Natural Language Processing and Automated Text Categorization
A study on the reciprocal beneficial interactions

A dissertation submitted to the department of Computer Science, Systems and Production in candidacy for the degree of Doctor of Philosophy in Computer Science and Control Engineering

by Alessandro Moschitti
May 8, 2003

University of Rome
Tor Vergata
Abstract

Modern Information Technologies and Web-based services are faced with the problem of selecting, filtering and managing growing amounts of textual information to which access is usually critical. Text Categorization is a subtask of Information Retrieval that allows users to browse more easily the set of texts of their own interests, by navigating in category hierarchies. This paradigm is very effective for retrieval/filtering of information but also in the development of user-driven on-line services.

Given the large amounts of documents involved in the above applications, automated approaches to categorize data efficiently are needed. Standard statistical Machine Learning models, use the bag-of-words representation to train the target classification function. Only the single words, contained in the documents, are used as features to learn the statistical models. Typical natural language structures, e.g., morphology, syntax and semantic are completely neglected in the developing of the classification function. In turn, the semantic information generated by the Text Categorization models is not used yet for the most important natural language applications. Information Extraction, Question/Answering and Text Summarization should take advantage from category information as it helps to select the domain knowledge that language applications usually use in their processing.

In this thesis, a study of the interaction between Natural Language Processing and Text Categorization has been carried out for operational applications. Since these latter require high efficient and accuracy, we have studied and implemented models that own both characteristics. Next, with the aim to enhance the accuracy in statistical Text Categorization, we have examined the role of Natural Language Processing in document representations. The extensive experimentation of the most part of Natural Language Processing techniques for Information Retrieval has shown the ineffectiveness of current linguistic processing for improving statistical Text Categorization. On the contrary, preliminary experiments on some of the most important natural language systems such as Information Extraction, Question/Answering and Text Summarization, have shown promising enhancements by exploiting Text Categorization models.
To Alan, Elisabetta, Guido, Monica and Rossana
my family, old and new
Acknowledgements

I would like to thank my supervisor prof. Roberto Basili that advised me since the earlier years of my PhD course. Most part of the content of this thesis is based on several scientific papers that we wrote together. Then I sincerely need to thank prof. Maria Teresa Pazienza that enrolled me in her Artificial Intelligence and Natural Language Processing group.

Many thanks to Dr. Michele Vindigni, with whom I had the earlier discussion about Text Categorization. He designed and implemented, for my earlier studies, the first software for the evaluation of micro-average Precision and Recall of the classifier embedded in TREVI. Particular thanks are devoted to my colleague Dr. Fabio Massimo Zanzotto with whom I had daily dialectical debates on the use of Natural Language Processing for Information Retrieval. His knowledge together with the Roberto’s ones often embodied the NLP soul in my experiments on statistical text categorization. Moreover, I want to thank Dr. Massimo di Nanni who helped me in the first release of the profile-based text classifier software and Armando Stellato for his daily help to our group. Thanks to the other PhD students and staff of “Tor Vergata” University. In particular, Mauro Andreolini, Valeria Cardellini, Emiliano Casalicchio and Marco Emilio Poleggi made these studying years more pleasant.

I wish to thank, prof. Paola Velardi that advised me on the early steps in the academic career, prof. Giuseppe Iazeolla and prof. Vittoria de Nitto as advisors for my doctorate exams.

Last but not least, I have to thank prof. Sanda Harabagiu and prof. Dan Moldovan from whom I have been visiting scholar also during the writing of this thesis. In particular, the Chapter 4 of this thesis could not be realized without the help of prof. Harabagiu.
Contents

1 Introduction 1
1.1 Efficient Models for Automated TC 3
 1.1.1 Designing a Text Classifier 3
 1.1.2 Profile-based Text Classifier 4
 1.1.3 Some Methods of Text Categorization 5
1.2 The role of NLP in IR . 8
 1.2.1 NLP for Text Retrieval 10
 1.2.2 NLP for Text Categorization 11
1.3 Text Categorization for NLP 13
 1.3.1 Information Extraction 13
 1.3.2 Question/Answering . 15
 1.3.3 Text Summarization . 16
1.4 Thesis Outline . 17

2 Text Categorization and Optimization 19
2.1 Document Preprocessing . 20
 2.1.1 Corpora . 20
 2.1.2 Tokenization, Stoplist and Stemming 23
 2.1.3 Feature Selection . 24
2.2 Weighting Schemes . 25
 2.2.1 Document Weighting . 26
 2.2.2 Profile Weighting . 27
2.3 Similarity in profile-based Text Categorization 28
 2.3.1 Similarity based on Logistic Regression 29
 2.3.2 Similarity over differences: Relative Difference Scores . . 29
2.4 Inference Policies and Accuracy Evaluation 30
 2.4.1 Inference Policies . 31
 2.4.2 Accuracy Measurements 31
2.5 Support Vector Machines and Rocchio Classifier 33
 2.5.1 The Classification Function 34
 2.5.2 Rocchio Learning . 34
 2.5.3 Support Vector Machine learning 35
2.6 The Parameterized Rocchio Classifier 36
 2.6.1 Search space of Rocchio parameters 37
2.6.2 Procedure for parameter estimation 39
2.6.3 Related Work ... 40
2.7 Performance Evaluations: PRC, Rocchio and SVM 41
2.7.1 Relationship between accuracy and ρ values 42
2.7.2 Performance Evaluation on the Reuters fixed test-set 44
2.7.3 Cross evaluation ... 45
2.8 Conclusions .. 50

3 NLP for Text Categorization ... 51
3.1 Natural Language Feature Engineering 52
3.1.1 Language processing for Text Categorization in TREVI 53
3.1.2 Basic NLP-derived feature set .. 55
3.1.3 Terminology-based Document Representation 56
3.1.4 Semantic representation .. 59
3.1.5 Computational Aspects .. 62
3.2 Experiments on basic NLP-derived indexes 64
3.2.1 Efficient NLP on Efficient TC models 65
3.2.2 Experiment 1.1: Performances in TREVI-Reuters corpus 66
3.2.3 Experiment 1.2: Performances in HOS 67
3.2.4 Experiment 1.3: Assessments over the Reuters corpus 68
3.2.5 Experiment 2: Part-of-Speech information 68
3.2.6 Discussion ... 69
3.3 Experiments on advanced NLP-features 73
3.3.1 PRC for measuring different NLP-feature sets 74
3.3.2 The impact of basic NLP-features and Terminology 75
3.3.3 Cross-corpora/classifier validations of NLP-features 77
3.3.4 Experiments on word senses ... 81
3.3.5 Discussion ... 82
3.3.6 Related Work ... 85
3.4 Conclusions .. 89
3.4.1 Efficient NLP for Efficient TC ... 89
3.4.2 The role of NLP for Text Categorization 90

4 Advanced NLP systems via Text Categorization 93
4.1 Text Categorization for Information Extraction 94
4.1.1 Information Extraction ... 95
4.1.2 Semantic Frames ... 96
4.1.3 Semantic Labeling via TC models 100
4.1.4 Experiments ... 103
4.2 Text Categorization for Question Answering 105
4.2.1 Textual Question Answering .. 105
4.2.2 Text and Question Categorization 108
4.2.3 Answers filtering and Re-Ranking based on Text Categorization .. 111
4.2.4 Experiments ... 113
4.3 Category-Based Text Summarization 120
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>BEP of the Rocchio classifier according to different ρ values for Acq, $Earn$ and $Grain$ classes of the Reuters Corpus.</td>
<td>42</td>
</tr>
<tr>
<td>2.2</td>
<td>BEP of the Rocchio classifier according to different ρ values for $Trade$, $Interest$, and $Money Supply$ classes of the Reuters Corpus.</td>
<td>43</td>
</tr>
<tr>
<td>2.3</td>
<td>BEP of the Rocchio classifier according to different ρ values for $Reserves$, $Rubber$ and Dlr classes of the Reuters Corpus.</td>
<td>43</td>
</tr>
<tr>
<td>3.1</td>
<td>Screendump: TREVI Parser output</td>
<td>54</td>
</tr>
<tr>
<td>3.2</td>
<td>μBEP of the $Roc^{Scut/NL}$ and $Roc^{Scut/Rds}$ classifiers according to different ρ values</td>
<td>72</td>
</tr>
<tr>
<td>3.3</td>
<td>μBEP comparisons between Rocchio classifier trained with $Tokens$ and NLP-features, according to different ρ values.</td>
<td>76</td>
</tr>
<tr>
<td>3.4</td>
<td>BEP of the Rocchio classifier over two feature sets (i.e. $Tokens$ and NLP-derived) according to different ρ values for $Trade$ category of the Reuters Corpus</td>
<td>76</td>
</tr>
<tr>
<td>3.5</td>
<td>BEP of the Rocchio classifier over two feature sets (i.e. $Tokens$ and NLP-derived) according to different ρ values for $Grain$ category of the Reuters Corpus</td>
<td>77</td>
</tr>
<tr>
<td>3.6</td>
<td>BEP of the Rocchio classifier over two feature sets (i.e. $Tokens$ and NLP-derived) according to different ρ values for Dlr category of the Reuters Corpus</td>
<td>77</td>
</tr>
<tr>
<td>3.7</td>
<td>BEP of the Rocchio classifier over two feature sets (i.e. $Tokens$ and NLP-derived) according to different ρ values for $Earn$ category of the Reuters Corpus</td>
<td>78</td>
</tr>
<tr>
<td>3.8</td>
<td>BEP of the Rocchio classifier over two feature sets (i.e. $Tokens$ and NLP-derived) according to different ρ values for $Reserves$ category of the Reuters Corpus</td>
<td>78</td>
</tr>
<tr>
<td>3.9</td>
<td>BEP of the Rocchio classifier over two feature sets (i.e. $Tokens$ and NLP-derived) according to different ρ values for $Rubber$ category of the Reuters Corpus</td>
<td>79</td>
</tr>
<tr>
<td>4.1</td>
<td>Example of sentences mapped in FrameNet.</td>
<td>96</td>
</tr>
<tr>
<td>4.2</td>
<td>Hierarchical structuring of the Motion domain in FrameNet.</td>
<td>97</td>
</tr>
<tr>
<td>4.3</td>
<td>Mappings from an extraction template to multiple frames.</td>
<td>99</td>
</tr>
<tr>
<td>4.4</td>
<td>Architecture of a Q/A system.</td>
<td>106</td>
</tr>
</tbody>
</table>
4.5 The MRAR results for basic Q/A and Q/A with answer re-ranking based on question categorization via the PRTC and QSVM models.

4.6 The SRAR results for basic Q/A and Q/A with answer re-ranking based on question categorization via the PRTC and QSVM models.

4.7 Example of an XDG
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Accuracy of the most famous models on the Reuters corpus</td>
<td>8</td>
</tr>
<tr>
<td>1.2</td>
<td>Example of an Information Extraction template applied to a Reuters news from the Acquisition category.</td>
<td>14</td>
</tr>
<tr>
<td>2.1</td>
<td>Description of some Reuters categories</td>
<td>22</td>
</tr>
<tr>
<td>2.2</td>
<td>Description of some Ohsuined categories</td>
<td>22</td>
</tr>
<tr>
<td>2.3</td>
<td>Scores for a simple Classification Inference case</td>
<td>30</td>
</tr>
<tr>
<td>2.4</td>
<td>Mean, Standard Deviation and Median of ρ values estimated from samples.</td>
<td>45</td>
</tr>
<tr>
<td>2.5</td>
<td>PrC and μf_1 performances on the Reuters corpus. RTS is the Reuters fixed test-set while TS indicates the evaluation over 20 random samples.</td>
<td>47</td>
</tr>
<tr>
<td>2.6</td>
<td>PrC and SVM f_1 and the μf_1 performances on the Reuters corpus. RTS is the Reuters fixed test-set while TS indicates the evaluation over 20 random samples.</td>
<td>47</td>
</tr>
<tr>
<td>2.7</td>
<td>Performance Comparisons among Rocchio, SVM and PrC on Ohsuined corpus.</td>
<td>48</td>
</tr>
<tr>
<td>2.8</td>
<td>Performance comparisons between Rocchio and PrC on ANSA corpus</td>
<td>48</td>
</tr>
<tr>
<td>3.1</td>
<td>Text Categorization System: Experimental Parameter setting</td>
<td>66</td>
</tr>
<tr>
<td>3.2</td>
<td>Classifier Performances on the TREVI-Reuters</td>
<td>67</td>
</tr>
<tr>
<td>3.3</td>
<td>RDS vs. LR technique on the TREVI-Reuters</td>
<td>67</td>
</tr>
<tr>
<td>3.4</td>
<td>Classifier Performances on HOS Corpus with Scut</td>
<td>68</td>
</tr>
<tr>
<td>3.5</td>
<td>Classifier Performances on Reuters3 Corpus</td>
<td>68</td>
</tr>
<tr>
<td>3.6</td>
<td>Syntactic Information vs. Classification Accuracy on Trevi-Reuters</td>
<td>69</td>
</tr>
<tr>
<td>3.7</td>
<td>Syntactic Information vs. Classification Accuracy on Reuters</td>
<td>69</td>
</tr>
<tr>
<td>3.8</td>
<td>Characteristics of Corpora used in the experiments</td>
<td>74</td>
</tr>
<tr>
<td>3.9</td>
<td>Breakeven points of PrC on three feature sets provided by NLP applied to Reuters3 corpus.</td>
<td>75</td>
</tr>
<tr>
<td>3.10</td>
<td>Rocchio, PrC and SVM performances on different feature sets of the Reuters corpus</td>
<td>79</td>
</tr>
<tr>
<td>3.11</td>
<td>Rocchio, PrC and SVM performances on different feature sets of the Ohsuined corpus</td>
<td>80</td>
</tr>
</tbody>
</table>
3.12 Rocchio, PRC and SVM performances on different feature sets of the ANSA corpus ... 80
3.13 Performance of SVM text classifier on the Reuters corpus. 81
3.14 PRC and SVM μf_1 performances on 20 NewsGroups. 82

4.1 Phrase types annotated in FrameNet 98
4.2 Grammatical functions annotated in FrameNet 99
4.3 Performance of SVM classifier on frame assignment 104
4.4 Example of question labeled in the $Crude$ category and its five answers. .. 112
4.5 Some training/testing Questions 115
4.6 f_1 performances of question categorization 116
4.7 Performance comparison between basic Q/A and Q/A using question categories information for answer extraction 117
4.8 Performance comparison between the answer re-ranking and the answer elimination policies. .. 117
4.9 Ohsumed sample news item ... 121
4.10 Complex Nominals extracted from the $Neonatal$ $Dis.\&$ $Abnor-
malities$ category texts and ranked according to the PRC model
($only$ non $null$ $weights$ are $reported$) 122
4.11 Single words extracted from the complex nominals of Table 4.10. They have been alphabetically ordered to better separate the compounding words ... 123
4.12 Complex term Ohsumed Cardiovascular disease class descriptor:
PRC vs. simple frequency ... 127
4.13 Phase 1 of user understandability testing. Only the title and the relevant keywords are provided to decide if the document is relevant or not for the target category. 128
4.14 Phase 2 of user understandability testing. The title and the summary is shown to the user to decide if the document is relevant or not for the target category. 128
4.15 Phase 3 of user understandability testing. The entire document is shown to the user that can finally give his perception of the document category .. 129
4.16 Evaluation of the class explanation model 131
Chapter 1

Introduction

Modern Information Technologies and Web-based services are faced with the problem of selecting, filtering and managing growing amounts of textual information to which access is usually critical. Information Retrieval (IR) is seen as a suitable methodology for automated management of information/knowledge as it includes several techniques that support an accurate retrieval of information and the consequent user satisfaction. Among the others, the classification of electronic documents in general categories (e.g., Sport, Politic, Religion...) is an interesting mean to improve the performances of IR systems: (a) users can more easily browse the set of documents of their own interests and (b) sophisticated IR models can take advantages of the categorized data. As an example, the authoring of the textual documents is carried out using the document contents. A preliminary categorization step provides an indication of the main areas of interest. Text Categorization (TC) is, thus, playing a major role in retrieval/filtering but also in the development of user-driven on-line services.

Given the large amount of documents involved in the above processes, automated approaches to categorize data are needed. Machine Learning techniques are, usually applied to automatically design the target classification function using a set of documents (learning-set), previously assigned in the target categories. Such learning algorithms need statistical document representations. The most common representation is the so-called bag-of-words, i.e. only the simple document words, are used for feeding the learning algorithm. The linguistic structures (e.g., morphology, syntax and semantic) typical of natural language documents are completely neglected. Nevertheless, this approach has shown high accuracies in the automated classification of a set of unseen documents (test-set).

As the vital importance of information for some specific sectors ranging from changes in management positions to business intelligence or information about terrorist acts, the accuracy in selecting only the suitable data has become a crucial issue. The consequence is that more and more accurate TC learning models have been designed: on one hand, researchers have attempted to improve the categorization algorithm by using several theoretical learning models (e.g.,

Joachims, 1998; Yang, 1999; Tzeras and Artman, 1993; Cohen and Singer, 1999; Salton and Buckley, 1988; Ng et al., 1997; I. Moulinier and Ganascia, 1996; Apté et al., 1994; Quinlan, 1986; Hull, 1994; Schütze et al., 1995; Wiener et al., 1995; Dagan et al., 1997; Lewis et al., 1996; Ittner et al., 1995); on the other hand, document representations more sophisticated than bag-of-words have been experimented.

The designing of more effective TC models has produced an increase of the time complexity for both training and classification phases. On the contrary, an important requirement of the current operational scenarios is efficiency. For instance, web applications require effective data organization and efficient retrieval as for the huge and growing amount of documents. In order to govern the overall complexity, the current trend is the designing of efficient TC approaches [Lewis and Sebastiani, 2001]. A careful analysis of the literature reveals that on-line classifiers are the most (computationally) efficient models [Sebastiani, 2002]. These are based on a vector representation of both documents and categories by means of feature weights derived via different approaches [Hull, 1994; Schütze et al., 1995; Wiener et al., 1995; Dagan et al., 1997; Lewis et al., 1996; Cohen and Singer, 1999]. The decision if a document belongs or not to a category is then made measuring the similarity between the target vector pair (i.e., document and category).

The drawback of the above classifiers is the accuracy lower than other more complex classification algorithms. An approach to improve the accuracy, maintaining the same complexity, is the use of a richer document representation. Linguistic structure [Voorhees, 1993; Strzalkowski and Jones, 1996] could embed more information than the simple words which helps TC systems to learn the differences among different categories. Typical structures that have triggered the interest of IR researchers are complex nominals, subject-verb-object relations and the word meaning. This latter, is particularly useful in representing the document content unambiguously. For example the slide as transparency for projectors and the slide as sloping chute for children are the same words whereas the meaning is completely different. Richer representations, described above, are usually obtained by applying some of the Natural Language Processing (NLP) techniques. Both simple words and complex NLP structures in statistical learning models need to be treated as single units that usually refer to as features.

Automated TC, especially when the implementing algorithm is efficient and accurate, has a large applicability in the designing of IR systems. In the same way, IR is usually exploited for designing NLP applications. Information Extraction (IE), Question/Answering (Q/A) and Text Summarization (TS) are important NLP applications that use retrieval models. IR helps in locating specific documents within a huge search space (localization) while IE or Q/A support the focusing on specific information within a document (extraction or explanation). Similarly TC is currently used for general NLP applications but the advantages that it can provide for IE, Q/A and TS systems are less obvious. Anyhow, text classifiers provide for each text a set of categories that constitute an important indication of what are the main subjects of the document. The
availability of this category information enables the use of domain-specific NLP techniques. For instance, text classifiers can assign categories to small texts also, e.g., paragraphs or passages. This knowledge can be exploited by IE, Q/A and TS systems to respectively extract the relevant facts, choose the correct answers, select the important passages that are related to target domain.

In this thesis a study of the interaction between NLP and TC, in operational scenarios has been carried out. Since real applications require, high efficiency and accuracy, we have studied and implemented a model that owns both characteristics. Next, we have examined the role of NLP in document representation with the aim to further boost the accuracy of the proposed model as well as the other TC approaches. Finally, original models that use TC for improving NLP systems have been presented.

1.1 Efficient Models for Automated TC

Text Categorization is the task of assigning documents to predefined categories. It is an active research area in Information Retrieval and machine learning. A wide range of supervised learning algorithms have been applied to this problem. The classification problem can be modeled as follows. Given a set of user interests expressed into classes (i.e. topics/subtopics labels), $\mathcal{C} = \{C_1, \ldots, C_{|\mathcal{C}|}\}$ and a variety of existing documents already categorized in these classes (i.e. training-set), build a decision function, ϕ able to decide the correct classes for texts, i.e. $\phi : D \rightarrow 2^{\mathcal{C}}$. The decision function is thus asked to map newly incoming documents ($d \in D$) in one (or more) class(es), according to their content.

1.1.1 Designing a Text Classifier

The design of general text classifiers foresees a set of tasks universally recognized by the research community:

- **Features design**: in this phase the following pre-processing steps are carried out:
 - *Corpus processing*, filtering, and formatting all the documents belonging to the corpus.
 - *Extraction of relevant information*. Usual approaches make use of words as basic units of information. A *stop list* is here applied to eliminate function words (that exhibit similar frequencies over all classes). The linguistic information that characterizes a document (and its class) is here taken into account. Features more complex than simple words can be built as structured patterns (i.e. multiple word expressions), or by adding lexical information (e.g., word senses).
 - *Normalization*. Word stemming, carried out by removing common suffixes from words, is a classical method applied here. Words after stemming are usually called *stems*. When more complex features
are available via linguistic analysis (i.e. words and/or complex nominal), usually normalization refers to the activity of lemmatization (i.e. detection of the base form of rich morphological categories, such as nouns or verbs\(^1\)).

- **Feature selection**, which is an attempt to remove non-informative terms from documents to improve categorization effectiveness and reduce computational complexity. Typical selection criteria are \(\chi^2\), information gain or document frequency.

- **Feature Weighting**: features assume usually different roles in documents, i.e. they are more or less representative. Different weights are associated to features via different, often diverging, models.

- **Similarity estimation** is modeled via operations in spaces of features. This can be carried out between pairs of documents or between more complex combinations of features (e.g., profiles as the combination of features coming from different representative documents). Usually quantitative models (i.e. metrics) are adopted for this.

- **Inference**: similarity among document/profile representations activates the target classification decision. Assignment of an incoming document to a target class is based on a decision function over similarity scores. Different criteria (i.e. purely heuristics or probability-driven rules) are used in this task.

- **Testing**: the accuracy of the classifier is evaluated by using a set of pre-labeled documents (i.e. test-set) that are not used in the learning phase (training-set). The labels produced by the classifier are compared to the correct ones. The result of this phase is usually one or more numerical scores that provide a measure of the distance between the human choice (embodied by the training data) and the underlying categorization system.

1.1.2 Profile-based Text Classifier

Among linear classifiers the *profile-based* [Sebastiani, 2002] provide an explicit representation of each category. The salient information about target categories is acquired during the learning phase and collected in independent profiles. This information can be accessed in linear time during the classification process, thus resulting in fast categorization algorithms. The major advantage is their efficient impact in any real scenario like on line document classification, fast company document management and batch classification of millions of documents. Unfortunately their low computational cost is draw backed by their poorer performance than other complex approaches in terms of precision and recall.

Profile-based classifiers derive a description of each target class \((C_i)\) in terms of a profile, usually a vector of weighted terms. These vectors are extracted from

\(^1\)Notice that this is very important for languages with a rich generative morphology where hundreds of different forms are derived from the same root.
previously categorized documents under C_i used for training the system. Classification proceeds through the evaluation of similarity between the incoming document d and the different profiles (one for each class). As an example, early profile-based classifier made use of the Vector Space Model [Salton and Buckley, 1988] to define similarity. Notice that main advantages of such an approach are its computational efficiency and easy implementation.

