reranking







An example of Jeopardy! Question
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Baseline Model
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e | |
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g e rowned 1-Applying PTK without any extra annotation and
e A evaluate the model as baseline.
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S
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\ | e e
One of NP PP
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Best Model

NP PP
cD N NP

|
One of PP

ROOT
d
VP -
aat

|

crown

CD IN
|
two kings since
NP-@ DT NNP-@

illiam the Conquerg

Methodology:

1-Applying lemmatization and stemming in
leaves level.

2-Add an anchor to pre-terminal and higher

3-lgnore stop words in matching procedure.

vels if the sub-trees are shared in Q and A.

NP

DT NN VBZ

| |
The abbey is NP

DT WHADVP
the WRB

where

the notable

exception of




crown

NNS IN

kings since

NP-@ DT NNP-@

illiam the Conquerg

Question .




Representation Issues

= Very large sentences

= The Jeopardy! cues can be constituted by more than one
sentence

= The answer is typically composed by several sentences

= [0o0 large structures cause inaccuracies in the similarity
and the learning algorithm looses some of its power




Running example (randomly picked Q/A
pair from Answerbag )

Question: Is movie theater popcorn vegan?

Answer:
(01) Any movie theater popcorn that includes butter -- and
therefore dairy products -- is not vegan.

(02) However, the popcorn kernels alone can be considered

vegan if popped using canola, coconut or other plant oils
which some theaters offer as an alternative to standard

popcorn.




Shallow models for Reranking:
[Sveryn&Moschitti, SIGIR2012]

Question sQ
]~
VBZ NN NN JJ NN | mmm) bagofpostags .
| | | | | gorp 8 and their
IS movie theater  popcorn  vegan bag of words combination
(is) (movie) (theater) (popcorn) (vegan)
(VBZ) (NN) (NN) (JJ) (NN)
Answer S
//
DT NN NN NN WDT VBZ NN cC RB JJ NNS VBZ RB NN
| ! | ! | | | ! | ! | — |
any movie theater popcorn that includes butter and therefore dairy  products is not vegan

(any) (movie) (theater) (popcorn) (that) (includes) (butter) (and) (therefore) (dairy) (products) (is) (not) (vegan)

(DT) (NN) (NN) (NN) (WDT) (VBZ) (NN) (CC) (RB) (JJ) (NNS) (VBZ) (RB) (NN)




Linking question with the answer 01

Lexical matching is on word
lemmas (using WordNet
lemmatizer) sQ

NN JJ NN
| |

VBZ NN
| |
theater] [popcorn

S
DT N N N WDT VBZ NN CcC RB JJ NNS VBZ RB NN
anyI movie I theater popE:orn that includes butter and therefore —damy srodacts not
S
RB DT JJ NNS RB MD VB VBN NN IN VBN VBG NN NN cC JJ NN NNS WDT DT NNS VBP IN DT NN TO JJ NN

R S L O O T e e (O Ay AN A AN R AN AN A

however the popcorn kernels alone can be considered vegan if popped using canola coconut or other plant oils which some theaters offer as an alternative to :ﬂ{f“ =popcor




Linking question with the answer 02

Lexical matching is on word

lemmas (using WordNet .
lemmatizer) sq Question sentence

NN JJ NN
| |

VBZ NN
| |
theater] [popcorn

DT N N VBZ RB NN
any popcorn  that includes butter and therefore da products is  not 8gan
<
—== — 3 TO
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I I I I I I I I I I I I I I 1
popcorn

however the

T
kernels alone can ﬂ considered if popped using canola coconut or other plant oils which some §theaters § offer as an alternative

I

to




Linking question with the answer:
relational tag

Marking pos tags of the aligned
words by a relational tag: “REL”

SQ

REL-VBZ REL-NN REL-NN REL-JJ |REL-NN

I I
theater popcorn vegan

A S
/ _~— ) —— =

DT REL- REL,AN RELANN WDT vBZ NN CcC RB JJ NNS REL-VBZ

| = i | N | I \ | =
any Imowe Itheater popcornf that includes butter and therefore dairy™ —produets IS




Answerbag data

o . professional question answer
interactions

= Divided in 30 categories, Art, education, culture,...

= 180,000 question-answer pairs




Learning Curve for Answerbag
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