The development of a profile-based classifier requires a specialization of some phases:

- **Features Weighting**, i.e. the building of the synthetic profiles can be defined by two steps:
 - the development of a representation \vec{d} for documents d. \vec{d} is defined over the features f extracted from d. Components d_i are weights of those features.
 - the development of a representation \vec{C}_i for a class C_i. It summarizes the representations \vec{d} of all the positive instances of C_i (i.e. $d \in C_i$)

- **Similarity estimation** in profile-based classifiers is always carried out between unknown (i.e. not classified) documents d and the above defined profiles (\vec{C}_i). Similarity is usually established within the space determined by the features (i.e. weighted elements of vectors \vec{d} and \vec{C}_i). Section 2.3 discusses different techniques.

- **Inference**: A decision function is usually applied over the similarity scores. The most widely used inference methods are: probability, fixed and proportional threshold. These are respectively called in [Yang, 1999]: Scut (a threshold for each class exists and is used to decide whether or not a document belong to it), Rcut (the best k-ranked classes are assigned to each document) and Pcut (the test-set documents are assigned to the classes proportionally to their size). Given the importance of these inference methods, a more complete definition and discussions will be given in the next chapter.

1.1.3 Some Methods of Text Categorization

In the literature several TC models based on different machine learning approaches have been developed. Whatever is the technology, the adopted models suffer by the trade-off between performance in retrieval and complexity in training and processing. This last, is crucial in operational scenarios and it makes the adoption of the best figure model unappealing. In the following, we briefly revisit the well-known approaches as well as more recent ones. Particular carefulness to operational aspects will be devoted.

Support Vector Machines (SVM), recently proposed in [Joachims, 1998], use the Structural Risk Minimization principle in order to assign (or not) a document to a class. This technique is applied to a vector space to obtain the "best"
separating hyperplane, which divides the points associated to the training documents in two classes (positive and negative examples). A quadratic programming technique finds out the hyperplane’s gradient vector with the minimum Euclidean Norm. This guarantees a minimum distance between the nearest documents of different classes and the hyperplane itself. This classifier has been successfully applied on academic benchmarks as it provides the highest performances (about 86% on Reuters). On those corpora it seems characterized by fast training and processing. The problems arise when it is applied to operational scenarios where the number of training documents is hundreds time greater than the number of documents contained in benchmarks. The disadvantages of SVMs are that the training time can be very large if there are large numbers of training examples and execution can be slow for nonlinear SVMs as it has been pointed out in [Drucker et al., 1999]. In fact, as the number of documents grows, the number of support vectors increase in a non-well understood proportional law. This means that thousands of support vectors, for assigning each single documents, could be involved in classification phase. As each support vector requires a scalar product with the input documents the time for an online classification is usually very high.

KNN is an example-based classifier, [Yang, 1994], making use of document to document similarity estimation that selects a class for a document through a k-Nearest Neighbor heuristic. In this case the algorithm requires the calculation of the scalar products between an incoming document and those contained in the training-set. The optimization, proposed by the EXP-NET algorithm [Yang, 1994], reduces the computational complexity to $O(n \times \log(n))$ time, where n is the maximum among the number of training documents, the number of categories and the number of features.

Rocchio [Ittner et al., 1995; Cohen and Singer, 1999] often refers to TC systems based on the Rocchio’s formula for profile estimation. Its major drawback is the low accuracy whereas its efficiency is very high since the learning as well as the classification time is $O(N\log(N))$, where N is the number of features. Extensions of the algorithm have been given on [Schapire et al., 1998] and [Lam and Ho, 1998] but both approaches relevantly increase the Rocchio complexity.

RIPPER [Cohen and Singer, 1999] uses an extended notion of a profile, by learning contexts that are positively correlated with the target classes. A machine learning algorithm allows the contexts of a word w to decide how (or whether) presence/absence of w contribute actually to the classification process. As it is based on profiles, it can be very fast in on line classification task, but it has a noticeable learning time. Moreover, given the complexity for deriving phrases, it is not clear if it can be applied to a huge document space (i.e., millions of documents).

CLASSI is a system that uses a neural network-based approach to text categorization [Ng et al., 1997]. The basic units of the network are only perceptrons. Given the amount of data involved in typical operational scenarios the size of the target networks makes the training and classification complexity prohibitive.

Dtree [Quinlan, 1986] is a system based on a well-known machine learning
1.1. EFFICIENT MODELS FOR AUTOMATED TC

method (i.e. decision trees) applied to training data for the automated derivation of a classification tree. The Dtree model allows to select relevant words (i.e. features), via an information gain criterion, and, then, to predict categories according to the occurrence of word combinations in documents. It efficiently supports on line classification as an attribute tree describes the categories. However the learning time is considerable.

Sleeping Experts (EXPERTS) [Cohen and Singer, 1999] are learning algorithms that work on-line. They reduce the computation complexity of the training phase for large applications updating incrementally the weights of n-gram phrases. The reduced complexity makes it appealing for a real application but as for Rocchio algorithms the performances are far from the state-of-the-art.

Naive Bayes [Tzeras and Artman, 1993] is a probabilistic classifier that uses joint probabilities of words and categories to estimates the conditional probabilities of categories given a document. The naive approach refers to the assumption of word independence. Such assumption makes the computation of Naive Bayes classifier far more efficient than the exponential complexity of a pure Bayes approach (i.e. where predictors are made of word combinations). In this case the only problem is the low performance in terms of retrieval that it shows on every corpus.

The above models have been compared on a well-known document corpus, i.e. Reuters news collection. Unfortunately, as it has been pointed out in [Yang, 1999] five Reuters versions exist and the TC systems perform differently on them. Table 1.1, indeed, reports system accuracies\(^2\) that have been measured either on Reuters 22173 or on Reuters 21578. Both of these versions have been split between training and testing sets in two different ways: Apté and Lewis modalities [Sebastiani, 2002]. It is worth noticing that the same classifier can achieve different performances on different Reuters versions/splits. Thus, Table 1.1 gives only an approximate ordering of models in terms of accuracy. Moreover the same model is subject to several implementations or variations. For example Naive Bayes has been reported by Yang to have differences in performance: 71\% [Yang, 1999] vs. 79.56\% [Yang and Liu, 1999].

According to the Table 1.1, the best figure on the Reuters corpus is obtained by the example-driven KNN classifier (82.3/85%\(^3\)) and by SVM (86\%). However, as previously discussed they have a heavier training and classification complexity, which makes their design and use more difficult within real operational domains. Other classifiers having a fast on line classification (e.g., RIPPER, SWAP-1) are based on complex learning and they do not show performances comparable to the best figure classifiers.

\(^2\)It has been done by means of the breakeven point that is the point where recall and precision assume the same value. A complete description of the most common methodology used to measure text classifier accuracy is given in next chapter.

\(^3\)The higher values (85\%) refers to an evaluation in which not labeled documents were removed from the corpus. This makes the results not realistic.
Table 1.1: Accuracy of the most famous models on the Reuters corpus

<table>
<thead>
<tr>
<th></th>
<th>SVM</th>
<th>KNN</th>
<th>RIPPER</th>
<th>CLASSI</th>
<th>Naive Bayes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>86%</td>
<td>85/82.3%</td>
<td>81/82%</td>
<td>80.2%</td>
<td>71/79.56%</td>
</tr>
<tr>
<td>SWAP1</td>
<td>CHARADE</td>
<td>EXPERT</td>
<td>Rocchio</td>
<td>Dtree</td>
<td></td>
</tr>
<tr>
<td></td>
<td>79/80.5%</td>
<td>73.8/78.3%</td>
<td>75.2/82.7%</td>
<td>74.8/78.1%</td>
<td>79.4%</td>
</tr>
</tbody>
</table>

On the contrary, Rocchio text classifier is very efficient but it has an accuracy 8% below the best figure. In order to impact the trade-off accuracy/complexity in Chapter 2 we present an original model, the Parameterized Rocchio Model (PRC) [Basili et al., 2001; Basili and Moschitti, 2002] that allows to maintain the same Rocchio complexity and to highly improve its accuracy. This result, allows us to partially satisfy the first aim of this thesis, i.e. the designing of efficient and accurate model for TC. Further improvement is needed as it will be shown that the proposed model is still less accurate than the best figure text classifiers. In the next section some improvements of document representation are presented as potential directions for increasing the accuracy of TC models.

1.2 The role of NLP in IR

The above section has shown several machine learning approaches that aimed to improve TC. Other studies relate to the designing of a more effective document representation, to increase the accuracy. Documents, as previously introduced, are usually described as pairs <feature, weight>, consequently, more suitable representation for the learning algorithm can be modeled using either a more effective weighting schemes [Singhal et al., 1995; Robertson and Walker, 1994; Buckley and Salton, 1995; Sable and Church, 2001], or by adopting alternative features instead of the simple words. In IR several attempts to design complex and effective feature for document retrieval and filtering have been carried out. Some of the well-known representations are:

- **Lemmas**, i.e., the base form of rich morphological categories, like nouns or verbs. In this representation, lemmas replace the words in the target texts, e.g., *acquisition* and *acquired* both transform in *acquire*. This should increase the probability to match the target concept, e.g., *the act of acquiring* against texts that express it in different forms, e.g., *acquisition* and *acquired*. Lemmatization improves the traditional stemming techniques used in IR. In fact, the stems are evaluated by making a rough approximation of the real root of a word. The result is that many words with different meanings have common stems, e.g., *fabricate* and *fabric*, and many stems are not words, e.g., *harness* becomes *har*.

- **Phrases** relate to the sentence subsets in term of subsequences of words. Several phrase types have been defined:
1.2. THE ROLE OF NLP IN IR

- **Simple n-grams**, i.e., sequences of words selected by applying statistical techniques. Given a document corpus all consecutive n-sequences of (non-function) words are generated, i.e. the n-grams\(^4\). Then statistical selectors based on occurrences and/or document frequencies of n-grams are applied to select those most suitable for the target domain. Typical used selectors, e.g., *mutual information* or \(\chi^2\), are described in the next chapter as they are also used in standard feature selection.

- **Nouns Phrase**, e.g., Proper Nouns and Complex Nominals. A simple regular expression such as \(N^+\) (i.e., every sequence of one or more nouns) based on word categories (e.g., nouns, verbs and adjectives) can be used to select the complex term *Minister of Finance* and discard the non-feasible term *Minister formally*. The words *Ministers* and *Finance*, in the first phrase, are often referred to as head and modifier respectively. More modifiers can appear in a complex nominal, e.g., the phrase *Satellite Cable Television System* is composed of the tree nouns *Satellite*, *Cable* and *Television* that modify the head *System*.

- \(<\text{head}, \text{modifier}_1, \ldots, \text{modifier}_n>\) tuples. Parsers, e.g., [Charniak, 2000; Collins, 1997; Basili *et al.*, 1998c] are used to detect complex syntactic relations like subject-verb-object to select more complex phrases, e.g., *Minister announces plans*, from texts. An interesting property is that these tuples can contain non adjacent words, i.e. tuple components can be words that are subject to long distance dependencies. Such tuples hardly can be detected via pure statistical models. In [Strzalkowski and Jones, 1996] only the subject-verb and verb-object pairs named the \(<\text{head}, \text{modifier}>\) pairs have been used (see Section 1.2).

The aim of phrases is to improve the precision on concept matching. For example documents in an *Economic* category could contain the phrase *company acquisition* whereas an *Education* category could include term like *language acquisition*. If the word *acquisition* alone is taken as feature, it will not be useful to distinguish between the two target categories. The whole phrases, instead, give a precise indication of which is the content of the documents.

- **Semantic concepts**, each word is substituted with a representation of its meaning. Assigning the meaning of a content word depends on the definition of word senses in semantic dictionaries. There are two ways of defining the meaning of a word. First, the meaning may be explained, like in a dictionary entry. Second, the meaning may be given through other words that share the same sense, like in a thesaurus. WordNet encodes both forms of meaning definitions. Words that share the same sense are

\(^4\)The term n-grams in IR is also referred to as the sequences of n characters from text.
said to be *synonyms* and in WordNet, a set of synonym words is called a *synset*. The advantage of using word senses rather than words is a more precise concept matching. For example, the verb *to raise* could refer to:

(a) *agricultural texts*, when the sense is *to cultivate by growing* or (b) *economic activities* when the sense is *to raise costs*.

1.2.1 NLP for Text Retrieval

The above techniques appear feasible for improving IR systems, nevertheless, the use of NLP in IR has produced controversial results and debates. In TREC-5 and TREC-6 [Strzalkowski and Jones, 1996; Strzalkowski and Carballo, 1997], document retrieval based on stems has been slightly improved using phrases, noun phrases, *head-modifier* pairs and proper names. However, their evaluation was done on *ad-hoc* retrieval mode only, as the less efficient NLP techniques could not be applied to the same *testing-set* of the pure statistical models. This prevented the comparison with the *state-of-the-art* retrieval systems. In [Strzalkowski *et al.*, 1998; Strzalkowski and Carballo, 1997] a high improvement of retrieval systems was obtained using topic expansion technique. The initial query was expanded with some related passages not necessarily contained inside the relevant documents. The NLP techniques used in TREC-6 have been used to further increase the retrieval accuracy. The success of the above preliminary experiments was not repeated in TREC-8 [Strzalkowski *et al.*, 1999] as the huge amount of data made impossible the correct application of all required steps. The conclusion was that the higher computational cost of NLP prevents its application in operative IR scenario. Another important conclusion was:

NLP representations can increase basic retrieval models (e.g., SMART) that adopt simple stems for their indexing but if advanced statistical retrieval models are used NLP does not produce any improvement. [Strzalkowski *et al.*, 1998].

In [Smeaton, 1999] a more critical analysis is made. In the past, the relation between NLP and Machine Translation (MT) has always been close. Thus, much of NLP research has been tailored to the MT applications. This may have prevented that NLP techniques were compatible with task such as retrieval, categorization or filtering. [Smeaton, 1999] assesses that when pure retrieval aspects of IR are considered, such as the statistical measures of word overlapping between queries and documents, the NLP that has been developed recently, has little influence on IR. Moreover, NLP is not useful to retrieve documents when they do not contain many, or, any of the query terms. Current IR is not able to handle cases of different words used to represent the same meaning or concepts within documents or within queries. Polysemous words, which can have more than one meaning, are treated as any other word. Thus, [Smeaton, 1999] suggests to drop the idea of using NLP techniques for IR, instead he suggested to exploit the NLP resources like WordNet. In this perspective Smeaton used WordNet to define a semantic similarity function between noun pairs. The purpose was to retrieve documents that contain terms similar to those included inside the query. As many words are polysemous, a Word Sense Disambiguation
1.2. THE ROLE OF NLP IN IR

Algorithm was developed to detect the right word senses. As such algorithm produced a performance ranging between 60-70%, the semantic similarity led to positive results only after the senses were manually validated.

Other studies using semantic information for improving IR have been carried out in [Sussua, 1993] and [Voorhees, 1993; 1994]. They report the use of word semantic information for text indexing and query expansion respectively. The poor results obtained in [Voorhees, 1994] show that semantic information taken directly from WordNet without performing any kind of WSD is not helping IR at all. In contrast, in [Voorhees, 1998] promising results on the same task were obtained after that the senses of select words were manually disambiguated.

In summary the analysis of the literature reveals that the more likely reasons for the failure of NLP for IR are the following:

- High computational cost of NLP due prevalently to the use of the parser in detecting syntactic relations, e.g., the \textit{<head, modifier>} pairs. This prevented a systematic comparison with \textit{the-state of-the-art} statistical models

- Small improvements when complex linguistic representation is used. This may be caused either by the NLP errors in detecting the complex structures or by the use of NLP derived features as informative as the \textit{bag-of-words}.

- The lack of an accurate WSD tools, in case of semantic representation: (a) The ambiguity of the words causes the retrieval of a huge number of irrelevant documents if all senses for each query words are introduced, or (b) if a WSD with 60% is employed to disambiguate document and query word senses, the retrieval precision decrease proportionally to the error, i.e., 40%.

1.2.2 NLP for Text Categorization

As the literature work has shown the failure of NLP for IR why should we try to use it for TC? Text categorization is a subtask of IR, thus, the above results should be the same for TC also. However, there are different aspects of TC that require a separated study as:

- In TC both set of positive and negative documents describing categories are available. This enables the application of theoretical motivated machine learning techniques. These methods better exploit and select the document representations.

- Categories differ from queries as they are fixed, i.e., a predefined set of training documents completely define the target category. This enables the use of feature selection techniques to select relevant features and filtering out those irrelevant also derived from NLP errors.

- There is no query involved in the TC task: (a) documents can be retrieved based on the training documents, which provide a stable routing profile,
and (b) the smallest data unit is the document for which it is available a more reliable statistical word distribution than in queries.

- Effective WSD algorithms can be applied to documents whereas this was not the case for queries (especially for the short queries). Moreover, an evaluation of WSD tools has been recently carried out in SENSEVAL [Kilgarriff and Rosenzweig, 2000]. The results are an accuracy of 70% for verbs, 75% for adjectives and 80% for nouns. This last result makes viable the adoption of semantic representation at least for the nouns.

- TC literature studies report contrasting results on the use of NLP for TC. Even if in [Lewis, 1992] is shown that using phrases and phrase clusters generates a decrease of classification accuracy on Reuters documents. On the contrary, more recent results from [Basili et al., 2000a; 2001; 2002] show that including some syntactic information, such as recognition of proper nouns and other complex nominals in the document representation can slightly improve the accuracy of some weak TC models such as the Rocchio classifier. Other work using phrase [Furnkranz et al., 1998; Mladenić and Grobelnik, 1998; Raskuti et al., 2001; Bekkerman et al., 2001; Tan et al., 2002] report noticeable improvement over the bag-of-words. These results require a careful analysis that will be carried out.

Semantic information for TC was experimented in [Scott and Matwin, 1999]. WordNet senses have been used to replace the simple words without any word sense disambiguation. The results were mixed as improvements were derived only for small corpus. When a more statistical reliable set of documents was used the adopted representation resulted in performance decrease.

In this paper, the impact of richer document representations on TC has been investigated. The results confirm that even for TC that current NLP tools do not improve text categorization. Explanations of why current NLP does not work as expected as well as the explanation of contrasting positive results reported in other work are given. This has been shown experimenting different corpora and different linguistically rich representations over three TC learning models. We choose Rocchio, Rocchio Paramterized [?] and SVM since richer representation can be really useful only if: (a) it causes very computational efficient classifiers (e.g. Rocchio) to reach the accuracy of the best figure classifier , or (b) it allows a target classifier to perform better than models trained with the bag-of-words, for this purpose starting from an high accurate classifier (e.g., SVM) is recomended . In both cases, NLP would advance the state-of-the-art in accuracy or in efficiency.

We chose two different TC approaches: Rocchio [Rocchio, 1971] and SVM [Vapnik, 1995] classifiers. The former is a very efficient TC, so, it would be very appealing (especially for real scenario applications) to bring its accuracy close to the most accurate classifier. The latter is one of the best figure TC, consequently, improving it causes an improvement of the state-of-the-art.
1.3 Text Categorization for NLP

Current Natural Language Processing does not seem appealing to improve the accuracy of TC models, on the contrary TC is currently used for NLP applications. The simplest use of TC for Natural Language systems is the enrichment of documents with their category labels. The TREVI system is an example as its purpose was to provide as much information as possible for the document required by users, e.g., news source, issues, date and general categories. Other NLP systems exploit categorization schemes as a navigation method to locate the user needed data. A more complex use of TC relates to the IE, Q/A and Summarization system enhancements.

1.3.1 Information Extraction

IE is an emerging NLP technology, whose purpose is to locate specific pieces of information called facts (e.g., events or finer grained data), from unstructured natural language texts. These information is used to fill some predefined database table, i.e., the templates. Current methods extract such information by using linguistically motivated patterns. Each pattern is a regular expression for which is provided a mapping to a logical form. For example given the following fragment of the Reuters news:

WASHINGTON, June 2 - Two affiliated investment firms told the Securities and Exchange Commission they have acquired 593,000 shares of Midway Airlines Inc, or 7.7 pct of the total outstanding common stock. The firms, Boston-based FMR Corp and Fidelity International Ltd, a Bermuda-based investment advisory firm, said they bought the stake "to acquire an equity interest in the company in pursuit of specified investment objectives...."

A typical template that aims to represent information relative to the acquisition of companies may be described by the Table 1.2. Note that to correctly fill the template a coreference between Two affiliated investment firms and The firms, Boston-based FMR Corp and Fidelity International Ltd should be detected.

Each different topic, e.g., bombing events or terrorist acts, requires different customized pattern sets to extract the related facts. The construction of pattern base for new topics is a time-consuming and expensive task, thus methods to automatically generating the extraction pattern have been designed.

Categorized documents have been used to enable the unsupervised patterns extraction in AutoSlog-TS [Riloff, 1996] (See Section 3.3.6). First, all possible patterns that extract noun phrases are generated from documents, using 15 different heuristics. Second, the documents are processed again to extract all

5TREVI [Basili et al., 1998b] is a distributed object-oriented system, designed and developed by an European consortium under the TREVI ESPRIT project EP23311, for news agencies in two EU languages, English and Spanish.
Table 1.2: Example of an Information Extraction template applied to a Reuters news from the Acquisition category.

<table>
<thead>
<tr>
<th>Buyer</th>
<th>Company</th>
<th>Date</th>
<th>Reported-by</th>
<th># Shares</th>
<th>Pct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boston-based FMR Corp and Fidelity International Ltd</td>
<td>Midway Airlines Inc</td>
<td>June 2</td>
<td>Reuters</td>
<td>593,000</td>
<td>7.7</td>
</tr>
</tbody>
</table>

The above method allows the IE designers to save time as the ranked list of patterns can be validated quicker than the manual annotation of the extraction rule from texts. However, the resulting Information Extraction system is clearly domain based and required the manual categorization of the learning documents. An alternative to the manual production of learning data for each application is to use general knowledge valid for any domain. Currently there are two main linguistic resources based on different knowledge representations: WordNet and FrameNet.

FrameNet is a lexico-semantic database, made recently available\(^6\). The aim of the FrameNet project is to produce descriptions of words based on semantic frames. Semantic frames, as they have been introduced by [Fillmore, 1982], are schematic representations of situations involving various participants, properties and roles, in which a word may be typically used. The Semantic Frames available from FrameNet are in some way similar to the efforts made to describe the argument structures of lexical items in terms of case-roles or thematic-roles. However, in FrameNet, the role names, which are called Frame Elements (FEs) are local to particular frame structures. For example, the FEs of the Arriving frame are THEME, SOURCE, GOAL and DATE. They are defined in the following way: the THEME represents the object which moves; the SOURCE is the starting point of the motion; the PATH is a description of the motion trajectory which is neither a SOURCE nor a GOAL; the GOAL is the expression which tells where the theme ends up. A frame has also a description that defines the relations holding between its FEs, which is called the scene of the frame. For example, the scene of Arriving is: the THEME moves in the direction of the GOAL, starting at the SOURCE along a PATH. Additionally, FrameNet contains annotations in the British National Corpus (BNC) of examples of words that evoke each of the frames. Such words are called target words, and they may be nouns, verbs or adjectives.

\(^6\)FrameNet is available at the Web site: www.icsi.berkeley.edu/~framenet.
This kind of knowledge can be successfully used for generating domain knowledge required for any new domain, i.e. Open-Domain Information Extraction. The corpus annotation available from FrameNet enable us to design learning algorithm that (a) categorize sentences in FrameNet frames and (b) allow, once available the target frame, the recognition of extraction rules for any domain [Moschitti et al., 2003]. Chapter 4 describes in more details the adopted Information Extraction algorithm as well as the use of sentence categorization.

1.3.2 Question/Answering

IR techniques have proven quite successful at locating within large collections of documents those relevant to a user’s query. Often, however, the user wants not whole documents but brief answers to specific questions like *How old is the President?* or *Who was the second person on the moon?* For this new information needs the sole statistical approach of IR is not sufficient. The result is that a new research area that includes IR and NLP techniques has been consolidating, i.e., Question Answering.

Question Answering (Q/A) is a fast growing area of research and commercial interest: from one hand, it is the only IR subtask that has been proved to be enhanced by NLP; on the other hand, the high capacity of retrieving specific information makes it appealing for business activities, e.g., information management. The problem of Q/A is to find answers to open-domain questions by searching a large collection of documents. Unlike Internet search engines, Q/A systems provide short, relevant answers to questions. The recent explosion of information available on the World Wide Web makes Q/A a compelling framework for finding information that closely matches user needs. One of the important feature of Q/A is the fact that both questions and answers are expressed in natural language. In contrast to the IR methods, Q/A approach deal with language ambiguities and incorporate NLP techniques. All the systems being built in these year exhibit a fairly standard structure: create a query from the user’s question, perform IR with the query to locate (segments of) documents likely to contain an answer, and then pinpoint the most likely answer passage within the candidate documents. Answering questions is thus the problem of finding the best combination of word-level (IR) and syntactic/semantic-level (NLP) techniques. The former produces as short a set of likely candidate segments as possible and the latter pinpoints the answer(s) as accurately as possible.

Our idea to improve Q/A systems is to introduce an additional step that uses the TC for filtering incorrect questions and improving the answer ranking. There are two ways to use categorized data in Q/A: (a) to filter paragraphs retrieved by the IR engine and (b) to filter the final answers provided by both IR and NLP processes.

Q/A systems incorporate a paragraph retrieval engine, to find paragraphs that contain candidate answers, as reported in [Clark et al., 1999; Pasca and Harabagiu, 2001]. Then, semantic information, e.g., the class of the expected answers, derived from the question processing, is used to retrieve paragraphs and later to extract answers. Typically, the semantic classes of answers are
organized in (hierarchical) ontologies and do not relate in any way to semantic classes typically associated with documents. The ontology of answer classes contains concepts like PERSON, LOCATION or PRODUCT, whereas categories associated with documents are more similar to topics than concepts, e.g., acquisitions, trading or earnings. Given that categories indicate a different semantic information than the class of the expected answer, we argue in this thesis that text categories can be used for improving the quality of textual Q/A.

This approach to our knowledge has not been studied in other Q/A researches. The usual method to exploit text categories to find the desired information is by navigating along subject categories assigned hierarchically to groups of documents, in a style made popular by Yahoo.com among others. When the defined category is reached, documents are inspected and the information is eventually retrieved. This is a totally different approach with respect to the methods followed by the use of Q/A models.

In Chapter 4, instead, filtering/re-ranking methods that automatically assigning categories to both questions and texts are presented. The filtering systems allow to eliminate many incorrect answers and to improve the ranking of answers produced by Q/A systems [Moschitti, 2003a]. Additionally, we show that, whenever the semantic class of the expected answer was not recognized, the category information improves the answer ranking. The TC filter was applied to the LCC Falcon Q/A system [Pasca and Harabagiu, 2001]. It is the current best figure Q/A system according to TREC 2002 evaluation and it was the best accurate system of past TREC editions.

1.3.3 Text Summarization

Text Summarization is the process of distilling the most important information from a source to produce an abridged version for a particular user and task [Chinchor et al., 1998; Kan et al., 2001; Hardy et al., 2001]. It is a hard problem of Natural Language Processing as it implies the understanding of the text content. This latter requires semantic analysis, discourse processing, and inferential interpretation (grouping of the content using world knowledge). As current NLP techniques are not enough accurate to accomplish the above tasks, rather than carrying out true abstraction, approximation are obtained by identifying the most important and central topic(s) of the text, and return them to the reader. Although the summary is not necessarily coherent, the reader can form an opinion of the content of the original. Indeed, most automated summarization systems today produce extracts only.

Following this last approach, there are two main ways to produce a summary:

- **Information Retrieval-based summaries.** Statistical methods are used to find sentences, which are probably the most representative. Thus, the sentence are merged to form an extract (rather than an abstract). The idea is that in this way the essence of all text information is retrieved. The meaning of the words or text is not being considered. This has two advantages: (a) the system needs no “world knowledge” and (b) by learn-
1.4 Thesis Outline

This thesis aims to study the interaction between Text Categorization and Natural Language processing. The reciprocal contribution of each other has been analyzed by measuring: (a) the improvement in accuracy that NLP techniques produce in TC and (b) the enhancement that TC models enable in NLP applications. The thesis is organized as follows:

- Chapter 2 describes the typical steps for designing a text classifier. In particular, several weighting schemes and the designing of profile-based

Both techniques can be applied to generate two different type of summaries:

- **Indicative Summaries** that suggest the contents of the document without providing specific detail. They can serve to entice the user into retrieving the full form. Book jackets, card catalog entries and movie trailers are examples of indicative summaries.

- **Informative Summaries** that represent (and often replace) the original document. Therefore it must contain all the pertinent information necessary to convey the core information and omit ancillary information.

Summaries based on IR models, usually, extract relevant passages for the target queries. To our knowledge no summarization approach use TC for summarization, even if the contrary has been experimented, e.g. [Kolcz et al., 2001]. We introduce the concept of relevance with respect to a category. The indicative and informative summaries are extracted based on weighting schemes derived from the training data of the target category [Moschitti and Zanzotto, 2002]. In particular the indicative summaries are composed of the most relevant phrases, i.e., terminological expressions or other complex nominals. Chapter 4 shows that, these kind of summaries allow users to better understand the document content relatively to a predefined categorization scheme.
classifiers are shown in detail. Additionally, the learning and classification algorithms for the Rocchio and the Support Vector Machine text classifiers are defined. The original contribution of this chapter relate to the definition of a novel inference method, Relative Difference Score and the Parameterized Rocchio text Classifier. This latter has been extensively experimented and compared using different corpora and different TC models.

• Chapter 3 reports the studies on the use of Natural Language Processing to extract linguistic feature for text categorization. Two main types of linguistically motivated features are studied: (a) those that use syntactic information, e.g., POS-tags and phrases and (b) those based on semantic information, i.e. the word senses. In particular, syntactic information has been divided in efficient, i.e. derivable via very fast algorithms and advanced that requires more complex models (that are usually more time consuming) to be detected. Extensive experimentation of such linguistic information on different corpora as well as on different models has been carried out.

• Chapter 4 proposes some novel use of TC for some sub-tasks of the most topical NLP applications, i.e., Information Extraction, Question Answering and Text Summarization. Preliminary experiments suggest that TC can improve the above NLP systems.

Finally, the conclusions can be found in Chapter 5.
Chapter 2

Text Categorization and Optimization

This chapter accurately describes the phases introduced in Section 1.1 concerning the designing and implementation of the TC models used in this thesis. Some new schemes for document weighting alternative to the Inverse Document Frequency as well as original profile based TC models have been proposed.

The major contribution of this chapter is the study on Rocchio classifier parameterization to achieve its maximal accuracy. The result is a model for the automatic selection of parameters. Its main feature is to bind the search space so that optimal parameters can be selected quickly. The space has been bound by giving a feature selection interpretation of the Rocchio parameters. The benefit of the approach has been assessed via extensive cross evaluation over three corpora in two languages. Comparative analysis shows that the performances achieved are relatively close to the best TC models (e.g., Support Vector Machines). The Parameterized Rocchio Classifier (PRC) [Basili and Moschitti, 2002; Moschitti, 2003b] maintains the high efficiency of the Rocchio model, thus it can be successfully applied in operational text categorization.

Corpora, weighing schemes, profile-based classification models, score adjustment techniques, inference policies, and performance measurements that are used in the experiments of this thesis have been defined respectively in sections 2.1, 2.2, 2.3 and 2.4. The two main TC models used in this research, Rocchio and Support Vector Machines, have been separately described and analyzed in Section 2.5. In Section 2.6 is shown how Rocchio classifier can be parameterized to enhance its accuracy. Reuters-21578 has been used to compare the Rocchio, PRC and SVM accuracies in Section 2.7. Finally the conclusions are derived in Section 2.8.
2.1 Document Preprocessing

As it has been introduced in Section 1.1, in order to carry out the text classifier learning we need a sufficient number of labeled documents. Fortunately, for TC are available a lot of such resources as the categorization of information is widely used in press Companies as well as in scientific fields. In our experience, News Agencies and Medical fields are those more sensitive to the need of categorizing documents as we got from them the larger number of documents and corpora.

2.1.1 Corpora

In this thesis 6 different collections have been considered:

- The Reuters-21578\(^1\) collection Apté split. It includes 12,902 documents for 90 classes, with a fixed splitting between test-set (here after RTS) and learning data LS (3,299 vs. 9,603). As stated in Section 1.1.3 different Reuters versions [Yang, 1999; Sebastiani, 2002] have been used for testing TC algorithms. However, this version has been used for the most part of TC literature works. Thus, it can be considered as main referring TC collection. A description of some categories of this corpus is given in Table 2.1.

- The Reuters corpus, prepared by Y. Yang and colleagues\(^2\), has been also used. It referred to as Reuters3 versions [Yang, 1999]. It includes 11,099 documents for 93 classes, with a fixed splitting between test and learning data (3,309 vs. 7,789). The differences with the previous Reuters version are: (a) The split adopted is slightly different from the Apté ones and (b) Yang removed from it all not labeled documents. This explain as this last version contain 11,099 vs. 12,902 documents of the previous Reuters-21578 versions. The removal of unlabeled corpus has prevented a direct comparison with other literature results. We noticed that the classifier accuracies (i.e., Rocchio, PRC and SVM) on Reuters-21578 are \(\sim 1\) percent points below the performance obtained on Reuters3.

- Reuters news from TREVI project, collected in a set of about 26,000 documents, and distributed throughout 20 classes. Main topics of this corpus include specific areas like financial (e.g., Corporate Industrial or Market/Share news) as well as more general classes (e.g., Sport or Elections). These categories are very different from the Acquisition, Crude or Cocoa categories of the Reuters-21578. We will refer to the TREVI collection as the TREVI-Reuters corpus. This is the first draft release of Reuters Volume 1 recently made available by the Reuters company. In our experiments we have maintained the first level of the categorization schemes, i.e. the 20 main categories.

2.1. DOCUMENT PREPROCESSING

- The ANSA collection, which includes 16,000 news items in Italian from the ANSA news agency. It makes reference to 8 target categories (2,000 documents each). ANSA categories relate to typical newspaper contents (e.g., Politics, Sport and Economics). It is worth noting that this last collection is closer to operational scenarios: some documents are not correctly assigned to the categories and several ones are repeated more than once. These problems affect almost all corpora but ANSA collection is particularly affected from document preparation errors. As an example, it is possible to find some English and German documents mixed with those in Italian.

- The Ohsumed collection\(^3\), including 50,216 medical abstracts. The first 20,000 documents, categorized under the 23 MeSH diseases categories, have been used in our experiments. The same subset of documents and categories has been used in [Joachims, 1998], thus, it possible to make a direct comparison with the results obtained in [Joachims, 1998]. Other used the Ohsumed collection for TC experiments, e.g., [Yang and Pedersen, 1997], but the employed document set and categories vary. However, literature results can give an indication of the magnitude order of the Ohsumed performance. For instance, from the fact that accuracy does not overcome 70% in all results obtained in different portion of Ohsumed, it possible to argue that this corpus is more difficult than Reuters, for which classifiers reaches 86% of accuracy. Table 2.2 gives a description of some categories used in the experiments.

- HOS (Health On-Line) news, a collection of short medicine-related abstracts. The HOS corpus is made of about 5,000 documents distributed throughout 11 classes. Typical classes are Clinical Oncology vs. Endocrinology. It is another example of real scenario corpus. HOS was part of TREVI project and provide us the documents to realize a TC system.

- The 20 Newsgroups\(^4\) (20NG) corpus contains 19997 articles for 20 categories taken from the Usenet newsgroups collection. We used only the subject and the body of each message. Some of the newsgroups are very closely related to each other (e.g., IBM computer system hardware / Macintosh computer system hardware), while others are highly unrelated (e.g., misc forsale / social religion and christian). This corpus is different from Reuters and Ohsumed because it includes a larger vocabulary and words typically have more meanings. Moreover the stylistic writing is very different from the previous corpora as it referred to e-mail dialogues rather than technical summaries in Ohsumed or event reports in the News agencies.

The above corpora contain documents separated in several categories. The most usual approach to designing a classifier is, instead, to separate documents

\(^3\)It has been compiled by William Hersh and it is currently available at ftp://medir.ohsu.edu/pub/ohsumed.

\(^4\)Available at http://www.ai.mit.edu/people/jrennie/20Newsgroups/.
in only two different sets: (1) positive documents that are categorized in the target class and (2) negative documents that are not categorized in it. Positive and negative documents are made available for the classifier designing in various forms. We have notice four main data structures:

- **The SMART format**, in which the document for all categories are given in a unique file. Headers allow to separate documents and to extract title, document id and the set of categories for target document. In this format there are available some IR SMART corpus as well as the Reuters and Ohsumed versions prepared by Yang.

- **The SGML format**, in which the tag pairs allow a more direct extraction of information, e.g., \texttt{<title> and \texttt{<\title>}. This is the format provided for the Reuters Lewis version that includes the Apté split also.

Table 2.1: Description of some Reuters categories

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acq</td>
<td>Acquisition of shares and companies</td>
</tr>
<tr>
<td>Earn</td>
<td>Earns derived by acquisitions or sells</td>
</tr>
<tr>
<td>Crude</td>
<td>Crude oil events: market, Opec decision,...</td>
</tr>
<tr>
<td>Grain</td>
<td>News about grain production</td>
</tr>
<tr>
<td>Trade</td>
<td>Trade between companies</td>
</tr>
<tr>
<td>Ship</td>
<td>Economic events that involve ships</td>
</tr>
<tr>
<td>Cocoa</td>
<td>Market and events related to Cocoa plants</td>
</tr>
<tr>
<td>Nat-gas</td>
<td>Natural Gas market</td>
</tr>
<tr>
<td>Veg-oil</td>
<td>Vegetal oil market</td>
</tr>
</tbody>
</table>

Table 2.2: Description of some Ohsumed categories

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology</td>
<td>Pathological Conditions</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>Cardiovascular Diseases</td>
</tr>
<tr>
<td>Immunologic</td>
<td>Immunologic Diseases</td>
</tr>
<tr>
<td>Neoplasms</td>
<td>Neoplasms</td>
</tr>
<tr>
<td>Digestive Sys.</td>
<td>Digestive System Diseases</td>
</tr>
<tr>
<td>Hemic & Lymph.</td>
<td>Hemic & Lymphatic Diseases</td>
</tr>
<tr>
<td>Neonatal</td>
<td>Neonatal Disorders & Abnormalities</td>
</tr>
<tr>
<td>Skin</td>
<td>Skin & Connective Tissue Diseases</td>
</tr>
<tr>
<td>Nutritional</td>
<td>Nutritional & Metabolic Diseases</td>
</tr>
<tr>
<td>Endocrine</td>
<td>Endocrine Diseases</td>
</tr>
<tr>
<td>Disorders</td>
<td>Disorders of Environmental Origin</td>
</tr>
<tr>
<td>Animal</td>
<td>Animal Diseases</td>
</tr>
</tbody>
</table>
• The raw format: this is the most usual structure in real scenario application. Users, like newspaper agencies, are not aware of data structure access and effective algorithm. They simply know that a set of documents belong to a target category. Thus, they usually produce a file containing all documents categorized for the target category. Documents are simply separated by one more empty line and if they belong to different classes (i.e. the multi-labeled documents), this information will be lost. In our research we have used several corpora of this type e.g., HOS or TREVI-Reuters.

• The raw format per file: each document is stored as a single file and each category is a directory containing all its document files. Even in this case an additional information source that indicates the multi-labeled documents, is needed. The 20 NewsGroups corpus is available in this format.

Whatever is the format of the training documents, the first step is to divide for each category the positive from negative documents, then the tokenization as well as the NLP module can be applied to both document sets.

2.1.2 Tokenization, Stoplist and Stemming

In this phase the relevant features are extracted from documents. As usual, all words as well as numbers are considered feasible features. They are, usually, called tokens. There are two possible way to form tokens:

(a) by selecting all character sequences separated by space. This means that alphanumeric strings like for example Alex69 as well as more generic strings tokenization_dir are included in the resulting feature set.

(b) by considering alphabetic or numeric character sequences separated by all other characters. In this case the feature set contains only the usual words and numbers. The size of this feature set is lower than the set of the point (a).

In almost all our experiments we used the set derived in point (a), hereafter named Tokens.

After, the set of tokens is extracted it can be improved by removing features that do not bring any information. Function words (e.g., What, Who, at, he and be) are removed improving at least the efficiency of the target TC models. For this purpose a list of function words is prepared and used in the preprocessing phase as stoplist.

Other methods to improve the set of features consider that the same word is not ever used to describe the same concept (see Section 1.2). Thus the recall of the system can be enhanced by using automatic word associations. For this purpose there are language dependent methods like word stemming. Word stemming is based on two stages: suffix stripping and conflation. Suffix stripping can be achieved by using series of rules. For example biology, biologist, biologists
reduce to biology. Some errors occur as there are always some exceptions from the rules. The error rate of word stemming has been measured around 5% [Van Rijsbergen, 1979]. Stemming, has been usually applied to the designing of a text classifier nevertheless, there is no study that proves the superiority of the stemmed word over the simple word sets.

Another important phase of TC pre-processing is the feature selection. As it is done for the stoplist a set of non-informative words are detected and removed from the feature set. The main difference with the stoplist technique is that the words to be removed are selected automatically.

2.1.3 Feature Selection

Feature Selection techniques have been early introduced in order to limit the dimensionality of the feature space of text categorization problems. The feature set cardinalities described in the previous section can be hundreds of thousands of elements. This size prevents the applicability of many learning algorithms. Few neural models, for example, can handle such a large number of features usually mapped into input nodes.

Automated feature selection methods envisage the removal of noninformative terms according to corpus statistics, and the construction of new (i.e. reduced or re-mapped) feature space. Common statistical selector parameters used in TC are: the information gain, the mutual information, the χ^2 statistics and the document frequency (DF). As pointed out in [Yang and Pedersen, 1997] DF, χ^2 and information gain provide the best selectors able to reduce the feature set cardinality and produce an increase in text classifier performances. The following equations describe four selectors among those experimented in [Yang and Pedersen, 1997]. They are based on both mutual information and χ^2 statistics:

\[
I_{\text{max}}(f) = \max_i \{ I(f, C_i) \}
\]

\[
I_{\text{avg}}(f) = \sum_i P_r(C_i) \times I(f, C_i)
\]

\[
\chi^2_{\text{max}}(f) = \max_i \{ \chi^2(f, C_i) \}
\]

\[
\chi^2_{\text{avg}}(f) = \sum_i P_r(C_i) \times \chi^2(f, C_i)
\]

where

- $P_r(C_i)$ is the probability of a generic document belonging to a class C_i, as observed in the training corpus

- f is a generic feature

- $I(f, C_i)$ is the mutual information between f and C_i
2.2. WEIGHTING SCHEMES

- \(\chi^2(f, C_i) \) is the \(\chi^2 \) value\(^5\) between \(f \) and \(C_i \)

After the ranking is derived, selection is carried out by removing the features characterized by the lowest scores (thresholding). Each of the above models produces a ranking of the different features \(f \) that is the same for all the classes. For example, the selector of a feature by \(I_{\text{avg}} \) applies the average function to the set of \(I(f, C_i) \) scores: each dependence on the \(i \)-th class disappears resulting in one single ranking. The same is true for \(\chi^2_{\text{max}} \) and \(\chi^2_{\text{avg}} \).

Notice that this ranking, uniform throughout categories, may select features which are non globally informative but are enough relevant only for a given (or few) class(es) (e.g., the \(\text{max} \) or \(\text{avg} \)). The selection cannot take into account differences in relevance among classes. Classes that are more generic (e.g., whose values of \(I(f, C_i) \) or \(\chi^2 \) tend to be low) may result in a very poor profile, i.e. fewer number of selected features. This is in line with the observation in [Joachims, 1998] where the removal of features is suggested as a loss of important information, i.e. the number of truly irrelevant features is negligible.

Recently the previously referred techniques have been introduced even for selecting the relevant \(n \)-grams (see [Caropreso et al., 2001]) in order to add informative features. It was confirmed that these extended features bring further information and often they increase performances of simple features. The problem is that \(n \)-grams impact on the ranking of other features. When selection is applied only a limited number of (i.e. top ranked) features is taken into account, so that important information may be lost. This happens as the applied methodology forces \(n \)-grams of a class taking the place of \(n \)-grams of another class in the ranking.

Other forms of feature selection are based on weighting schemes but they are used to weight features for the learning algorithm rather than to remove them.

2.2 Weighting Schemes

Weighting schemes are used in IR to determine which are the more relevant terms in documents and queries. This helps the IR system to rank the retrieved document depending on the expected relevance for the users. Traditionally, weights are heuristic combinations of different corpus statistics, Term Frequency and Inverse Document Frequency. The former quantity indicates the importance of a feature inside the document: if a word is repeated many time it should be important for that document. The latter quantity is used to assign a global importance: the more a term is frequent the less is its capacity of selecting topic information. Many variation have been studied in [Salton, 1989], the results are that different systems can benefit from the use of different weighting schemes.

In TC weighting schemes are less important even if their correct choice allows the classifier accuracy to be improved. With the aim to verify the above claim, next section describes two traditional weighting schemes as well as an original

\(^5\)See [Yang and Pedersen, 1997] for a definition of \(\chi^2 \) score between features and categories.
one based on the Inverse Word Frequency that is very similar to the Inverse Document Frequency. Moreover, two weighting schemes to weight features inside categories\(^6\) are presented.

2.2.1 Document Weighting

With the purpose of modeling our document weighting schemes, we need to define a few specific parameters. Given a target feature set \(F = \{ f_1, ..., f_N \} \) extracted from the training-set, a feature \(f \in F \), a generic document \(d \) of the corpus and the target set of classes \(C = \{ C_1, C_2, ..., C_{|C|} \} \), let the following notations express:

- \(M \), the number of documents in the training-set,
- \(M_f \), the number of documents in which the features \(f \) appears and
- \(o_d^f \), the occurrences of the features \(f \) in the document \(d \) (TF of features \(f \) in document \(d \)).

The first weighting scheme that we consider is the \(IDF \times TF \), i.e., the traditional weighting strategy used in SMART [Salton, 1991]. Given the \(IDF(f) \) as \(\log \left(\frac{M}{M_f} \right) \), the weight for the feature \(f \) in the document \(d \) is:

\[
 w_d^f = \frac{o_d^f \times IDF(f)}{\sqrt{\sum_{r \in F} (o_d^r \times IDF(r))^2}} \tag{2.1}
\]

A second weighting scheme (used in [Ittner et al., 1995]) is \(\log(TF) \times IDF \). It uses the logarithm of \(o_d^f \) as follow:

\[
 l_d^f = \begin{cases}
 0 & \text{if } o_d^f = 0 \\
 \log(o_d^f) + 1 & \text{otherwise}
\end{cases} \tag{2.2}
\]

Accordingly, the document weights is:

\[
 w_d^f = \frac{l_d^f \times IDF(f)}{\sqrt{\sum_{r \in F} (l_d^r \times IDF(r))^2}} \tag{2.3}
\]

The third weighting scheme is referred to as \(TF \times IWF \) and it introduces new corpus-derived\(^7\) parameters:

- \(O \), the overall occurrences of features,
- \(O_f \), the occurrences of a feature \(f \).

\(^6\)They can be considered as macro-documents that contain all features of their documents.

\(^7\)All these parameters have to be learned from the documents in the training-set only.
By using the above statistics a new quantity, the \(IWF\) [Basili et al., 1999] (Inverse Word Frequency) can be defined as

\[
IWF = \log\left(\frac{O}{O_f}\right)
\]

\(IWF\) is used similarly to \(IDF\) in the following weighting:

\[
w_d^f = \frac{o_d^f \times (IWF(f))^2}{\sqrt{\sum_{f \in F} (o_d^f \times (IWF(f))^2)^2}}
\] \(2.4\)

The above scheme has two major differences with respect to the traditional \(TF \times IDF\) weighting strategy (i.e. Eq. 2.1). First, the Inverse Word Frequency [Basili et al., 1999] is used in place of \(IDF\). Its role is similar to \(IDF\), as it penalizes very highly frequent (and less meaningful) terms (e.g., say, be, have) also recovering from systematic errors in POS tagging.

Another aspect is the adoption of \(IWF\) squaring. In fact, the product \(IWF \times o_d^f\) is too biased by the feature frequency \(o_d^f\). In order to balance the \(IWF\) contribution its square is thus preferred. A similar adjustment technique has been proposed in [Hull, 1994].

2.2.2 Profile Weighting

Once, the appropriate document weighting policy has been chosen, we can apply several methods to obtain the weights for the class profile. The simplest ones is just \(Summing-up\) for each features \(f\) the weights it assumes in different documents of a class \(C_i\) as follows:

\[
W^i_f = \sum_{d \in P_i} w_d^f,
\] \(2.5\)

where \(P_i\) is the set of training documents belonging to class \(C_i\).

In this representation a profile is considered as a \textit{macro document} made of all features contained in documents of the target class. Notice that the above model does not consider negative examples, i.e., the weights a feature assumes in other classes. On the contrary, another common weighting scheme attempting to better determine a profile weight, by using negative relevance, is the scheme provided by the \textit{Rocchio’s formula} [Rocchio, 1971]:

\[
W^i_f = \max\left\{0, \beta \frac{|P_i|}{\bar{P}_i} \sum_{d \in P_i} w_d^f - \gamma \frac{|P_i|}{\bar{P}_i} \sum_{d \in \bar{P}_i} w_d^f\right\}
\] \(2.6\)

where \(\bar{P}_i\) is the set of documents not belonging to \(C_i\). The feature weight \(W^i_f\) in a profile is the difference between the sum of weights that \(f\) assumes in the class \(i\) and the sum of weights that \(f\) assumes in documents of the other categories. Parameters \(\beta\) and \(\gamma\) control the relative impact of positive and negative examples on the classifier. The standard values used in literature (e.g., [Cohen
and Singer, 1999; Ittner et al., 1995] are \(\beta = 16 \) and \(\gamma = 4 \). It is worth noticing that the Summing-up weighting scheme is a special case of the Rocchio’s formula in which \(\gamma \) is set to 0 and no normalization is applied. However, as the profiles created via Summing-up procedure (i.e. macro document building) are conceptually different from those designed by Rocchio’s formula (i.e. centroid among positive and negative documents), we prefer maintain a diverse notation for referring them.

2.3 Similarity in profile-based Text Categorization

After both the document and profile weights have been defined their vector representations is as follows:

\[
\vec{d} = \langle w_{1d}, \ldots, w_{Nd} \rangle \\
\vec{C}_i = \langle W_{1i}, \ldots, W_{Ni} \rangle
\]

Given \(\vec{C}_i \) and \(\vec{d} \) representations a similarity function that computes the distance in the vector space can be defined. This completes the metric on Vector Space Model. In all our experiments we apply the usual cosine measure:

\[
s_{id} = \cos(\vec{C}_i, \vec{d}) = \sum_{j \in F} W^i_j w^d_j
\]

When weighting schemes are applied to training corpus some problems arise as scores produced by the test documents may not be comparable among different classes. They can refer to very different distributions because of the different training evidences.

Weighting formula can be characterized by a large variance across class profiles. The undesired consequence is a very odd distribution of scores obtained by Eq. 2.7 through the different categories. Scores can be thus not comparable across classes. Those decision methods that make use of a single threshold for all classes are weak or even inapplicable. The same can be said of methods adopting a single ranking among the scores even when they originate from different classes.

In order to tackle this problem some techniques have been proposed that change the vector space by rescaling the scores and projecting them in subspaces. This phase is often applied without a specific naming. It will be hereafter referred to as score adjustment. Score adjustment is needed to project the similarity function in a unifying space better suited for representing all the classes. Two effective adjustment methods have been proposed and will be discussed in the next sections.
2.3. SIMILARITY IN PROFILE-BASED TEXT CATEGORIZATION

2.3.1 Similarity based on Logistic Regression

An attempt to carry out score adjustment is the application of Logistic Regression (LR). When LR is applied to scores \(s_{di} \) an actual estimate of \(P(C_i|d) \), i.e. the probability that a document \(d \) belong to the class \(C_i \), is obtained. This idea has been firstly introduced in [Ittner et al., 1995]. In brief, the LR score adjustment algorithm works as follows.

- First all the pairs \(<s_{di}, \text{belong_flag}>\) for each training document \(d \) and for each fixed class \(i \) are evaluated: \text{belong_flag} is set to 1 iff \(d \in C_i \), and to 0 otherwise.

- The derived pairs are then input to the Logistic Regression algorithm. Two parameters \(\alpha_i \) and \(\beta_i \) are produced. \(\alpha_i \) and \(\beta_i \) are set such that \(P(C_i|s_{di}) \) can be estimated via the logistic function [Ittner et al., 1995]:

\[
F(\alpha_i, \beta_i, s_{di}) = \frac{e^{\alpha_i + \beta_i \times s_{di}}}{1 + e^{\alpha_i + \beta_i \times s_{di}}}
\]

This is a good approximation of \(P(C_i|d) \), that is, \(\alpha_i \) and \(\beta_i \) are estimated such that \(P(C_i|d) \approx F(\alpha_i, \beta_i, s_{di}) \). The LR function thus produces the conditional probability \(P(d \in C_i|s_{di}) \).

- Finally, after each class \(i \) is assigned with coefficients \(\alpha_i \) and \(\beta_i \), the final classification is taken over images of similarity scores \(P(C_i|s_{di}) \approx F(\alpha_i, \beta_i, s_{di}) \).

Any of the inference strategy can be here applied as the \(P(C_i|s_{di}) \) are distributed throughout all the classes, \(C_i \), better than the source values \(s_{di} \). It is worth noticing that the logistic function is monotonic ascending. This implies that when we fix a class \(C_i \) the ranking of documents according to \(P(C_i|d) \) or to \(s_{di} \) does not change.

2.3.2 Similarity over differences: Relative Difference Scores

The LR score adjustment method allows to consistently rank scores originated from different classes and this may greatly improve the system overall performance. This is especially true for text classifiers based on the Summing-up weighting scheme (Eq. 2.5) that does not use negative examples. In fact, the score adjustment allows to better compare scores \(s_{di} \) of different categories and to retrieve ”odd” test documents showing lower similarity scores with profiles of all classes \(C_i \) (i.e., given a document \(d \), \(s_{di} << 1 \) for each category \(i \)).

However LR does not help to better rank documents within a single target class. This is an inherent weakness. As an example, let us imagine a situation where a unique threshold is applied to all the test documents and we have two classes and three documents described as in Table 2.3.

A document \(d_2 \) is odd as it shows a low similarity with both the two classes. The other two documents, \(d_1 \) and \(d_3 \), should be accepted as members of class
CHAPTER 2. TEXT CATEGORIZATION AND OPTIMIZATION

Table 2.3: Scores for a simple Classification Inference case

<table>
<thead>
<tr>
<th>Document Index</th>
<th>Class1 (score $s_{d,1}$)</th>
<th>Class2 (score $s_{d,2}$)</th>
<th>Gold Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_1</td>
<td>7</td>
<td>1</td>
<td>Class1</td>
</tr>
<tr>
<td>d_2</td>
<td>0.01</td>
<td>0.8</td>
<td>Class2</td>
</tr>
<tr>
<td>d_3</td>
<td>2</td>
<td>5</td>
<td>Class2</td>
</tr>
</tbody>
</table>

C_1 and C_2 respectively. Notice that in this unfortunate case, the $Scut$ inference policy should discard classifications whose scores s_{id} are below 5. This would prevent to accept document d_2 in class C_2, although its scores are such that s_{12} is about eighty times lower than s_{22}! What we need is a technique able to produce a ranking among documents influenced by their general behavior, according to their similarity with respect to all classes. If we could re-rank documents according to this cross-categorical information we would have a ranking for the class C_2 like, $d_3 \succeq d_2 \succeq d_1$. This has to violate the monotonicity of the LR function (as $s_{21} > s_{22}$).

To overcome this problem we have defined a score adjustment technique based on the differences among similarity scores capable to project the similarity function image into a different set whose natural order better reflects the current document ranking. Instead of the s_{di} scores, a slightly more complex score m_{di} is used: it expresses the average difference between the score of the correct (e.g., i-th) class and the remaining classes. Formally, given a training document d and a class C_i, m_{di} is estimated by:

$$m_{di} = \sum_{j=1}^{\left|C\right|} s_{di} - s_{dj} / \left|C\right| - 1 \quad (2.8)$$

Equation 2.8 is the score adjustment methodology that we call RDS (see [Basili et al., 2000a; 2000b] for more details). Notice that in the simple case defined in Table 2.3, the following values are obtained: $m_{21} = -6$, $m_{22} = 0.79$ and $m_{23} = 3$ correctly suggesting the expected ranking $d_3 \succeq d_2 \succeq d_1$ for the class 2. RDS produces scores that explicitly depend on the negative information expressed by documents not belonging to a target class in the training-set. A study of its positive effects on classifier accuracy is reported in Chapter 3.

2.4 Inference Policies and Accuracy Evaluation

When scores estimating the similarity between a newly incoming document d and the different profiles are available, the acceptance/rejection of the different categories C_i can be decided. The decision function ϕ can be defined now only in terms of similarity scores (s_{di}), i.e. as a k-ary real-valued function $\phi : \mathbb{R}^k \rightarrow 2^{\{C_1, \ldots, C_\left|C\right|\}}$. As ϕ is applied to a set of documents (e.g., the test-set) two different groupings of scores s_{di} are possible depending on classes (index
2.4. INFECTION POLICIES AND ACCURACY EVALUATION

$i = 1, \ldots, |C|$ or documents (index d such that $d \in TS$). The two cases are defined as:

- $k = |C|$: the set of scores that one target document d assumes in all the $|C|$ categories, i.e. \{s_{d1}, ..., s_{d|C|}\}. This is referred to the document pivoted classification scheme [Sebastiani, 2002].

- $k = |TS|$: the set of scores that all documents in TS assume wrt the target category C_i, i.e. \{s_{1i}, s_{2i}, ..., s_{|TS|i}\}. This is referred to the category pivoted classification scheme [Sebastiani, 2002].

The accuracy of ϕ can be measured as the correct categories for documents in TS are available. Let us refer to such correct choices as the gold standard $GS(TS)$. The differences between the outcome $\phi(d)$ and the categories suggested by the $GS(d)$ is usually measured by one or more numeric values. It is obtained by counting the number of correct, wrong\(^8\) categories $\phi(d)$ wrt $G(d)$. Next sections will give details both on possible inference policies embodied by ϕ as well as on the definition of accuracy indexes.

2.4.1 Inference Policies

A decision function ϕ has to select categories that have the highest scores in the score groups (e.g., \{s_{d1}, ..., s_{d|C|}\}). This is usually carried out by imposing thresholds according to one of the following strategies [Yang, 1999]:

- probability threshold ($Scut$): for each class C_i a threshold σ_i is adopted such that $C_i \in \phi(d)$ only if its membership score s_{di} is over σ_i (category pivoted classification scheme). The threshold σ_i is an upper limit to the risk of misclassification and has a probabilistic nature: it measures the average number of potential misclassifications under a given assumption on the distribution.

- fixed threshold ($Rcut$): It is based on the assumption that k is the average number of classes valid for a generic document d. This can be observed usually over the training-set. Accordingly, $C_i \in \phi(d)$ only if C_i is one of the first k classes in the ranking obtained via the s_{di} positive scores (document pivoted classification scheme).

- proportional threshold ($Pcut$): the threshold is the percentage $prob$ of documents that are to be categorized under C_i (category pivoted classification scheme). It is usually estimated from the training-set T, i.e. $prob(C_i|T)$.

2.4.2 Accuracy Measurements

Several measures of performance have been proposed in TC each one with inherent advantages and disadvantages as well. The error rate is the ratio between

\(^8\)Notice that an empty set of values output by $\phi(d)$ corresponds to don’t know choices, i.e. no category is provided for d.
the number of documents not correctly categorized and the total number of documents. According to the above definition, if the test-set includes a small percentage of documents labeled under a given category, a trivial classifier that refuses all documents of that category will obtain a very low error rate (i.e. a good performance), at least with respect to that category. Two other measures, i.e. precision and recall, are not affected by such limitation. Given a specific category \(C_i \), their technical definition can be somehow informally stated in terms of three scores:

- the correct categories found by the decision function, \(CFC_i \), i.e. the number of times \(C_i \in \phi(d) \) and \(C_i \in GS(d) \) for all \(d \in TS \).
- the total number of correct categories, \(TCC_i \), i.e. the number of times \(C_i \in GS(d) \) for all \(d \in TS \).
- the total number of system choices, \(TCF_i \), i.e. the number of times \(C_i \in \phi(d) \) for all documents \(d \in TS \).

In synthesis \(CFC_i \) is the number of correct system decisions over \(C_i \), \(TCC_i \) is the number of correct assignments of \(d \in TS \) to \(C_i \) and \(TCF_i \) is the total number of system acceptances. Notice that \(TCC_i \) should overlap as much as possible with \(TCF_i \) to converge towards a perfect discriminating function. The recall and precision scores can be thus defined respectively as follows:

\[
\text{Recall}_i = \frac{CFC_i}{TCC_i} \quad (2.9)
\]

\[
\text{Precision}_i = \frac{CFC_i}{TCF_i} \quad (2.10)
\]

Both the measurements depend on the thresholds (as discussed in the previous section) but they are in general inversely proportional. When a threshold (e.g., \(\sigma_i \)) increases, the precision increases while the recall tends to decrease and vice versa. This variability between recall and precision makes it difficult to compare different classifiers just according to different \((\text{precision}, \text{recall})\) pairs\(^9\). In order to get a single performance index, the Breakeven point (BEP) is widely adopted. The BEP is the point in which recall and precision are equal. It is estimated iteratively by increasing the threshold from 0 to the highest value for which \(\text{precision} \leq \text{recall} \). The major problem is that the correct BEP score could not exist (i.e. for no value of the threshold \(\text{recall} = \text{precision} \)). In this case, a conclusive estimation is the mean between the recall and precision (interpolated BEP) at the best estimated threshold value. However, even this may result artificial [Sebastiani, 2002] when precision is not enough near to recall.

The \(f_1 \)-measure improves the BEP definition by imposing the harmonic mean between precision and recall as follows:

\[
f_1 = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}} \quad (2.11)
\]

\(^9\)A classifier could reach an high recall while another could achieve an even higher precision, the superiority of which is difficult to establish.
2.5. SUPPORT VECTOR MACHINES AND ROCCHIO CLASSIFIER

f_1 outputs a more reliable value especially when recall is highly different from precision. For example, with a precision of .9 and a recall of .001 (i.e. the pair of the nearest values obtained by threshold adjustment) simple average is .45 while $f_1=0.002$ corresponds to a more realistic performance indication.

In our experiments a validation-set10 is used to tune the thresholds associated to the maximal BEP. Threshold adjustments are first carried out and then the detected thresholds determine the performance measured over the (separate) test-set. For some experiments we reports the interpolated BEP as it also used in previous literature TC evaluations, e.g., [Yang, 1999; Joachims, 1998; Lewis and Gale, 1994; Apté et al., 1994; Lam and Ho, 1998].

Finally, as our target classification problem involves more than one category, we used a binary classifier11 for each category. The global measure derived from the classifier pool is the microaverage. According to definitions given in 2.9 and Eq. 2.10, the equations 2.12 and 2.13 define the microaverage of recall and the microaverage of precision for $|C|$ binary classifiers.

\[\mu_{\text{Recall}} = \frac{\sum_{i=1}^{\lvert C \rvert} CFC_i}{\sum_{i=1}^{\lvert C \rvert} TCC_i} \quad (2.12) \]
\[\mu_{\text{Precision}} = \frac{\sum_{i=1}^{\lvert C \rvert} CFC_i}{\sum_{i=1}^{\lvert C \rvert} TCF_i} \quad (2.13) \]

The above measures are then used to evaluate the microaverage of both BEP and f_1, i.e.

\[\mu_{\text{BEP}} = \frac{\mu_{\text{Precision}} + \mu_{\text{Recall}}}{2} \quad (2.14) \]
\[\mu_{f_1} = \frac{2 \times \mu_{\text{Precision}} \times \mu_{\text{Recall}}}{\mu_{\text{Precision}} + \mu_{\text{Recall}}} \quad (2.15) \]

2.5 Support Vector Machines and Rocchio Classifier

One of the aim of our study is to measure the impact of richer document representations on TC. Such representations could produce different results on different TC approaches such as Decision Trees, k-Nearest Neighbor heuristics, probabilistic frameworks, Disjunctive Normal Form rules and neural architectures (see [Sebastiani, 2002] for a survey on the subject). Thus, the choice of some representative models is not trivial. The idea is that a richer representation can be really useful only if: (a) it produces an increase of the target classifier accuracy, that overcomes all other models, fed with the simple bag-of-words or

10A separate portion of the training-set used for parameterization purposes
11A binary classifier is a decision function that assigns or rejects a unique category C_i to an input document.
(b) it allows the accuracy of a very efficient classifier (in term of time complexity) to be close to the best figure classifier. In both cases an improvement of the state-of-the-art will be obtained in accuracy or efficiency.

In this perspective, we have adopted two different TC approaches: Rocchio [Ittner et al., 1995] and SVM [Vapnik, 1995] classifiers. The former is a very efficient TC, so, it would be very appealing (especially for real scenario applications) to bring its accuracy near the best figure classifier. The second is one of the best figure TC, consequently, improving it causes an improvement of the state-of-art.

2.5.1 The Classification Function

Rocchio and SVM are based on the Vector Space Model. Again the document \(d \) is described as a vector \(\vec{d} = \langle w_{d_1}, \ldots, w_{d_N} \rangle \) in a \(N \)-dimensional vector space. The axes of the space, \(f_1, \ldots, f_N \), are the features extracted from the training documents and the vector components \(w_{d_j} \in \mathbb{R} \) are the weights evaluated as described in Section 2.2.

Rocchio and SVM learning algorithm use the vector representations to derive a hyperplane, \(\vec{a} \times \vec{d} + b = 0 \), that separates the positive from negative document vectors in the training-set. More precisely, \(\forall \vec{d} \) positive examples, \(\vec{a} \times \vec{d} + b \geq 0 \), otherwise \(\vec{a} \times \vec{d} + b < 0 \). \(\vec{d} \) is the equation variable, while the gradient \(\vec{a} \) and the 0-intersect \(b \) are determined by the target learning algorithm. Once the above parameters are available, it is possible to define the associated classification function, \(\phi : D \rightarrow \{C, \emptyset\} \), from the set of documents \(D \) to the binary decision (i.e., belonging or not to \(C \)). Such decision function is described by the following equation:

\[
\phi(d) = \begin{cases}
C & \vec{a} \times \vec{d} + b \geq 0 \\
\emptyset & \text{otherwise}
\end{cases}
\]

(2.16)

Eq. 2.16 shows that a category is accepted only if the product \(\vec{a} \times \vec{d} \) overcomes the threshold \(b \). This suggests that the hyperplane gradient \(\vec{a} \) can be considered as a category profile, the scalar product is adopted to measure the similarity between profile and document, and \(b \) is the threshold for the Scut policy, described in Section 2.4.1.

Thus, Rocchio and SVM are characterized by the same decision function\(^{12}\). Their difference is the learning algorithm to evaluate the threshold \(b \) and the profile \(\vec{a} \) parameters: the former uses a simple heuristic while the second solves an optimization problem.

2.5.2 Rocchio Learning

The learning algorithm of the Rocchio text classifier is the simple application of the Rocchio’s formula (Eq. 2.6) presented in Section 2.2.2. The parameters

\(^{12}\)This is true only for linear SVM. In the polynomial version the decision function is a polynomial of support vectors.
\(\vec{a} \) is evaluated by the equation:

\[
\vec{a}_f = \max \left\{ 0, \frac{\beta}{|P|} \sum_{d \in P} w^d_f - \frac{\gamma}{|\bar{P}|} \sum_{d \in \bar{P}} w^d_f \right\}
\tag{2.17}
\]

Eq. 2.17 shows that the components of the hyperplane gradient \(\vec{a} \) are the weights assumed by the feature \(f \) in the profile of \(C \) and the 0-intersect \(b \) is the threshold. This latter can be estimated by picking-up the value that maximizes the classifier accuracy on a training subset called *evaluation-set*.

The above learning algorithm is based on a simple heuristic that does not ensure the best separation of the training documents. Thus, the accuracy reflects the weakness of the approach. However, the simplicity of the learning algorithm makes the resulting TC system one of the best efficient ones.

2.5.3 Support Vector Machine learning

The major advantage of SVM model is that the parameters \(\vec{a} \) and \(b \) are evaluated applying the *Structural Risk Minimization principle* [Vapnik, 1995], stated in the statistical learning theory. The main feature of the above principle is that the probability \(P(\phi(d) = C|d \in \bar{P}) \) of a classifier \(\phi \) will make an error is bounded by the following quantity:

\[
e_0 + 2\sqrt{\frac{vc(ln \frac{2m}{vc} + 1) - ln \frac{M}{2}}{M}}
\tag{2.18}
\]

Where \(e_0 \) is the error over the training set, \(M \) is the number of training examples and \(vc \) is the *VC-dimension*\(^{13} \) [Vapnik, 1995] that depends on the classifier. The SVMs are chosen in a way that \(|\vec{a}| \) is minimal. More precisely the parameters \(\vec{a} \) and \(b \) are a solution of the following optimization problem:

\[
\begin{align*}
\text{Min} & \quad |\vec{a}| \\
\vec{a} \times \vec{d} + b & \geq 1 \quad \forall d \in P \\
\vec{a} \times \vec{d} + b & \leq -1 \quad \forall d \in \bar{P}
\end{align*}
\tag{2.19}
\]

It can be proven that the minimum \(|\vec{a}| \) leads to a maximal margin\(^{14} \) (i.e. distance) between negative and positive examples.

In summary, SVM actually divides the positive from negative examples of the *training-set* and it attempts to make the best separation to reduce the probable error on *test-set*. Rocchio classifier enables the separation using a simple heuristic that does not ensure the best separation, at all. However, the notion of profile is better suited for the human interpretation of Text Categorization.

\(^{13}\)Technically the VC dimension is the maximal number of training points that can be divided in all possible bi-partitions by using linear functions (in our case).

\(^{14}\)The software to carry out both the learning and classification algorithm for SVM are described in [Joachims, 1999] and they have been downloaded from the web site http://svmlight.joachims.org/.
(i.e. it is possible to build such profiles manually). On one hand, SVM better exploits the indexing property of the feature set used, on the other hand Rocchio algorithm is nearer to the manual processing. This last property makes simpler the introduction in the model of more complex linguistic feature such as proper nouns, complex nominals or other conceptual information.

In next section, we present a parameter estimation method that allows Rocchio classifier to improve its f_1 measure at least of 4/5 percent points.

2.6 The Parameterized Rocchio Classifier

Machine learning techniques applied to text categorization (TC) problems have produced very accurate although computationally complex models. In contrast, systems of real scenario such as Web applications and large-scale information management necessitate fast classification tools. Accordingly, several studies (e.g., [Chuang et al., 2000; Drucker et al., 1999; Gövert et al., 1999]) on improving accuracy of low complexity classifiers have been carried out. They are related to the designing of efficient TC models in Web scenarios: feature space reduction, probabilistic interpretation of k-Nearest Neighbor and hierarchical classifiers are different approaches for optimizing speed and accuracy.

In this perspective, there is a renewed interest in the Rocchio formula. Models based on it are characterized by a low time complexity for both training and operative phases. The Rocchio weakness in TC application is that its accuracy is often much lower than other more computationally complex text classifiers [Yang, 1999; Joachims, 1998].

In order to improve the Rocchio accuracy we have study a method to derive an optimal parameterization. The parameters of Rocchio formula (Eq. 2.17) are β and γ. They control the relative impact of positive and negative examples and determine the weights of the features f in the target profile. The setting used for any IR application was $\beta = 16$ and $\gamma = 4$. It was also used for the categorization task of low quality images [Ittner et al., 1995]. However, neither a methodology nor a theoretical justification was followed to derive that setting. In [Cohen and Singer, 1999] has been pointed out that these parameters greatly depend on the training corpus and different settings produce a significant variation in performances. Recently, some researchers [Singhal et al., 1997b] have found that $\gamma = \beta$ is a good parameters choice, but, again a systematic methodology for parameter setting were not definitively proposed.

In [Schapire et al., 1998] Rocchio standard classifier has been shown to achieve the state-of-the-art performances, although its efficiency is penalized. Improvements in accuracy were produced by using more effective weighting schemes and query zoning methods, but a methodology for estimating Rocchio parameters was not considered.

Thus, the literature confirms the need of designing a methodology that automatically derives optimal parameters. Such a procedure should search parameters in the set of all feasible values. As no analytical procedure is available for deriving optimal Rocchio parameters, some heuristics are needed to limit
2.6. THE PARAMETERIZED ROCCHIO CLASSIFIER

the search space. Our idea to reduce the search space is to consider the feature selection property of the Rocchio formula. We will show that:

1. The setting of Rocchio parameters can be reduced to the setting of the ratio between parameters.
2. Different values for the ratio induce the selection of feature subsets.
3. Only the features in the selected subset affect the accuracy of Rocchio classifier parameterized with the target parameter rate.
4. The parameter rate is inversely-proportional to the cardinality of the feature subset.

Therefore, increasing the parameter ratio produces a subset collection of decreasing cardinality. Rocchio classifier, trained with these subsets, outcomes different accuracies. The parameter ratio seems affect accuracy in the same way a standard feature selector [Kohavi and John, 1997] would do. From this perspective, the problem of finding optimal parameter ratio can be reduced to the feature selection problem for TC and solved as proposed in [Yang and Pedersen, 1997]. Next section describes in details the adopted method.

2.6.1 Search space of Rocchio parameters

As claimed in the previous section, to improve the accuracy of the Rocchio text classifier, parameter tuning is needed. The exhaustive search of optimal values for β and γ is not a feasible approach as it requires the evaluation of Rocchio accuracy for all the pairs in the \mathbb{R}^2 space.

To reduce the search space, we notice that not both γ and β parameters are needed as β can be bound to the threshold parameter. The classifier accepts a document d in a category C if the scalar product between their representing vectors is greater than a threshold σ, i.e. $\vec{C} \times \vec{d} \geq \sigma$. Substituting \vec{C} with the original Rocchio’s formula we get:

$$\left(\frac{\beta}{|P|} \sum_{d' \in P} \vec{d}' - \frac{\gamma}{|P|} \sum_{d' \in \bar{P}} \vec{d}' \right) \times \vec{d} \geq \sigma$$

and dividing by β,

$$\left(\frac{1}{|P|} \sum_{d' \in P} \vec{d}' - \frac{\gamma}{\beta |P|} \sum_{d' \in \bar{P}} \vec{d}' \right) \times \vec{d} \geq \frac{\sigma}{\beta}$$

Once ρ has been set, the threshold σ' can be automatically assigned by the algorithm that evaluates the BEP. Note that, to estimate the threshold from a validation-set, the evaluation of BEP is always needed even if we maintain both parameters. The new Rocchio formula is:

$$\vec{a}_f = \max \left\{ 0, \frac{1}{|P|} \sum_{d \in P} w_f^d - \frac{\rho}{|P|} \sum_{d \in \bar{P}} w_f^d \right\}$$

(2.20)
CHAPTER 2. TEXT CATEGORIZATION AND OPTIMIZATION

where ρ represents the ratio between the original Rocchio parameters, i.e. $\frac{\gamma}{\beta}$.

Our hypothesis for finding good ρ value is that it deeply depends on the differences among classes in term of document contents. This enables the existence of different optimal ρ for different categories. If a correlation function between the category similarity and ρ is derived, we can bound the search space.

We observe that in Equation 2.20, features with negative difference between positive and negative weights are set to 0. This aspect is crucial since the 0-valued features do not contribute in the similarity estimation (i.e. they give a null contribution to the scalar product). Thus, the Rocchio model does not use them. Moreover, as ρ is increased smoothly, only the features having a high weight in the negative documents will be eliminated (they will be set to 0 value). These features are natural candidates to be irrelevant for the Rocchio classifier. On one hand, in [Kohavi and John, 1997; Yang and Pedersen, 1997] it has been pointed out that classifier accuracy can improve if irrelevant features are removed from the feature set. On the other hand, the accuracy naturally decreases if relevant and some weak relevant features are excluded from the learning [Kohavi and John, 1997]. Thus, by increasing ρ, irrelevant features are removed until performance improves to a maximal point, then weak relevant and relevant features start to be eliminated, causing Rocchio accuracy to decrease. From the above hypothesis, we argue that:

The best setting for ρ can be derived by increasing it until Rocchio accuracy reaches a maximum point.

In Section 2.7, experiments show that the Rocchio accuracy has the above behavior. In particular, the ρ/accuracy relationship approximates a convex curve with a single max point.

An explanation of linguistic nature could be that a target class C has its own specific set of terms (i.e. features). We define specific-terms as the set of words typical of one domain (i.e. very frequent) and at the same time they occur infrequently in other domains. For example, byte occurs more frequently in a Computer Science category than a Political one, so it is a specific-term for Computer Science (with respect to the Political category).

The Rocchio formula selects specific-terms in C also by looking at their weights in the other categories C_x. If the negative information is emphasized enough the non specific-terms in C (e.g., terms that occur frequently even in C_x) are removed. Note that these non specific-terms are misleading for the categorization. The term byte in political documents is not useful for characterizing the political domain. Thus, until the non specific-terms are removed, the accuracy increases since noise is greatly reduced. On the other hand, if negative information is too much emphasized, some specific-terms tend to be eliminated and accuracy starts to decrease. For example, memory can be considered specific-terms in Computer Science, nevertheless it can appears in Political documents; by emphasizing its negative weight, it will be finally removed, even from the Computer Science profile. This suggests that the specificity of terms in C depends on C_x and it can be captured by the ρ parameter.
In the next section a procedure for parameter estimation of ρ over the training-set is presented.

2.6.2 Procedure for parameter estimation

We propose an approach that takes a set of training documents for profile building and a second subset, the estimation-set, to find the ρ value that optimizes the Breakeven Point. This technique allows parameter estimation over data independent of the test-set (TS), and the obvious bias due to the training material is avoided as widely discussed in [Kohavi and John, 1997]. The initial corpus is divided into a first subset of training documents, called learning-set LS, and a second subset of documents used to evaluate the performance, i.e. TS.

Given the target category, estimation of its optimal ρ parameter can be carried out according to the following held-out procedure:

1. A subset of LS, called estimation set ES is defined.
2. Set $j = 1$ and $\rho_j = \text{Init_value}$.
3. Build the category profile by using ρ_j in the Eq. 2.20 and the learning-set $LS - ES$.
4. Evaluate the BEP_j for the target classifier (as described in Section 2.4.2) over the set ES.
5. Optionally: if $j > 1$ and $BEP_{j-1} \geq BEP_j$ go to point 8.
6. if $\rho_j > \text{Max_limit}$ go to point 8.
7. Set $\rho_{j+1} = \rho_j + \Delta \rho$, $j = j + 1$ and go to point 3.
8. Output ρ_k, where $k = \arg\max_j (BEP_j)$.

The minimal value for ρ (i.e. the Init_value) is 0 as a negative ratio makes no sense in the feature selection interpretation. The maximal value can be derived considering that: (a) for each ρ, a different subset of features is used in the Rocchio classifier and (b) the size of the subset decrease by increasing ρ. Experimentally, we have found that $\rho = 30$ corresponds to a subset of 100 features out of 33,791 initial ones for the Acquisition category of the Reuters Corpus. The above feature reduction is rather aggressive as pointed out in [Yang and Pedersen, 1997] so, we chose 30 as our maximal limit for ρ.

However, in the feature selection interpretation of ρ setting, an objective maximal limit exists: it is the value that assigns a null weight to all features that are also present in the negative examples. This is an important result as it enables the automated evaluation of the maximum ρ limit on training corpus in a linear time. It can be obtained by evaluating the ratio between the negative and the positive contributions in Eq. 2.20 for each feature f and by taking the maximum value. For example we have found a value of 184.90 for the Acquisition category.
The values for $\Delta \rho$ also (i.e. the increment for ρ) can be derived by referring to the feature selection paradigm. In [Yang and Pedersen, 1997; Yang, 1999; Joachims, 1998] the subsets derived in their feature selection experiments have a decreasing cardinality. They start from the total number of unique features N and then select $N - i \times h$ features in the i-th subset; h varies between 500 and 5,000. When $\Delta \rho = 1$ is used in our estimation algorithm, subsets of similar sizes are generated. Moreover, some preliminary experiments have suggested that smaller values for $\Delta \rho$ do not select better ρ (i.e., they do not produce better Rocchio accuracy).

A more reliable estimation of ρ can be applied if steps 2-8 are carried out according to different, randomly generated splits ES_k and $LS - ES_k$. Several values $\rho(ES_k)$ can thus be derived at step k. A resulting $\bar{\rho}$ can be obtained by averaging the $\rho(ES_k)$. Hereafter we will refer to the Eq. 2.20 parameterized with estimated ρ values as the Parameterized Rocchio Classifier (PRC).

2.6.3 Related Work

The idea of parameter tuning in the Rocchio formula is not completely new. In [Cohen and Singer, 1999] it has been pointed out that these parameters greatly depend on the training corpus and different settings of their values produce a significant variation in performances. However, a procedure for their estimation was not proposed as the parameters chosen to optimize the classification accuracy over the training documents were, in general, different from those optimizing the test-set classification. A possible explanation is that the searching in parameter space was made at random: a group of values for parameters was tried without applying a specific methodology. Section 2.7.2 shows that, when a systematic parameter estimation procedure is applied (averaging over a sufficient number of randomly generated samples), a reliable setting can be obtained.

Another attempt to improve Rocchio classifier has been provided via probabilistic analysis in [Joachims, 1997]. A specific parameterization of the Rocchio formula based on the $TF \times IDF$ weighting scheme is proposed. Moreover, a theoretical explanation within a vector space model is provided. The equivalence between the probability of a document d in a category C (i.e. $P(C|d)$) and the scalar product $\vec{C} \times \vec{d}$ is shown to hold. This equivalence implies that the following setting for the Rocchio parameters: $\gamma = 0$ and $\beta = \frac{|C|}{|D|}$, where $|D|$ is the number of corpus documents. It is worth noting that the main assumption, at the basis of the above characterization, is $P(d|w, C) = P(d|w)$ (for words w descriptors of d). This ensures that $P(C|d)$ is approximated by the expectation of $\sum_{w \in d} P(C|w)P(w|d)$. The above assumption is critical as it assumes that the information brought by w subsumes the information brought by the pair $<w, C>$. This cannot be considered generally true. Since the large scale empirical investigation, carried out in Section 2.7, proves that the relevance of negative examples (controlled by the γ parameter) is very high, the approach in [Joachims, 1997] (i.e., $\gamma = 0$) cannot be assumed generally valid.
In [Singhal et al., 1997b; 1997a] an enhanced version of the Rocchio algorithm has been designed for the problem of document routing. This task is a different instance of TC. The concept of category refers to the important document for a specific query. In that use of the Rocchio’s formula, β parameter cannot be eliminated as it has been in Section 2.6.1. Moreover, an additional parameter α is needed. It controls the impact of the query in routing the relevant documents. The presence of three parameters makes difficult an estimation of a good parameter set. The approach used in [Singhal et al., 1997b] is to try a number of values without a systematic exploration of the space. The major drawback is that the selected values could be only the local max of some document sets. Moreover, no study was done about the parameter variability. A set of values that maximize Rocchio accuracy on a test-set could minimize the performance over other document sets.

In [Schapire et al., 1998] an enhanced version of Rocchio text classifier has been designed. The Rocchio improvement is based on better weighting schemes [Singhal et al., 1995], on Dynamic Feedback Optimization [Buckley and Salton, 1995] and on the introduction of Query Zoning [Singhal et al., 1997b]. The integration of the above three techniques has shown that Rocchio can be competitive with state-of-the art filtering approaches such as Adaboost. However, the problem of parameter tuning has been neglected. The simple setting β = γ is adopted for every category. The justification given for such choice is that the setting has produced good results in [Singhal et al., 1997b]. The same reason and parameterization has been found even in [Arampatzis et al., 2000] for the task of document filtering in TREC-9.

In summary, literature shows that improvements can be derived by accurately setting the Rocchio parameters. However, this claim is neither proven with a systematic empirical study nor is a methodology to derive the good setting given. On the contrary, we have proposed a methodology for estimating parameters in a bound search space. Moreover, in the next section we will show that our approach and the underlying hypotheses are supported by the experimental data.

2.7 Performance Evaluations: PRC, Rocchio and SVM

The experiments are organized in three steps. First, in Section 2.7.1 the relationship between the ρ setting and the performances of Rocchio classifier has been studied. Second, in Section 2.7.2 the statistical distribution of ρ parameter has been extracted from samples in order to study its variability for each category. Third, PRC as well as the Rocchio performances have been evaluated over the Reuters-21578 fixed test-set in Section 2.7.2. These results can be compared to other literature outcomes, e.g., [Joachims, 1998; Yang, 1999; Tzeras and Artman, 1993; Cohen and Singer, 1999]. Additionally, experiments of Section 2.7.3 over different splits as well as different corpora in two languages
definitely assess the viability of the \textit{PRC} and the related estimation proposed in this paper. Finally, an evaluation of \textit{SVM} on Ohsumed and Reuters corpora is given. This enables a direct comparison between \textit{PRC} and one \textit{state-of-the-art} TC model.

Three different collections have been considered: the \textit{Reuters-21578}, the Ohsumed collection and the ANSA collection. Performance scores are expressed by means of interpolated BEP breakeven point and f_1 (see Section 2.4.2). The global performance of systems is always obtained by microaveraging the above measure over all categories of the target corpus, i.e., μBEP and μf_1 of equations 2.14 and 2.15. The sets of features used in these experiments are all Tokens that do not appear in the \textit{SMART} [Salton and Buckley, 1988] stop list15. They are 33,791 for Reuters, 42,234 for Ohsumed and 55,123 for ANSA. No feature selection has been applied. The feature weight in a document (for all TC models) is evaluated with Eq. 2.3 (i.e. the SMART ltc weighting scheme [Salton and Buckley, 1988]).

\subsection*{2.7.1 Relationship between accuracy and ρ values}

In these experiments we adopted the fixed split of the Reuters corpus as our \textit{test-set} (\textit{RTS}). The aim here is simply to study as ρ influences the Rocchio accuracy. This latter has been measured by systematically setting different values of $\rho \in \{0, 1, 2, \ldots, 15\}$ in Eq. 2.20 and evaluating the BEP for each value.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure2.1.png}
\caption{BEP of the Rocchio classifier according to different ρ values for \textit{Acq}, \textit{Earn} and \textit{Grain} classes of the Reuters Corpus.}
\end{figure}

Figures 2.1, 2.2 and 2.3 show the BEP curve on some classes of the Reuters Corpus with respect to ρ value. For \textit{Earn}, \textit{Acq} and \textit{Grain} there is available a large number of training documents (i.e. from 2,200 to 500). For them, the BEP increases according to ρ until a max point is reached, then it begins to decrease for higher values of the parameter. Our hypothesis is that after BEP reaches the

15No stop list was applied for Italian corpus.
max point, further increase of ρ produces relevant or weakly relevant features to be removed. In this perspective, the optimal ρ setting would correspond to a quasi-optimal feature selection.

![BEP of the Rocchio classifier according to different ρ values for Trade, Interest, and Money Supply classes of the Reuters Corpus.](image1)

Figure 2.2: BEP of the Rocchio classifier according to different ρ values for Trade, Interest, and Money Supply classes of the Reuters Corpus.

![BEP of the Rocchio classifier according to different ρ values for Reserves, Rubber and Dlr classes of the Reuters Corpus.](image2)

Figure 2.3: BEP of the Rocchio classifier according to different ρ values for Reserves, Rubber and Dlr classes of the Reuters Corpus.

The Trade, Interest and Money Supply categories have a smaller number of documents available for training and testing (i.e. from 500 to 100). This reflects less regularity in ρ/BEP relationship. Nevertheless, it is still possible to identify convex curves in their plots. This is important as it allows us to infer that the absolute max is into the interval $[0, 15]$. The very small categories (i.e. less than 50 training documents) Reserves, Rubber and Dlr show a more chaotic relationship, and it is difficult to establish if the absolute maximum is in the target interval.

It is worth noting that the optimal accuracy is reached for $\rho > 1$. In contrast,
it is a common belief that for a classifier the positive information should be more relevant than negative information. This suggests that (a) in Rocchio classifier, the contribute of the feature weights in negative examples has to be emphasized and (b) the γ of Eq. 2.6 should not be interpreted as negative information control but as a simple parameter.

2.7.2 Performance Evaluation on the Reuters fixed test-set

In this experiment the performance of PRC model over the fixed Reuters test-set (RTS) has been measured. The aim is to provide direct comparison with other literature results (e.g., [Yang, 1999; Joachims, 1998; Cohen and Singer, 1999; Lam and Ho, 1998]).

Twenty estimation sets $ES_1, ..., ES_{20}$ have been used to estimate the optimal ratio as described in Section 2.6.2. Once $\hat{\rho}$ is available for the target category, its profile can be built and the performance can be measured. The PRC accuracy on RTS is a μf_1 of 82.83%. This score outperforms all literature evaluations of the original Rocchio classifier: 78% obtained in [Cohen and Singer, 1999; Lam and Ho, 1998], 75% in [Yang, 1999] and 79.9% in [Joachims, 1998]. It is worth noting that this latter result has been obtained optimizing the parameters on RTS as the aim was to prove the SVM superiority independently on the parameters chosen (e.g., γ, β and thresholds) for Rocchio.

To investigate the previous aspect we have measured directly the original Rocchio parameterized as in literature: $\gamma = 4$ and $\beta = 16$ ($\rho = .25$) and with $\gamma = \beta$ ($\rho = 1$). The results are shown in columns 2 and 3 of Table 2.5. When $\rho = 1$ is used, the global performance (78.79%) replicates the results in [Cohen and Singer, 1999; Lam and Ho, 1998] while for $\rho = .25$, it is substantially lower (72.61%). The explanation is the high number of features used in our experiments without applying any feature selection algorithm. A low ratio ρ cannot filter an adequate number of irrelevant features and, consequently, the performances are low. As ρ increases, a high number of noised features is removed and the performances improve. PRC, by determining the best parameter ρ for each category, improves the Rocchio performance at least by 5 percent points.

To confirm the generality of the above results, cross validation experiments on Reuters and other corpora are presented in next section.

Variability of ρ values across samples.

In this section we study the variability of ρ which supports the explanation for the improved PRC performances. The analysis of the distribution of the ρ values requires an ES, i.e. the estimation-set.

ρ values have been estimated over 20 samples $ES_1, ..., ES_{20}$. For each category i and for each sample k the best $\rho_i(ES_k)$ values has been estimated. The results are shown in Table 2.4. The values are reported for 14 categories of the Reuters Corpus, that includes more than 100 example documents. The name of
categories is shown in column 1, while their sizes (expressed in number of documents) appear in column 2. The median, the means and standard deviation of \(\gamma_i(ES_k) \) over the 20 samples are reported in columns 3, 4 and 5.

When larger classes are available, the pointwise estimators (median and mean) seem represent the optimal \(\rho \) values well. They are near the last column that represents the optimal \(\rho \) evaluated on RTS. In other words whatever is the source information (i.e. the sample used for evaluating \(\rho \)) the resulting vector ranges in very small intervals. It approximates a general setting that, from one side, seems to reflect universal properties of the categories of a given collection, and, from the training point of view, can be derived via estimation (e.g., the median) over suitably large and numerous samples.

Table 2.4: Mean, Standard Deviation and Median of \(\rho \) values estimated from samples.

<table>
<thead>
<tr>
<th>Categories</th>
<th>Size</th>
<th>Me</th>
<th>(\mu)</th>
<th>Std.Dev.</th>
<th>Test-Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>earn</td>
<td>2544</td>
<td>1</td>
<td>0.8</td>
<td>0.8</td>
<td>1</td>
</tr>
<tr>
<td>acq</td>
<td>1520</td>
<td>3</td>
<td>3.8</td>
<td>2.4</td>
<td>3</td>
</tr>
<tr>
<td>money-fx</td>
<td>456</td>
<td>10</td>
<td>6.0</td>
<td>5.1</td>
<td>10</td>
</tr>
<tr>
<td>grain</td>
<td>374</td>
<td>7</td>
<td>6.9</td>
<td>2.0</td>
<td>8</td>
</tr>
<tr>
<td>crude</td>
<td>366</td>
<td>10</td>
<td>7.3</td>
<td>4.7</td>
<td>12</td>
</tr>
<tr>
<td>interest</td>
<td>312</td>
<td>9</td>
<td>8.0</td>
<td>2.6</td>
<td>9</td>
</tr>
<tr>
<td>trade</td>
<td>312</td>
<td>9</td>
<td>6.0</td>
<td>4.8</td>
<td>12</td>
</tr>
<tr>
<td>ship</td>
<td>181</td>
<td>1</td>
<td>3.0</td>
<td>4.5</td>
<td>7</td>
</tr>
<tr>
<td>wheat</td>
<td>181</td>
<td>10</td>
<td>7.8</td>
<td>5.1</td>
<td>15</td>
</tr>
<tr>
<td>corn</td>
<td>151</td>
<td>10</td>
<td>10.0</td>
<td>1.7</td>
<td>15</td>
</tr>
<tr>
<td>dlr</td>
<td>111</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>Money-supply</td>
<td>110</td>
<td>4</td>
<td>4.3</td>
<td>4.0</td>
<td>7</td>
</tr>
<tr>
<td>oilseed</td>
<td>110</td>
<td>10</td>
<td>7.9</td>
<td>4.1</td>
<td>11</td>
</tr>
<tr>
<td>sugar</td>
<td>108</td>
<td>10</td>
<td>6.7</td>
<td>4.9</td>
<td>11</td>
</tr>
</tbody>
</table>

2.7.3 Cross evaluation

In order to assess the general performances of the PRC and of the original Rocchio classifier, wider empirical evidences are needed on different collections and languages. Moreover, to estimate the best TC accuracies achievable on the target corpora, we have also evaluated the Support Vector Machine (SVM) classifier [Joachims, 1998].

Performance figures are derived for each category via a cross validation technique applied as follows:

1. Generate \(n = 20 \) random splits of the corpus: 70% for training (\(LS^\sigma \)) and 30% for testing (\(TS^\sigma \)).
2. For each split σ

(a) Extract 20 sample $ES_{\sigma 1}...ES_{\sigma 20}$ from LS_{σ}.

(b) Learn the classifiers on $LS_{\sigma} - ES_{\sigma k}$ and for each $ES_{\sigma k}$ evaluate: (i) the thresholds associated to the BEP and (ii) the optimal parameters ρ.

(c) Learn the classifiers Rocchio, SVM and PRC on LS_{σ}: in case of PRC use the estimated $\bar{\rho}$.

(d) Use TS_{σ} and the estimated thresholds to evaluate f_1 for the category and to account data for the final processing of the global μf_1.

3. For each classifier evaluate the mean and the Standard Deviation for f_1 and μf_1 over the TS_{σ} sets.

It is worth noting that the fixed test-set (RTS) and the learning-set of the Reuters Corpus have been merged in these experiments to build the new random splits.

Again, original Rocchio classifier has been evaluated on two different parameter settings selected from the literature (i.e. $\gamma = \beta$ and $\gamma = 4$ and $\beta = 16$). Tables 2.5 and 2.6 reports the μf_1 over 90 categories and the f_1 (see Section 2.4.2) for the top 10 most populated categories. Original Rocchio accuracy is shown in columns 2, 3, 4 and 5 of the first table. In the second table, columns 2 and 3 refer to PRC while columns 4 and 5 report SVM accuracy. The RTS label indicates that only the Reuters fixed test-set has been used to evaluate the results. In contrast, the TS_{σ} label means that the measurements have been derived averaging the results on 20 splits.

The symbol \pm precedes the Std. Dev. associated to the mean. It indicates the variability of data and it can be used to build the confidence limits. We observe that our SVM evaluation on Reuters RTS (85.42%) is in line with the literature (84.2 %) [Joachims, 1998]. The slight difference in [Joachims, 1998] is due to the application of a stemming algorithm, a different weighting scheme, and a feature selection (only 10,000 features were used there). It is worth noting that the global PRC and SVM outcomes obtained via cross validation are higher than those evaluated on the RTS (83.51% vs. 82.83% for PRC and 87.64% vs. 85.42% for SVM). This is due to the non-perfectly random nature of the fixed split that prevents a good generalization for both learning algorithms.

The cross validation experiments confirm the results obtained for the fixed Reuters split. PRC improves about 5 point (i.e. 83.51% vs. 78.92%) over Rocchio parameterized with $\rho = 1$ with respect to all the 90 categories (μf_1). Note that $\rho = 1$ (i.e. $\gamma = \beta$) is the best literature parameterization. When a more general parameter setting [Cohen and Singer, 1999] is used, i.e. $\rho = .25$, PRC outperforms Rocchio by \sim 10 percent points. Tables 2.5 and 2.6 shows a high improvement even for the single categories, e.g., 91.46% vs. 77.54% for

16Each $ES_{\sigma k}$ includes about 30-40% of training documents, depending on the corpus.
2.7. PERFORMANCE EVALUATIONS: PRC, ROCCHIO AND SVM

Table 2.5: Rocchio f_1 and the μf_1 performances on the Reuters corpus. RTS is the Reuters fixed test-set while TS^σ indicates the evaluation over 20 random samples.

<table>
<thead>
<tr>
<th>Category</th>
<th>RTS $\rho = .25$</th>
<th>RTS $\rho = 1$</th>
<th>TS^σ $\rho = .25$</th>
<th>TS^σ $\rho = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>earn</td>
<td>95.69</td>
<td>95.61</td>
<td>92.57±0.51</td>
<td>93.71±0.42</td>
</tr>
<tr>
<td>acq</td>
<td>59.85</td>
<td>82.71</td>
<td>60.02±1.22</td>
<td>77.69±1.15</td>
</tr>
<tr>
<td>money-fx</td>
<td>53.74</td>
<td>57.76</td>
<td>67.38±2.84</td>
<td>71.60±2.78</td>
</tr>
<tr>
<td>grain</td>
<td>73.64</td>
<td>80.69</td>
<td>70.76±2.05</td>
<td>77.54±1.61</td>
</tr>
<tr>
<td>crude</td>
<td>73.58</td>
<td>80.45</td>
<td>75.91±2.54</td>
<td>81.56±1.97</td>
</tr>
<tr>
<td>trade</td>
<td>53.00</td>
<td>69.26</td>
<td>61.41±3.21</td>
<td>71.76±2.73</td>
</tr>
<tr>
<td>interest</td>
<td>51.02</td>
<td>58.25</td>
<td>59.12±3.44</td>
<td>64.05±3.81</td>
</tr>
<tr>
<td>ship</td>
<td>69.86</td>
<td>84.04</td>
<td>65.93±4.69</td>
<td>75.33±4.41</td>
</tr>
<tr>
<td>wheat</td>
<td>70.23</td>
<td>74.48</td>
<td>76.13±3.53</td>
<td>78.93±3.00</td>
</tr>
<tr>
<td>corn</td>
<td>64.81</td>
<td>66.12</td>
<td>66.04±4.80</td>
<td>68.21±4.82</td>
</tr>
<tr>
<td>μf_1 (90 cat.)</td>
<td>72.61</td>
<td>78.79</td>
<td>73.87±0.51</td>
<td>78.92±0.47</td>
</tr>
</tbody>
</table>

Table 2.6: PRC and SVM f_1 and the μf_1 performances on the Reuters corpus. RTS is the Reuters fixed test-set while TS^σ indicates the evaluation over 20 random samples.

<table>
<thead>
<tr>
<th>Category</th>
<th>PRC RTS</th>
<th>PRC TS^σ</th>
<th>SVM RTS</th>
<th>SVM TS^σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>earn</td>
<td>95.31</td>
<td>94.01±0.33</td>
<td>98.29</td>
<td>97.70±0.31</td>
</tr>
<tr>
<td>acq</td>
<td>85.95</td>
<td>83.92±1.01</td>
<td>95.10</td>
<td>94.14±0.57</td>
</tr>
<tr>
<td>money-fx</td>
<td>62.31</td>
<td>77.65±2.72</td>
<td>75.96</td>
<td>84.68±2.42</td>
</tr>
<tr>
<td>grain</td>
<td>89.12</td>
<td>91.46±1.26</td>
<td>92.47</td>
<td>93.43±1.38</td>
</tr>
<tr>
<td>crude</td>
<td>81.54</td>
<td>81.18±2.20</td>
<td>87.09</td>
<td>86.77±1.65</td>
</tr>
<tr>
<td>trade</td>
<td>80.33</td>
<td>79.61±2.28</td>
<td>80.18</td>
<td>80.57±1.90</td>
</tr>
<tr>
<td>interest</td>
<td>70.22</td>
<td>69.02±3.40</td>
<td>71.82</td>
<td>75.74±2.27</td>
</tr>
<tr>
<td>ship</td>
<td>86.77</td>
<td>81.86±2.95</td>
<td>84.15</td>
<td>85.97±2.83</td>
</tr>
<tr>
<td>wheat</td>
<td>84.29</td>
<td>89.19±1.98</td>
<td>84.44</td>
<td>87.61±2.39</td>
</tr>
<tr>
<td>corn</td>
<td>89.91</td>
<td>88.32±2.39</td>
<td>89.53</td>
<td>85.73±3.79</td>
</tr>
<tr>
<td>μf_1 (90 cat.)</td>
<td>82.83</td>
<td>83.51±0.44</td>
<td>85.42</td>
<td>87.64±0.55</td>
</tr>
</tbody>
</table>

the grain category. The last two columns in Table 2.6 reports the results for the linear version of SVM17.

17We have tried to set different polynomial degrees (1,2,3,4 and 5). As the linear version has shown the best performance we have adopted it for the cross validation experiments.
Table 2.7: Performance Comparisons among Rocchio, SVM and PRC on Ohsumed corpus.

<table>
<thead>
<tr>
<th>Category</th>
<th>Rocchio (BEP)</th>
<th>PRC</th>
<th>SVM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\rho = 0.25$</td>
<td>$\rho = 1$</td>
<td>BEP</td>
</tr>
<tr>
<td>Pathology</td>
<td>37.57</td>
<td>47.06</td>
<td>48.78</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>71.71</td>
<td>75.92</td>
<td>77.61</td>
</tr>
<tr>
<td>Immunologic</td>
<td>60.38</td>
<td>63.10</td>
<td>73.57</td>
</tr>
<tr>
<td>Neoplasms</td>
<td>71.34</td>
<td>76.85</td>
<td>79.48</td>
</tr>
<tr>
<td>Digestive Syst.</td>
<td>59.24</td>
<td>70.23</td>
<td>71.50</td>
</tr>
<tr>
<td>MicroAv. (23 cat.)</td>
<td>54.4±.5</td>
<td>61.8±.5</td>
<td>66.1±.4</td>
</tr>
</tbody>
</table>

Table 2.8: Performance comparisons between Rocchio and PRC on ANSA corpus

<table>
<thead>
<tr>
<th>Category</th>
<th>Rocchio (BEP)</th>
<th>PRC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\rho = 0.25$</td>
<td>$\rho = 1$</td>
</tr>
<tr>
<td>News</td>
<td>50.35</td>
<td>61.06</td>
</tr>
<tr>
<td>Economics</td>
<td>53.22</td>
<td>61.33</td>
</tr>
<tr>
<td>Foreign Economics</td>
<td>67.01</td>
<td>65.09</td>
</tr>
<tr>
<td>Foreign Politics</td>
<td>61.00</td>
<td>67.23</td>
</tr>
<tr>
<td>Economic Politics</td>
<td>72.54</td>
<td>78.66</td>
</tr>
<tr>
<td>Politics</td>
<td>60.19</td>
<td>60.07</td>
</tr>
<tr>
<td>Entertainment</td>
<td>75.91</td>
<td>77.64</td>
</tr>
<tr>
<td>Sport</td>
<td>67.80</td>
<td>78.98</td>
</tr>
<tr>
<td>MicroAverage</td>
<td>61.76±.5</td>
<td>67.23±.5</td>
</tr>
</tbody>
</table>

Tables 2.7 and 2.8 report the results on the other two corpora, respectively Ohsumed and ANSA. The new data on these tables is the BEP evaluated directly on the TS°. This means that the estimation of thresholds is not carried out and the resulting outcomes are upperbounds of the real accuracies. We have used these measurements to compare the f_1 values scored by PRC against the Rocchio upperbounds. This provides a strong indication of the superiority of PRC as both tables show that Rocchio BEP is always 4 to 5 percent points under f_1 of PRC. Finally, we observe that PRC outcome is close to SVM especially for the Ohsumed corpus (65.8% vs. 68.37%).

PRC complexity

The evaluation of Rocchio classifier time complexity can be divided into three steps: pre-processing, learning and classification. The pre-processing includes the document formatting and the extraction of features. We will neglect this
extra time as it is common in almost all text classifiers.

The learning complexity for original Rocchio relates to the evaluation of weights in all documents and profiles. Their evaluation is carried out in three important steps:

1. The **IDF** is evaluated by counting for each feature the number of documents in which it appears. This requires the ordering of the pair set
 \(<\text{document}, \text{feature}>\) by feature. The number of pairs is bounded by
 \(m \times M\), where \(m\) is the maximum number of features in a documents
 and \(M\) is the number of training documents. Thus, the processing time is
 \(O(m \times M \times \log(m \times M))\).

2. The weight for each feature in each document is evaluated in
 \(O(m \times M)\) time.

3. The profile building technique, i.e. Rocchio formula, is applied. Again,
 the tuple set
 \(<\text{document}, \text{feature}, \text{weight}>\) is ordered by feature in
 \(O(m \times M \times \log(m \times M))\) time.

4. All weights that a feature \(f\) assumes in positive (negative) examples are
 summed. This is done by scanning sequentially the
 \(<\text{document}, \text{feature}, \text{weight}>\) tuples in \(O(M \times m)\) time. As result, the overall learning com-
 plexity is \(O(m \times M \times \log(m \times M))\).

The classification complexity of a document \(d\) depends on the retrieval of
weights for each feature in \(d\). Let \(N\) be the total number of unique features;
it is an upperbound of the number of features in a profile. Consequently, the
classification step takes \(O(m \times \log(N))\).

In the **PRC** algorithm, an additional phase is carried out. The accuracy
produced by \(\rho\) setting has to be evaluated on a validation-set \(V\). This requires
the re-evaluation of profile weights and the classification of \(V\) for each chosen \(\rho\).
The re-evaluation of profile weights is carried out by scanning all
\(<\text{document}, \text{feature}, \text{weight}>\) tuples. Note that the tuples need to be ordered only one time.
Consequently, the evaluation of one value for \(\rho\) takes \(O(m \times M) + O(|V|m \times \log(N))\). The number of values for \(\rho\), as described in the previous section, is \(k = \frac{\text{MaxLimit}}{\Delta \rho}\). The complexity to measure \(k\) values is \(O(mM \times \log(mM)) + k(O(m \times M + |V| \times O(m \times \log(N))))\). The cardinality of the validation-set \(|V|\)
as well as \(k\) can be considered constants. In our interpretation, \(k\) is an intrinsic
property of the target categories. It depends on feature distribution and not
on the number of documents or features. Moreover, \(N\) is never greater than
the product \(M \times m\). Therefore, the final **PRC** learning complexity is \(O(mM \times \log(mM)) + k \times O(mM) + k|V| \times O(m \times \log(mM)) = O(mM \times \log(mM))\), i.e.
the complexity of the original Rocchio learning.

The document classification phase of PRC does not introduce additional
steps with respect to the original Rocchio algorithm, so it is characterized by a
very efficient time complexity, i.e. \(O(m \times \log(N))\).
2.8 Conclusions

In this Chapter the basic steps for the designing of a general classifier have been described. In particular new weighting schemes and a novel score adjustment techniques have been presented. Two representative model, Rocchio and SVM, have been introduced: the former is one of the most efficient classifier whereas the latter has the highest accuracy.

The high efficiency of Rocchio classifier has produced a renewed interest in its application to operational scenarios. Thus, we have study a methodology for setting the Rocchio parameters that improves accuracy and keeps the same efficiency of the original version. This methodology reduces the search space of parameters by considering that: (a) in TC only one parameter is needed, i.e., the ratio ρ between γ and β, and (b) ρ can be interpreted as a feature selector. This has allowed us to bind the search space for the ratio values since the ρ maximal value corresponds to the selection of 0 features. Moreover, empirical studies have shown that the ρ/BEP relationship can be described by a convex curve. This suggests a simple and fast estimation procedure for deriving the optimal parameter (see Section 2.6.1).

The resulting model, the Parameterized Rocchio Classifier (PRC) has been validated via cross validation, using three collections in two languages (Italian and English). In particular, a comparison with the original Rocchio model and the SVM text classifiers has been carried out. This has been done in two ways: (a) on the Reuters fixed split that allows PRC to be compared with literature results on TC and (b) by directly deriving the performance of Rocchio and SVM on the same data used for PRC.

Results allow us to draw the following conclusions:

- First, PRC systematically improves original Rocchio parameterized with the best literature setting by at least 5 percent points, and it improves the general setting by 10 percent points. Comparisons with SVM show the performances to be relatively close (-4% on Reuters and -2.5% on Ohsumed).

- Second, the high performance, (i.e., 82.83%) on the Reuters fixed test-set collocates PRC as one of the most accurate classifiers on the Reuters corpus (see [Sebastiani, 2002]).

- Third, the low time complexity for both training and classification phase makes the PRC model very appealing for real (i.e. operational) applications in Information Filtering and Knowledge Management.

Finally, the feature selection interpretation of parameters suggests a methodology to discover the specific-term of a category with respect to the other ones.
Chapter 3

NLP for Text Categorization

Chapter 1 has summarized some of the attempts to use advanced document representation to improve document retrieval. The conclusive results were that current NLP slightly improves the basic retrieval systems. When pure statistical state-of-the-art models are adopted either NLP is not useful or a comparison cannot be carried out as the less efficiency of NLP. For TC are available fewer studies as it is a relatively new research area (compared to IR) and some of these, e.g., [Raskutti et al., 2001; Tan et al., 2002] have shown improvements by using very basic language processing techniques. Thus, deriving a final conclusion on the role of NLP is more difficult than for document retrieval.

In this chapter advanced document representations, introduced in Section 1.2, have been investigated. Several experiments have been carried out: First, efficient NLP techniques are used in fast TC models, the profile-based, to derive efficient categorization systems. Several weighting schemes, inference methods and adjustment score techniques have been considered. The aims were (a) to study how NLP impacts some different versions of profile-based classifiers, and (b) to design efficient and accurate NLP-driven TC models. Second, more complex and less efficient NLP algorithms have been studied. They include the extraction of terminological expressions, i.e., important domain complex nomenclars and the selection of the correct word senses by using three WSD algorithms. These last tests allow us to verify the hypothesis claimed in [Voorhees, 1998; Smeaton, 1999], i.e., when the correct senses are used in IR the resulting system highly improves. The above study complete the NLP for TC survey. In fact, almost all trendy NLP techniques for IR have been studied and experimented.

Section 3.1 describes the NLP techniques applied to extract feature for indexing. Section 3.2 shows the impact of efficient derived features such as lemma, Proper Nouns and POS-tag in efficient statistical profile-based models. Section 3.3 reports the experiments for Rocchio, PRC and SVM on the advanced NLP document representations. In particular sections 3.3.2 and 3.3.1 report experi-
ments on syntactic information, i.e., lemmatization, POS-tagging, proper nouns and terminological expressions whereas Section 3.3.4 shows the impact of semantic representation using word senses. Related work has been examined in Section 3.3.6. Finally, Section 3.4 derive the conclusions on using NLP for TC.

3.1 Natural Language Feature Engineering

The role of linguistic content in TC is twofold: from one side it is embodied by specific information with respect to entities and facts cited in documents. Proper Nouns for Companies, Location and Persons, or the events involving those entities (e.g., managing succession events as indicators of topics like Industry News) are example of such type of linguistic content. This information is widely used within the IE area, e.g. MUC-6, MUC-7 and [Pazienza, 1997], involved in very granular and specific recognition. On the other hand, content refers also to the set of typical words, i.e. expressions and terminological units that co-occur in a document or in documents of the same class. This provides an overall picture of what a topic is, and what it deals with. This second form of linguistic content is based on:

- A tight separation between content words (i.e. open syntactic classes such as nouns, verbs and adjectives) and other less relevant information (e.g., functional classes like prepositions or complex functional expressions as far as or in order to). The need of this separation is known since the early research in IR [Salton, 1989] that motivated the use of stoplists.

- The identification of the syntactic role of each word in its corresponding context: for example verbal from nominal uses of a lemma can be distinguished (ready to land vs. suitable public lands). The syntactic role allows to select the more informative class of words, i.e. Nouns, and to perform a first level of word disambiguation, e.g., book and to book. The syntactic category of the word book, clearly, decides which is the most suitable choice between categories like Book Sales and Travel Agency.

- The identification of linguistically motivated structures that behave non-compositionally, and thus require a completely different process with respect to other phenomena. Possibly complex Proper Nouns (e.g., Shell Transport & Trading Co. PLC) are an example, as they should not be modeled similarly to common nouns in TC. This less granular form of linguistic content could be very useful to enhance the document representation. As it provides core information that the single words may not capture. When used for TC, the accuracy in the recognition of the different components reflects in the accuracy of the classification processes. Empirical evidences on this relationship are still necessary, and our study aims to add further information to this issue.

\footnote{The Message Understanding Conference focused on the task of Information Extraction \url{http://www.cs.nyu.edu/cs/faculty/grishman/muc6.html}.}
3.1. NATURAL LANGUAGE FEATURE ENGINEERING

The above structures add to the simple words syntactic information, which could be useful to improve the accuracy in TC. A different source of linguistic information are the senses of words. These give a more precise sketch of what the category is concerning. For example, a document that contains the nouns share, field and the verb to raise could refer to agricultural activities, when the senses are respectively: plowshare, agricultural field and to cultivate by growing. At the same time, the document could concern economic activities when the senses of the words are: company share, line of business and to raise costs. This shows that the availability of word senses in document representation could improve the TC accuracy.

The next section will describe our system to extract the above sets of syntactic and semantic information.

3.1.1 Language processing for Text Categorization in TREVI

The linguistic information described in the previous section requires accurate recognition/extraction capabilities during the corpus-preprocessing phase. The linguistic processor adopted in our studies is TREVI. TREVI is a system for Intelligent Text Retrieval and Enrichment of news agency texts. In TREVI specific NLP technologies deal with the required linguistic content. All the experiments analyzed in this paper are based on the TREVI NLP components, described in the rest of this section.

The TREVI target application is to provide support to agencies in the management of different, multilingual and geographically distributed streams of news. Reuters, as a member of the Consortium, has been used as a main User Case for the released prototype. An editorial board is usually in charge of managing news, i.e. classifying and enriching them in order to facilitate their management, future retrieval and delivery. The TREVI components are servers cooperating to the processing, extraction, classification, enrichment and delivery of news. Mainly, two TREVI components contribute to the TC (sub)-task:

- the Parser, i.e. a full linguistic preprocessor that takes a normalized versions of a news item and produces a set of grammatical (e.g., subj/obj relations) and semantic (e.g., word senses in an ontology) information related to that text.
- a Subject Identifier, that according to the Parser output and to the derived class profiles assigns one or more topics to each news. This is the proper TC (sub)system.

The Parser in TREVI [Basili et al., 1998b] is a complex (sub)system combining tokenization, lemmatization (via an independent lexical server), Part-of-Speech tagging [Brill, 1992; Church, 1988] and robust parsing [Basili et al., 1998c]. Details on the linguistic methods and algorithms for each phase can be found in the related publications [Basili et al., 1998b; 1998c; Basili and Zanzotto, 2002] and will not be here described as they go beyond the purposes of this thesis.
Figure 3.1 shows the GUI of the TREVI parser on a Reuters news. The GUI shows the title, the full text, some complementary information and in the large panel the output produced by the parser in form of an annotated syntactic graph. The shown sentence in the panel is:

Although they worked in experimental mice, they said the results might explain why some people have fallen victim to a new strain of the deadly brain disease.

The graph is based on the word sequence (from *experimental* to *fallen* in the visible segment). Each word is tagged by its own Part-Of-Speech: for example *experimental, mice, explain, why and fallen* are tagged respectively as adjective (*JJ*), plural noun (*NNS*), base verb (*VB*), Wh-adverb (*WRB*) and past participle (*VBN*). The grammatical links within chunks (i.e. kernels of nouns or verb phrases following [Abney, 1996]) are shown above the sentence: complete noun phrases like *the results or some people* are recognized as valid chunks and grammatical relations between their participants (e.g., determiner-noun relations) are annotated via syntactic types (*Art_N*). Under the sentence other
relations are shown. Subjects and objects of verbs are described as grammatical relations among the head words of chunks\(^2\). The material shown in Fig. 3.1 includes the subject of the verb *to fall* in the fragment *... some people have fallen victim ...* (see relation typed \(v,Sog\)). Although no Proper Noun is shown in the example of Fig. 3.1, the employed specific Named-Entity grammars in TREVI provide the detection and tagging (*NNP* is the specific NE tag) of units like *New York, Jean Mason or Institute of Animal Health*.

The *Parser* thus detects in every documents the following set of information:

1. **Possibly complex Tokens and lemmas.** Simple words (e.g., *bank, match*) as well as complex terminological expressions (e.g., entire noun phrases as *bond issue* or functional expressions as *in order to*) are detected and treated as atomic units during the later phases;

2. **Proper Nouns** (PNs). Set of domain (i.e. User) specific Named-Entities are recognized by accessing extensive catalogs as well as by special-purpose grammars. Typed proper nouns are derived from news, e.g., *company* and *person* are valid types for *Oracle* and *Woody Allen* respectively.

3. **Syntactic Categories** of lemmas in text. Each unit of text (i.e. simple or complex) is assigned with a single Part-of-Speech (POS). Indexes can be thus built over POS, so that verbal and nominal occurrences of a given lemma are independent (e.g., *results/VB* is different from *results/NNS*)

4. **Major grammatical relations** (i.e. *Subj/Obj* relations among words) are detected with a significant accuracy (about 80\%, see [Basili et al., 1998c] for an evaluation of the robust parser). Each news is thus annotated also with basic structures made of significant constituents (verbs and their modifiers).

The example in Fig. 3.1 is a simple case aiming to suggest the basic information extracted by the employed linguistic process. It is to be noticed that the TREVI parser is based on a modular architecture. Its average processing time is more than 80 words per second (see [Basili et al., 1998c] for extensive evaluation in English and Italian). This speed, although quite reasonable for a variety of NLP tasks, could not be compatible with time constraints in some operational scenarios for TC. However, when a higher speed is required the parser can be scaled down to increase the computational speed. For example some linguistic processors such as the chunk-based parsing component can be deactivated.

3.1.2 Basic NLP-derived feature set

The problem of using NLP techniques to extract relevant indexes relates not only to the designing of effective models but mainly in keeping efficiency as lower as possible. The models proposed in this section focus on some linguistic levels

\(^{2}\)The *head of a chunk* is the main meaning carrier of the entire structure, as for *results* in the chunk *the results*). Only the head enters in grammatical relations between two chunks.
that are currently supported by an efficient technology allowing fast processing of huge amount of data. Part of speech tagging, lemmatization and proper nouns recognition are simple linguistically motivated techniques that can be applied efficiently with a very high accuracy [Brill, 1992; Church, 1988]. This linguistic information provides a richer knowledge about texts and is expected to improve the selectivity exhibited by text categorizers.

The relevant information derived during parsing is used in TREVI for TC by the Subject Identifier component. In TREVI, only nouns, verbs and adjectives are considered candidates features. We define the basic NLP-features the pairs:

\[\text{<lemma, POS}\text{tags>} \]

where the valid POS tag labels express noun, verb or adjective tags (e.g., NN, NNS VBN, VB or JJ). Proper Nouns (PNs) are also included in the feature set like the other lemmas so that they do not have a different treatment. Notice that stop lists are not required as POS tagging supplies the corresponding, and linguistically principled, filtering ability. It is expected that the overall process (i.e. recognition of functional units, proper nouns and POS tag assignment) supports the selection of a better set of candidate features.

The representation defined in (3.1) is able to express linguistic as well as non linguistic feature sets. Document as well as profile vectors are obtained by weighting the above pairs. Non linguistic feature sets (as discussed and tested in Section 3.2.1) are obtained by simply ignoring the second component in (3.1) (i.e. the POS label) and merging the pairs with identical lemmas. However, notice that the POS labels are always used for feature selection: non significant word classes (e.g., WH-adverbs with tag WRB) are preliminarily eliminated in any experiment. We refer to the non linguistic feature set as the TREVI-tokens.

In synthesis, we can say that the basic NLP-derived features are characterized by three important properties:

- First, information significant for TC is extracted via a modular NLP approach. This is able to isolate a variety of linguistic levels (ranging from simple lemmas to complex proper nouns or grammatical units, e.g., irrelevant functional expressions like in order to correctly POS-tagged).
- Second, the adopted technology reflects current state-of-the-art in NLP (e.g., modular design and engineering of a large scale system (TREVI) and chunk-based parsing) thus providing efficient and suitable (and configurable) processing for each selected level.
- Finally, a combination of language processing within IR is defined via an enriched feature representation (definition in (3.1)). It is designed to naturally support a quantitative model (i.e. metrics in feature vector spaces) and preserve the expressiveness of the extracted linguistic information.

3.1.3 Terminology-based Document Representation

One of the objectives of our research is to study the role of linguistic information in the description (i.e. feature extraction) of different classes in a TC
By linguistically analyzing documents in the target categories, we noticed that these latter are often characterized by sets of typical concepts usually expressed by specific phrases, i.e. linguistic structures synthesizing widely accepted definitions (e.g., *bond issues* in topics like Finance or Stock Exchange). Such complex nominals express information useful to capture semantic aspects of a topics. Phrases that could be useful for TC belong to the following general classes:

- **Proper Nouns (PN)**, which identify entities participating to events described by a text. Most named entities are locations, persons or artifacts and are tightly related to the topics. PN-based features can improve performances, as reported in [Basili *et al.*, 2001].

- **Terminological expressions**, i.e. complex nominal expressing domain concepts. Domain concepts are usually identified by multiwords (e.g., *bond issues*). Their detection results in a more precise set of features to be included in the target vector space.

The above phrases embody domain specific knowledge [Basili *et al.*, 1997] so that they can provide selective features in TC. In fact, phrases specific to a given topics C_i can be learnt from the training material so that their matching in test documents d is a trigger for classifying d in C_i.

The availability of linguistically motivated terminological structures is usually ensured by external resources, i.e. thesauri or glossaries. However, extensive repositories are costly to be developed or simply missing in most domains. An enumerative approach cannot be fully applied. Automated methods for learning both Proper Nouns and terminological expressions from texts have been thus introduced and they can play a key role in content sensitive TC. While, the detection of Proper Nouns is easier achieved by applying a grammar that takes into account capital letters of nouns, e.g., *George Bush*, terminology extraction requires a more complex process. Next section describes the adopted terminology acquisition method. The result is a self-adapting process that tunes its behavior to the target domain (i.e. the set of C_i topics).

Corpus-driven terminology extraction

The automated compilation of a domain specific terminological dictionary is a well known problem in NLP. Several methods for corpus-driven terminology extraction have been proposed (e.g., [Daille, 1994; Arppe, 1995; Basili *et al.*, 1997]). The terminology extraction algorithm that we used is an inductive (batch) method early introduced in [Basili *et al.*, 1997]. It is based on an integration of symbolic and statistical modeling along three major steps:

- **First**, a set of relevant atomic terms ht (i.e. singleton words, e.g., *issue*) are identified by means of traditional techniques\(^3\). These terms are potential grammatical heads of complex terminological expressions (e.g., *bond issues*).

\(^3\)The $TF \times IDF$ score early suggested in [Salton and Buckley, 1988] is here employed.
Linguistically principled grammars are then applied to identify full linguistic structures (i.e. complex forms headed by *ht*) as admissible candidates. In this phase, simple noun phrase grammars (e.g., \(NP \sim [\text{Det}] \ [\text{Adj*}] \ N \ NP\)) are applied to train texts previously preprocessed. Preprocessing here applies tokenization, Part-of-Speech tagging and lemmatization of incoming texts. The outcome of this phase includes candidate terms expressing genuine terminological entries, e.g., *bond issues*, *financial institution*, *chief executive*, *congenital heart defect* as well as generic, i.e. irrelevant, expressions, e.g., *last week*, *high rates*, *three time*, *early age*.

Finally, extracted candidates are validated and selected by the use of statistical filters. Statistical properties imposed on the occurrences of multiword sequences aim to restrict the semantic relations expressed by terms.

The critical mechanism in the above process is the interaction between the NP grammars and the statistical filters. Term candidates extracted during the second step are couples \((x, \vec{y})\), where \(\vec{y}\) represents the sequence of (left and/or right) modifiers, e.g., \((\text{issue}, (-1, \text{bond}))\), \((\text{defect}, ((-2, \text{congenital}), (-1, \text{heart}))\) for *bond issue* and *congenital heart defect*, respectively. Mutual information (MI), [Fano, 1961], has been often used to capture linguistic relations between words (e.g., [Church and Hanks, 1990; Dagan et al., 1994]):

\[
I(x, y) = \log_2 \frac{P(x, y)}{P(x)P(y)},
\]

The stronger is the relation between \(x\) and \(y\) the larger is the joint with respect to marginal probabilities\(^4\). The basic problem is that MI (and its estimation) is concerned with only two events, and is better suited with bigrams, e.g., *bond issue*. Longer expressions usually require an iterative estimation ([Basili et al., 1997; Daille, 1994]), where first (sub)bigrams of longer structures are accepted, re-estimation of their occurrences in the corpus is run and then filtering of a new binary event is applied. 5-grams in this case would require 4 re-estimations.

In [Basili et al., 1998a] a different approach is proposed based on an extension of MI to collections of events (i.e. vector of words):

\[
I(x, \vec{y}) = \log_2 \frac{P(x, \vec{y})}{P(x)P(\vec{y})},
\]

where an entire (more than binary) relation is considered between word \(x\) and the vector \(\vec{y} = (y_1, y_2, ..., y_n)\) of its modifiers. The MI estimation \(I(x, \vec{y})\) is carried out in two steps. First each \(i\)-th component, \(\hat{I}(x, y_i)\), is estimated. Then, graphical comparison among the resulting \(\hat{I}(x, y_i)\) is applied. The \(\hat{I}(x, y_i)\) determine points in an histogram describing a full complex noun phrase. If a semantic relation holds between the modifiers \(\vec{y}\) and the head \(x\), then the obtained plot should be as flat as possible, i.e. no significant difference between the \(\hat{I}(x, y_i)\)

\(^4\)A variety of estimations and extension of MI have been proposed, [Church and Hanks, 1990], like: \(\hat{I}(x, y) = \log_2 N \frac{f_i(x, y)}{f_i(x)f_i(y)}\), where \(f_i(x, y)\) is the frequency of co-occurrence of words \(x\) and \(y\) at distance \(i\).
values should be observed. In this way each candidate term \((x, y_i)\) is analyzed looking "in parallel" to all its different MIs (i.e., \(I(x, y_i) \forall i\)). Thresholding on the differences provides a straightforward and efficient decision criteria applied without iteration.

The above methods has been largely applied to English texts in [Basili et al., 1997]. Evaluation of the performances of the above acquisition method are very complex, as it is difficult to establish a clear separation among terms and non terms. However, the result is always a more or less precise set of complex nominals significant for the underlying domain, i.e. a terminological dictionary. The relevance of each term/feature for TC can be assessed by means of the feature selection and weighting method described in Chapter 2.

The terminology extraction for TC should include these additional steps:

1. Terminological dictionary, namely \(T_i\), is obtained by applying the above method to training data for each single category \(C_i\).

2. The global terminology set \(T\) is obtained by merging the different \(T_i\), i.e. \(T = \bigcup T_i\). As test data are distributed in an unknown manner throughout different classes, a single terminological dictionary \(T\) is needed during testing.

3. The TREVI processor can thus rely on \(T\) during the matching of features within incoming test documents. Notice that when a given term \(f\) is included in different category dictionaries \(T_i\), it is likely to receive, from the learning model, a different weight \(\vec{a}_f^i\) (i.e., \(\vec{W}_f^i\)) for each class \(C_i\).

3.1.4 Semantic representation

Text Categorization and Word Sense Disambiguation are areas of language processing that have recently received a great deal of attention. This is because of the impact they have on harnessing the ever-growing textual information posted on the Internet or other on-line document collections. In the study we report in this thesis, we tried to see if the accuracy of TC could be improved when more sophisticated linguistic representations based on word meanings would also be available.

Word Sense Disambiguation is a Natural Language Processing (NLP) technique that assigns meanings to content words (e.g., nouns, verbs, adjectives or adverbs) based on dictionary definitions. In general, words may be ambiguous both syntactically and semantically. For instance, the word *hit* may be either a noun, or a verb. When a noun, *hit* may have 6 senses, as defined in WordNet (http://www.cogsci.princeton.edu/~wn/), whereas when it is a verb it has 15 senses. Part-of-speech (POS) taggers like Brill’s POS-tagger [Brill, 1992] assign POS-tags to words with fairly high precision (95%). Recent WSD evaluations performed in SENSEVAL [Kilgarriff and Rosenzweig, 2000] show that current unsupervised learning methods for WSD achieve a precision of 80% for nouns, 70% for verbs and 75% for adjectives.
By adding features representing POS and senses of words, the document representation of text becomes richer, and intuitively, it may enhance the accuracy of the TC task. The problem however is that WSD algorithms also need massive annotation data, thus they incur an overhead over the TC learning approach. But this problem can be minimized by developing WSD techniques that can be tested on some seed annotated data. Similarly, as reported in [Nigam et al., 2000], the same idea of using minimal data annotated for TC was successfully applied before. To our knowledge, this is the first study on the impact WSD has on the accuracy of TC.

Assigning the meaning of a content word depends on the definition of word senses in semantic dictionaries like WordNet. There are two ways of defining the meaning of a word. First, the meaning may be explained, like in a dictionary entry. Second, the meaning may be given through other words that share the same meaning, like in a thesaurus. WordNet encodes both forms of meaning definitions. Words that share the same meaning are said to be synonyms and in WordNet, a set of synonym words is called a synset. WordNet encodes a majority of the English nouns, verbs, adjectives and adverbs (146,350 words grouped in 111,223 synsets). A word that has multiple senses belongs to many different synsets. More importantly, for each word, its senses are ordered by their frequency in the Brown corpus. This property enables the development of a simple, baseline WSD algorithm that assigns to each word its most frequent sense\(^5\).

The most accurate current WSD algorithm [Yarowsky, 2000] uses the observation that the meaning of words is given by the context in which they are used. There are multiple ways of modeling context, ranging from the window of words surrounding the target word in the document to combining various forms of collocations with the frequency of each word sense in the entire document. The more accurate algorithms rely on sophisticated modeling of the word context, thus resulting in processing-intensive technique that add up significant overhead to the TC task. Since it is not known how much WSD impacts on accuracy of TC, we have implemented additionally to the baseline algorithm, two different WSD algorithms, of increasing complexity of the context modeling. Additionally, we used the WSD algorithm developed by the Language Computer Corporation (www.languagecomputer.com). This is an enhancement of the WSD algorithm that won the SENSEVAL competition [Kilgarriff and Rosenzweig, 2000].

Algorithm 1: Gloss-based WSD

In WordNet, each synset is associated with a gloss that defines its meaning. For example, the gloss of the synset \{hit, noun\}_1 which represents the first meaning of the noun hit is:

\(a\ \text{successful stroke in an athletic contest (especially in baseball); "he came all the way around on Williams’ hit".}\)

\(^5\)In WordNet the most frequent sense is the first one.
Typically, the gloss of a synset contains three different parts: (1) the definition, e.g., a successful stroke in an athletic contest; (2) a comment (especially in baseball); and (3) an example "he came all the way around on Williams’ hit". Since each of these three parts can be easily distinguished by the punctuation that separates them, we process only the definition part. If we consider the gloss as a local context, whereas the document where the words appears as a global context, we could learn a semantic disambiguation function by selecting the sense whose local context (or gloss) best matches the global context. The matching is performed by considering only the nouns both in the gloss and in the document. The algorithm has the following steps:

1. For every noun \(i \in N_d \), the set of nouns from document \(d \)
2. For every sense \(j \) of noun \(i \)
3. Consider \(N_j \), the set of nouns from the gloss of sense \(j \) of noun \(i \)
4. Assign noun \(i \) the sense \(S \) such that
 \[
 s = \underset{j \in \text{senses}(\text{noun}_i)}{\text{argmax}} |N_j \cap N_d|
 \]

 The algorithm models the context of a noun by considering the nouns used in their WordNet gloss for defining each of their senses. The sense, which is selected, is the one having the nouns from its gloss more frequently used in the document.

Algorithm 2: Collocation-based WSD

Words that appear in the context of a target word are said that they collocate with the target word. There are many types of collocations, some that comprise words that are at small distance from the target word, some that involve functional relations with the target word, such as predicate-argument relationships. As we focus on semantically disambiguating only nouns, for collocations we consider two nouns to the left of the target and two nouns to its right. To find which senses the target word has, the collocation nouns are matched against the glosses of each sense. The algorithm has the following steps:

1. For every noun \(i \in N_d \), the set of nouns of document \(d \)
2. Collect its noun collocations, \(N_{d}^{-2}(i), N_{d}^{-1}(i), N_{d}^{+1}(i) \) and \(N_{d}^{+2}(i) \) in document \(d \)
3. Assign noun \(i \) the sense \(S \) such that
 \[
 s = \underset{j \in \text{senses}(\text{noun}_i)}{\text{argmax}} |N_c \cap N_H^j|
 \]

 Where \(N_c \) is the set of nouns in the collocation and \(N_H^j \) is the set of nouns in the gloss of \(\text{synset}(\text{noun}_i^{\text{sense}=j}) \) as well as the glosses of all its hyponyms\(^6\).

 This algorithm combines the modeling of context as a collocation window and the glosses of the WordNet sub-hierarchy determined by each possible sense.

\(^6\)In WordNet, if there is an IS-A relation between synsets \(s_1 \)-IS-A-\(s_2 \), then \(s_1 \) is called a hyponym of \(s_2 \) whereas \(s_2 \) is a hypernym of \(s_1 \).
of a noun from the document. It takes into account the notion of one sense per collocation by combining collocations of the same target noun that have common components. Moreover, since the combined collocations belong to the same document, it account also for the observation of learning one sense per document or discourse.

3.1.5 Computational Aspects

One of target issue in operational text classification systems is the applicability to large scale tasks and to computationally intensive tasks (e.g., filtering and delivery of Web multimedia documents). The overall computational complexity is thus very important. we provide some details about the main technologies employed as well as their complexities.

The proposed linguistic text classification framework depends basically on two main subsystems:

- The feature extraction model that includes the linguistic processors, i.e., the basic NLP-feature extractor, the terminology extractor and the WSD algorithms.

- The text classification model that refers to the (profile) learning and to the classification components. That has already been examined in Section 2.7.3.

Extraction of basic NLP-features

The overall complexity of the language processor strictly depends on the employed lexical resources as well as on the processing models for two language levels: morphosyntactic and grammatical recognition. Morphological recognition is the activity of detecting the canonical lemma associated to a text unit and it is usually carried out according to extensive dictionaries combined with generative (i.e. rule based) components for expressing legal linguistic derivations. These processes are usually optimized to (almost) linear pattern matching algorithms and do not represent a real issue for complexity.

A second phase is syntactic disambiguation, i.e. POS tagging. This process has been largely studied since late eighties (i.e. [Brill, 1992; Church, 1988]). It has an important role in efficient NL processing as it reduces the complexity of later grammatical recognition. The approach adopted in our processor is inspired by [Brill, 1992] where large sets of transformational rules are applied over an ambiguous textual context in cascade. This (almost) deterministic approach has a linear complexity in the number of text windows analyzed (i.e. the number of tokens in a document). Learnability of the transformational rules also ensures the scalability to large-scale document set, lexicons and portability throughout domains.

Finally, the third step employed in the proposed TC framework is named entity recognition. This is carried out as the recognition of specific phenomena driven by possibly large scale grammars. These grammars usually differ from
domain to domain although a general set of classes for named entities (e.g., location, organization and person names) are common practice. However, in general they are expressed via regular expressions that can be easily modeled by means of finite state computational devices. The real source of complexity here is thus only the size of the grammar issue that can be easily dealt with suitable optimization techniques (e.g., look-head or hashing). Again these processing stages are almost linear in the size of the input texts.

The above processing steps represent a subset of the system discussed recently in [Basili and Zanzotto, 2002], where a large scale evaluation of the parsing architecture for two languages (Italian and English) over several domains is extensively reported. A processing time\(^7\) of about 250 words per second is the result of effective (i.e. non analytical) measures over realistic collections. Moreover, processing time increases as a linear function of the corpus size for both languages. This clearly suggests that the adopted linguistic processor is usable for large scale scenarios (e.g., hypertextual linking and Web publishing as in [Basili et al., 2003]) and does not represent an obstacle to the application of the proposed TC technique.

Terminology Extraction

The Terminology Extraction requires the following phases:

1. **Head selection**: to apply the target complex nominal grammar the candidate head of terminological expressions has to be selected. For such purpose statistical filters based-on TF × IDF are evaluated. Given \(M\) documents and \(m\) the maximal number of words for each documents, this step can be carried out in \(O(m \times M \times \log(m \times M))\) time, as previously described in Section 2.7.3.

2. **Grammar Application**: all windows of \(n\) words around the head are considered. The algorithm attempts to apply the target complex nominal grammar in such windows. All sub-sequences of words around the head that match the grammar are stored in a database. The number of subsequences to be processed is less than the number of word occurrences. Moreover, the number of window words is considered constant, thus, the application of the grammar can be done in constant time. Keeping constant the size of the word window limit the length of the possible expressions but it allows to have a linear extraction algorithm.

3. **Statistical filtering**: after the processing of all documents in the target category, statistical filter (discussed in Section 3.1.3) are applied to select the most suitable terminological expressions. Even this phase requires linear times.

The above points prove that the terminology extraction is carried out in \(\max\{O(m \times M \times \log(m \times M)), O(k)\}\) time, where \(k\) is the total occurrences of words in the

\(^7\)This refers to an old Personal Computer Pentium II 100 Mhz. equipped with 120 Mbytes RAM.
training documents. The number of words inside the window determine the multiplicative constants of the complexity.

WSD algorithms

We have presented 3 algorithms for WSD, all of them have to look for the word senses in the WordNet database. The searching time is $\log(W)$, where W is the cardinality of the set of WordNet Synsets. The final complexities are described in the following:

(0) The Baseline algorithm is very simple for each word of the target document it chooses the first sense, thus the complexity is $O(N \times \log(W))$, where N is the number of unique features and $\log(W)$ is the time required for the binary searching of the word synset.

(1) The Algorithm 1 for each noun n of the target document d and for each sense s_n of n tests if the gloss words for the sense s_n are in d. This requires $O(m \times k_s \times k_g) \times O(\log(m))$, where:
 - m is the maximum number of words in a document,
 - k_s is the maximum number of senses in a synset,
 - k_g is the maximum number of words in a gloss and
 - $O(\log(m))$ is the time required by the binary search to verify if a gloss word is in d.

k_s and k_g are constants, consequently, the overall complexity for the M corpus documents is $O(M \times m \times \log(m))$.

(2) The Algorithm 2 requires to extract the collocations that precede and follow each noun (occurrence). This can be done by simple scanning all document d in $O(m)$. The collocation nouns are then matched against the gloss nouns of each noun sense (with all its hyponym hierarchy) in $O(k_s \times k_g \times m \times \log(m))$. The resulting complexity is $M \times [O(m \times \log(m)) + O(m)] = O(M \times m \times \log(m))$. Moreover, the multiplicative constants are higher than those of the Algorithm 1 as the searching is extended to all hyponym hierarchy.

The complexity of the Algorithm 3 could not be evaluated as it refers to a complex and secret WSD system kindly made available for these experiments by the *Language Computer Corporation*. In any case to carry out the disambiguation of 12,902 documents of *Reuters-21578*, the system employed approximately one week on a PC Pentium III 300 Mhz.

3.2 Experiments on basic NLP-derived indexes

In this section, experiments using efficient NLP indexing techniques over efficient TC models have been carried out. The aim is to discover the most
3.2. EXPERIMENTS ON BASIC NLP-DERIVED INDEXES

effective combination of weighting schemes, inference policies, score adjustment techniques with the basic NLP information (i.e., lemmatization, Proper Nouns and POS-tagging). For this purpose we made the following experiments:

- the accuracy evaluation for different TC models adopting the weighting schemes of Section 2.2.
- the comparison of score adjustment techniques \((LR \text{ vs. } RDS)\)
- The comparison of the above real corpus performances with those obtained over traditionally employed benchmarking test-sets;
- The analysis of the role of linguistic information with respect to the different model for designing features;

For a large-scale evaluation, we used three different corpora: TREVI-Reuters and HOS, provided from users involved in the TREVI project and Reuters corpus to enable the comparison with other literature work (at least with [Yang, 1999; Yang and Pedersen, 1997]). Every evaluation test has made use of microaveraged Breakeven Point \((\mu BEP)\) (see Section 2.4.2), over all the target categories in the underlying corpus. The set of features employed are those described in Section 3.1.2.

Two sets of experiments have been carried out: The first aims to provide a cross-domain analysis of weighting schemes, score adjustment techniques and inference policies. Here results over ”real” data (i.e. TREVI-Reuters and HOS) have been compared with those obtained over the Reuters benchmarking corpus (Experiments 1-3). Moreover, tests on the Reuters benchmark are helpful to assess the contributions of original aspects (i.e. the IW F weighting model and the RDS score adjustment technique) against approaches previously presented in literature. A second set of experiments aimed to evaluate the contribution of POS-tag information, which has been measured via the most accurate models determined in the first tests.

3.2.1 Efficient NLP on Efficient TC models

Any test has been carried out over a specific design choice among the different approaches proposed for Feature Design and Extraction, Document/Profile Weighting, Score Adjustment and Inference Policy. Almost all the proposed models in Section 2.2, 2.3 and 2.4 could be combined in a target TC architecture. In order to investigate the implementation choices as well as the impact of linguistic features, we defined a subset of possible TC architectures summarized in Table 3.1. Here, each system is defined by means of a set of characteristics listed in the respective columns. In column 1, the model name is reported. It is obtained by forming a sequence of labels in the following order:

1. Roc or SMART, i.e., the profile weighing scheme, Rocchio and summing-up, of Section 2.2. We call the latter SMART as it was firstly used for SMART IR model.
2. *Scut* or *Rcut* inference policies.

3. *IDF*, *IWF* or *log*, they indicate the document weighing schemes: $TF \times IDF$, $TF \times IWF$, and $log(TF) \times IDF$. This latter is used only in combination with *Rocchio*.

4. *NL*, it indicates the use or not of the linguistic information defined in Section 3.1.2. If *NL* is not present, the model is tested over the set of *TREVI-tokens*, i.e., nouns, verbs and adjectives without the POS-tag information.

5. *LR* or *RDS* score adjustment techniques.

As an example, line 4 (i.e. the $SMART^{Scut}_{IWF/RDS}$ system) refers to our implementation of the standard $SMART$ IR model for TC: it adopts a *summing-up* policy for profile building and the *Scut* inference policy to classify test documents. The $TF \times IWF$ (Eq. 2.4) scheme weights the feature inside the documents, no linguistic information is used and *Relative Difference Score* (Eq. 2.3.2) is applied as score adjustment technique.

Table 3.1: Text Categorization System: Experimental Parameter setting

<table>
<thead>
<tr>
<th>Systems</th>
<th>Profile Weighing</th>
<th>Inference Policy</th>
<th>Document Weighing</th>
<th>NLP</th>
<th>Score Adjust.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$SMART^{Scut}_{IDF/NL}$</td>
<td>Summing-up</td>
<td>Scut</td>
<td>$TF \times IDF$</td>
<td>yes</td>
<td>None</td>
</tr>
<tr>
<td>$SMART^{Scut}_{IDF/RDS}$</td>
<td>Summing-up</td>
<td>Scut</td>
<td>$TF \times IDF$</td>
<td>yes</td>
<td>RDS</td>
</tr>
<tr>
<td>$SMART^{Scut}_{IWF/RDS}$</td>
<td>Summing-up</td>
<td>Scut</td>
<td>$TF \times IWF$</td>
<td>no</td>
<td>RDS</td>
</tr>
<tr>
<td>$SMART^{Scut}_{IWF/NL}$</td>
<td>Summing-up</td>
<td>Scut</td>
<td>$TF \times IWF$</td>
<td>yes</td>
<td>None</td>
</tr>
<tr>
<td>$Roc^{Scut}_{log/RDS}$</td>
<td>Rocchio</td>
<td>Scut</td>
<td>$log(TF) \times IDF$</td>
<td>no</td>
<td>RDS</td>
</tr>
<tr>
<td>$Roc^{Scut}_{log/NL}$</td>
<td>Rocchio</td>
<td>Scut</td>
<td>$log(TF) \times IDF$</td>
<td>yes</td>
<td>None</td>
</tr>
<tr>
<td>$Roc^{Scut}_{log/RDS}$</td>
<td>Rocchio</td>
<td>Scut</td>
<td>$log(TF) \times IDF$</td>
<td>yes</td>
<td>RDS</td>
</tr>
<tr>
<td>$Roc^{Rcut}_{log/NL}$</td>
<td>Rocchio</td>
<td>Rcut</td>
<td>$log(TF) \times IDF$</td>
<td>yes</td>
<td>None</td>
</tr>
<tr>
<td>$Roc^{Rcut}_{log/RDS}$</td>
<td>Rocchio</td>
<td>Rcut</td>
<td>$log(TF) \times IDF$</td>
<td>yes</td>
<td>LR</td>
</tr>
</tbody>
</table>

The next section provides a cross-domain analysis of weighting schemes, score adjustment techniques and inference policies.

3.2.2 Experiment 1.1: Performances in TREVI-Reuters corpus

In these experiments performances of the classifiers, by adopting different weighing schemes over the *Scut* threshold policy, have been measured. The Table 3.2
Table 3.2: Classifier Performances on the TREVI-Reuters

<table>
<thead>
<tr>
<th>Weighting Scheme</th>
<th>µBEP</th>
<th>RDS</th>
<th>SMART Scut IWF / NL</th>
<th>SMART Scut IWF / RDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMART Scut IDF / NL</td>
<td>63%</td>
<td>72%</td>
<td>76%</td>
<td></td>
</tr>
<tr>
<td>SMART Scut log / NL</td>
<td>62.78%</td>
<td>71.60%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3.3: RDS vs. LR technique on the TREVI-Reuters

<table>
<thead>
<tr>
<th>Technique</th>
<th>µBEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDS Scut / NL</td>
<td>66.55%</td>
</tr>
<tr>
<td>LR Scut / NL</td>
<td>71.60%</td>
</tr>
</tbody>
</table>

3.2.3 Experiment 1.2: Performances in HOS

In these experiments the best weighting models of previous section (i.e. SMART IWF and Rocchio) have been evaluated for the HOS corpus. Table 3.4 confirms the results of the previous test about the benefits of RDS as for both weighting schemes it produces an increase in µBEP.

It is worth noticing that the SMART IWF model shows lower performances (with or without RDS) than Rocchio which is in contrast with the Experiment 1.1 where SMART IWF / RDS outperformed all models. The reason is that the weighting scheme seems to depend on different corpora. Similar issues have inspired works about Meta Text classifier in [Yang et al., 2000;
Table 3.4: Classifier Performances on HOS Corpus with Scut

<table>
<thead>
<tr>
<th></th>
<th>$Roc_{\log}^{Scut/\text{NL}}$</th>
<th>$Roc_{\log}^{Scut/\text{RDS}}$</th>
<th>SMART$_{\text{IWF}}^{Scut/\text{NL}}$</th>
<th>SMART$_{\text{IWF}}^{Scut/\text{RDS}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>μBEP</td>
<td>64.09%</td>
<td>67.75%</td>
<td>45.85%</td>
<td>59.15%</td>
</tr>
</tbody>
</table>

Lam and Lai, 2001], which assesses the need of integrating multiple classification models within a single text classifier architecture. Thus, some heuristics should be applied for selecting the suitable classifier for a given corpora or document.

3.2.4 Experiment 1.3: Assessments over the Reuters corpus

In order to compare our classifier framework with other results from the literature, evaluation against the Reuters3 corpus has been carried out. The break even points are reported in Table 3.5. In line with the previous results, RDS produces a significant improvement on both weighting schemes. Note that the performance of the basic Rocchio trained with our linguistic features (column 1) is higher than other results obtained in literature (e.g., 75% in [Yang, 1999]). This suggests that the linguistic processing (i.e., the only difference among other experiments (e.g., [Yang, 1999]) and our measurement) provides additional positive information. The SMART$_{\text{IWF}}^{Scut/\text{NL}}$ ("." means for any argument) model still shows performances lower than Rocchio. This is due to the similar structures of HOS and Reuters corpora (on which SMART$_{\text{IWF}}^{Scut/\text{NL}}$ poorly performs). They have smaller classes than the TREVI-Reuters so, in line with exactly the same observation made in [Cohen and Singer, 1999], the $Roc_{\log}^{Scut/\text{NL}}$ model is more robust with respect to categories, which have a poorer training-set.

Table 3.5: Classifier Performances on Reuters3 Corpus

<table>
<thead>
<tr>
<th></th>
<th>$Roc_{\log}^{Scut/\text{NL}}$</th>
<th>$Roc_{\log}^{Scut/\text{RDS}}$</th>
<th>SMART$_{\text{IWF}}^{Scut/\text{NL}}$</th>
<th>SMART$_{\text{IWF}}^{Scut/\text{RDS}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>μBEP</td>
<td>78.46%</td>
<td>80.52%</td>
<td>62.21</td>
<td>66.80</td>
</tr>
</tbody>
</table>

3.2.5 Experiment 2: Part-of-Speech information

In all the above experiments, the linguistic information has been entirely taken into account in the adopted TC architecture, i.e. all lemmas, proper nouns and POS information have been used for feature engineering. In order to better understand the role of POS information further evaluation is needed. Accordingly, we applied the best performing classifier architecture with and without accessing POS information. Table 3.6 shows the results of this experiment for
the TREVI-Reuters corpus: Column 2 reports the performances using POS information whereas Column 3 shows the performances without POS information.

Table 3.6: Syntactic Information vs. Classification Accuracy on Trevi-Reuters.

<table>
<thead>
<tr>
<th></th>
<th>SMART<sup>Scut</sup> / NL</th>
<th>SMART<sup>iWF</sup> / RDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rec.</td>
<td>83.70%</td>
<td>83.02%</td>
</tr>
<tr>
<td>Prec.</td>
<td>70.86%</td>
<td>70.56%</td>
</tr>
<tr>
<td>µBEP</td>
<td>76.75%</td>
<td>76.28%</td>
</tr>
</tbody>
</table>

It has to be stressed that, in the TREVI-Reuters corpus, among the 37,069 different features only 4,089 (11%) refer to ambiguous lemmas (i.e. lemmas with more than one POS tag)⁸: in this case the amount of information introduced by POS tags (i.e. the distinction between linguistic (i.e. lemma+POS tags pairs) and non-linguistic information (i.e. Tokens) is rather poor and, consequently, its impact on accuracy results low.

Table 3.7 describes recall and precision of the two indexing modalities over the Reuters corpus. Here we obtained 21,975 different indexes, and only 1,801 out of them (8%) refer to lemmas with more than one POS tag.

Table 3.7: Syntactic Information vs. Classification Accuracy on Reuters

<table>
<thead>
<tr>
<th></th>
<th>Roc<sup>Scut</sup> / NL</th>
<th>Roc<sup>iWF</sup> / RDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rec.</td>
<td>80.39%</td>
<td>79.91%</td>
</tr>
<tr>
<td>Prec.</td>
<td>80.68%</td>
<td>79.95%</td>
</tr>
<tr>
<td>µBEP</td>
<td>80.54%</td>
<td>79.93%</td>
</tr>
</tbody>
</table>

3.2.6 Discussion

The large-scale experiments provide data for analyzing three relevant aspects:

- The impact of weighting schemes on the performances of profile-based text classifiers.
- The contribution of score adjustment techniques (e.g., RDS) over different inference policies (Rcut and Scut).
- The role of linguistic processing in feature extraction, selection and their contribution to TC performances.

⁸It should be noticed that lacks in the POS tagger dictionary, e.g., several technical terms, imply that a generic "unknown noun" (NN) tag is assigned. This is often used for missing or new words thus reducing the overall ambiguity.
Weighting Schemes

The three evaluated corpora have shown that it is very difficult to find out a profile-based classifier model that is optimal over any corpus. The Rocchio’s model performs better when well characterized profiles for smaller and more numerous classes are available. This is shown in the results of Table 3.4 and 3.5, respectively. The IWF scheme is better performing on the corpus that includes very generic classes poorly characterized by the profiles (as in the TREVI-Reuters corpus, described in Table 3.2).

The Role of RDS in TC

A first result has been that RDS establishes as an effective adjustment method that improves the TC performance. In fact, it always produces a meaningful increment of the μ_{BEP} whatever is the adopted weighting scheme. This has been shown over all the three large and heterogeneous corpora (see tables 3.2, 3.4 and 3.5).

RDS improvements vary from 13% (Table 3.2) to 2% (Table 3.5) with respect to any indexing policy. In Table 3.2 the effect is exactly the same for the two weighting models, SMART and Rocchio. This systematic behavior suggests that RDS has a corpus-dependent effect proportional to the inherent limitations of the weighting model. In Table 3.3 and 3.4 the weaker weighting policy (i.e. IWF) receives the best contribution (4.6% and 13.3% improvement).

In Table 3.3 we also observe that the Rcut policy has a poor performance. The performance increases when Scut is used as the comparison among scores is carried out only within a class, where variability is less important. The LR technique, projecting all scores on the same [0,1] interval, allows a direct comparison thus improving the system performance of about 19%.

RDS is more effective than LR as, from one side, it has characteristics similar to Scut (i.e. applying a threshold internally to each class) and, more importantly, it summarizes cross-categorical information (i.e. direct comparison among scores $s_{d(v)}$). An explanation for such empirical evidence, has been already discussed in Section 2.3.2 (see Table 2.3). RDS allows to accept those “odd” documents that have low scores in all classes that are usually rejected by a direct application of the Scut policy. The RDS technique, by using the relative difference among scores, links the decision for a class to all the others, thus capturing more “information” than the Scut policy.

Analogously, LR projects all scores in the [0,1] range and is sensitive, via an Rcut policy, to the contribution of all classes. According to our extensive experimental results, we may state that, when used alone, the Rcut policy (although it links the decision for a class to all the others) is not effective: the adopted similarity (and weighting) models are not providing in fact comparable values. This justifies the major beneficial effects of LR (+19%).

9This is due to the complexity of the task in our Trevi-Reuters text-set. In fact classes are very rich and they need more than one profile to be suitably represented.
A direct comparison between Logistic Regression and RDS (see Table 3.3) shows that both are robust with respect to "high-variability" phenomena in score assignment. In both cases the transformed similarity scores depend on all classes. According to our extensive testing, this property systematically improves the μ_{BEP} of a profile-based TC system. However, RDS is more expressive as its adjustment function depends on individual scores (s_{di}) as well as on each document behavior. Moreover, the RDS technique is simpler and more efficient to implement. LR requires a more costly implementation (for estimating α_i and β_i) and current results suggest that its impact is weaker.

RDS is a natural way to model the overall task of classification. It is more flexible than the threshold policy (Scut or Pcut): it is less biased by the training-set and can be easily adaptable to dynamically changing frameworks of use. RDS is independent from the document stream (i.e. the overall set of incoming data) as it applies individually to documents. RDS is expected to improve (and in fact it does) the system recall, keeping the same precision if compared with other policies. RDS is not influenced by the average membership scores of documents in the training-set (it is thus less biased by the training data). It does not fix the number of classes (k) to be retained for a document. RDS has been shown to be more robust with respect to categories with different specificity.

RDS and the Parameterized Rocchio Classifier

As it has been described in Section 2.6, the accuracy of Rocchio model can be highly improved by estimating the optimal ρ parameter. We have studied the relation between the ρ parameters and RDS technique. The Figure 3.2 shows the μ_{BEP} curves of the $Roc_{\log}^{Scut/NL}$ and $Roc_{\log}^{Scut/NL}_{RDS}$ architectures: each point is obtained by varying the ρ parameter. Notice how in the first range ($0 < \rho < 1$) the RDS curve is stabilizing on high μ_{BEP} values. This higher stability makes the selection of the parameter less critical: any value is stabilized around similar performance levels. The parameter setting derived in literature (that is not well suited for TC, as discussed in [Basili and Moschitti, 2001]) is an example where bad tuning is smoothed by RDS.

For the optimal ρ parameters $Roc_{\log}^{Scut/NL}$ outperforms $Roc_{\log}^{Scut/NL}_{RDS}$, i.e., the positive effect of parameterization (as the negative ones) is also smoothed by RDS. This seems to suggest to not use RDS in conjunction with PRC. However, Section 2.6 has shown that the estimation of ρ parameter can be carried out only if the number of training documents is enough (> 500). Thus, when the parameter estimation of PRC is not applicable, we could use RDS.
CHAPTER 3. NLP FOR TEXT CATEGORIZATION

Figure 3.2: μ_BEP of the $Roc_{log}^{Scut/NL}$ and $Roc_{log}^{Scut/RDS}$ classifiers according to different ρ values

Analyzing the Impact of Linguistic Information

Table 3.5 reports Rocchio model\(^{10}\) with a break-even point of 78.46% which is relevantly higher than 75% found by Yang. Note that the only difference with those experiments is the TREVI technology used for feature extraction and selection. As discussed in Section 3.1.1, the linguistic preprocessing differs from traditional methods as (i) no stoplist and (ii) no stemming is applied, while (iii) recognition of proper nouns and (iv) POS information is available. It is evident that lemmatization and POS tagging supply information similar to that obtained via stemming and stoplist adoption: in fact, only words POS-tagged as nouns, verbs, adjectives and Proper Nouns are used for indexing.

This improvement seems suggest that the higher performances of the Rocchio's model on Reuters are related to the greater accuracy of the overall linguistic process and on the clear separation between lemmas (i.e. content words) and proper nouns.

However, other literature evaluations of Rocchio on more difficult Reuters versions (see Section 2.1.1) are around 78% (see Section 2.7.2), thus we cannot entirely attribute to our linguistic processing the 3.46% (78.46% vs. 75%) percent points of improvement.

The evaluation in Table 3.7 suggests that POS information, when added to

\(^{10}\)It is worth to note that the Rocchio-based classifier, that we have implemented, uses the same weighting schemes adopted in [Yang, 1999]. Moreover, as the Reuters3 corpus has been downloaded from Yang site, our results differ from the [Yang, 1999] only for the linguistic processor adoption.
3.3. EXPERIMENTS ON ADVANCED NLP-FEATURES

the indexes, produces small improvements (see also Table 3.6). This is mainly due to the small number of truly ambiguous lemmas (10% or 8%), so that the overall effect is expected to be small.

Given the above indications a quasi-optimal version of a linguistic Profile-based Classifier can be obtained. It depends on a suitable use of document and profile weighting schemes, on the TREVI linguistic capabilities and on the RDS score adjustment mechanism. We call this architecture Language-driven Profile-based Classifier (LPBC).

As it has been shown in section 3.1.5 the proposed LPBC architecture has a set of suitable computational properties. It is viable even on a large scale as it has a low complexity and makes use of a robust and efficient language processor. Efficiency is also good for TC as a profile-based approach has been used. It supported an efficient processing of the test corpora in support to the different measurements requiring a very small time. This critical aspect shows the applicability of the method to operational scenarios where the number of documents requires a very high throughput.

LPBC produces an accuracy on the Reuters data set of 80.52%. For its relatively simple nature and its applicability to different corpora, the LPBC model was successfully adopted within the TREVI real application scenarios (i.e. users Reuters and HOS). Its good performances are retained also in the above new domains even if a simpler profile weighting model was applied (i.e. Summing-up in Table 4 and 5).

Section 2.6 has shown that the PRC performs, using the simple Tokens only, 82.83% on Reuters-21578, i.e. about 2.3 points (82.83% vs. 80.52%) over LPBC. Thus, the basic NLP does not seem improve the best Rocchio model trained with Tokens. In order to verify this aspect we have experimented PRC on the same feature sets used in this section as well as on more advanced NLP representations, based on terminological expressions and word senses.

3.3 Experiments on advanced NLP-features

With the aim of studying if the NLP-derived features better impact the accuracy of TC than the simplest bag-of-words comparative analysis has been run. We designed three evaluation phases. Experiments in next section measure the performance of the Rocchio model fed with the advanced linguistic features, then, the PRC11 is similarly evaluated. Different sets of features (ranging from the simplest ones (words) to the most complex (POS-tagged lemma, PN and

11The PRC interpretation claims that the optimal \(\rho \) values represent the optimal feature selection for the Rocchio classifier. When richer NLP-derived representation is used, this kind of selection is more crucial, i.e. without optimal \(\rho \) the extended feature set cannot be effective. Thus, when PRC is fed with the richer representation it has been called the Generalized Rocchio Classifier (GRC) [Basili \textit{et al.}, 2002; Basili and Moschitti, 2002]. The parameterization technique allows Rocchio to be a more general approach as it can be effectively trained with the linguistic features. Without the optimal \(\rho \), as it is proven in what follows, Rocchio performances on NLP-features would be under the bag-of-words.
have been here employed. Finally, two further collections (in Italian and English) have been used for extensive cross evaluation (Section 3.3.3).

In order to obtain the most general results we have considered two set of tokens:

- **Tokens** set defined in Section 2.1.1, which is the most general as it contains a larger number of features, e.g., numbers or string with special characters.

- **TREVI-tokens**, i.e. the nouns, verbs or adjectives. These are the tokens selected by TREVI and used in the previous section.

The NLP-feature sets are designed by adding to the above sets the NLP-information, e.g., the POS-tags to the tokens, or including the terminological expressions. The Table 3.3 summarizes the corpora information.

<table>
<thead>
<tr>
<th>Name</th>
<th># Docs</th>
<th># Cat</th>
<th>Tokens</th>
<th>TREVI-tokens</th>
<th>NLP feat.</th>
<th>Lang.</th>
<th>test-set Corpus %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reuters3</td>
<td>11,077</td>
<td>93</td>
<td>35,000</td>
<td>19,000</td>
<td>38,000</td>
<td>Eng.</td>
<td>30%</td>
</tr>
<tr>
<td>Ohsumed</td>
<td>20,000</td>
<td>23</td>
<td>42,000</td>
<td>-</td>
<td>42,000</td>
<td>Eng.</td>
<td>40%</td>
</tr>
<tr>
<td>ANSA</td>
<td>15,000</td>
<td>8</td>
<td>55,000</td>
<td>-</td>
<td>60,000</td>
<td>Ita.</td>
<td>30%</td>
</tr>
</tbody>
</table>

3.3.1 PRC for measuring different NLP-feature sets

In the following experiment, the novel sets of features described in Section 3.1.3 have been investigated according to the following distinctions:

- **Proper Nouns**: +PN indicates that the recognized proper nouns are used as features for the classifiers.

- **Terminological Expressions (+TE)**, e.g., *bond issues, chief executive*.

- **Lemmas (-POS)**, i.e. simple lemma without syntactic categorization, e.g., *operate, transform* but also the ambiguous lemmas like *check, stock or drive*.

- **Lemmas augmented with their POS tags in context (+POS)**, e.g., *check/N vs. check/V*.

+PN+TE denotes a set obtained by adding to lemmas all features detected as Proper Nouns or terminological expressions. This results in atomic features that are simple lemmas or chunked multiwords sequences (PN or TEs), for which POS tag is neglected. Notice that due to their unambiguous nature, the POS tag is not critical for PN and TE. +POS+PN+TE denotes the set obtained
by taking into account POS tags for lemmas, Proper Nouns and Terminological Expressions.

The PRC classifiers is here, adopted to make an accurate evaluation of the improvement caused by the above feature sets. The fixed Reuters3 test-set has been used for estimating the performances.

In Table 3.9 the μBEP obtained by the use of the above feature sets is reported. As baseline we use again the token set generated by TREVI system, i.e. all nouns, verbs and adjectives, i.e., the TREVI-tokens.

We observe that both POS-tag and terminological expressions produce improvements when included as features. The best model is the one using all the linguistic features, which increases the performance of ~ 1.5.

Table 3.9: Breakeven points of PRC on three feature sets provided by NLP applied to Reuters3 corpus.

<table>
<thead>
<tr>
<th>μBEP</th>
<th>Baseline +PN+TE</th>
<th>+PN+TE+POS</th>
</tr>
</thead>
<tbody>
<tr>
<td>82.15%</td>
<td>83.15%</td>
<td>83.60%</td>
</tr>
</tbody>
</table>

However, as our baseline has been evaluated on a subset of the Tokens set, it could produce lower performance then the bag-of-words. To investigate this aspect, in next sections we have used the whole Tokens set as initial feature set to be extended with the NLP. It contains a large number of non linguistic features, e.g., numbers or string with special characters. We expect a reduction of the positive NLP impact as many tokens cannot be correctly processed by our NLP techniques: POS-tagging, lemmatization and the complex nominal grammars could not be applicable.

3.3.2 The impact of basic NLP-features and Terminology.

The aim of these experiments is to measure the performance of Rocchio classifier based on two feature sets: Tokens and the merging among Tokens, basic NLP-features and Terminological Expressions. These latter have been derived from the training material of each of the 93 classes: for example, in the class acq (i.e. Acquisition), among the 9,650 different features about 1,688 are represented by terminological expressions or complex Proper Nouns (17%).

The Rocchio classifier performances has been observed by systematically varying $\rho \in \{0, 1, 2, ..., 15\}$ and setting thresholds to obtain the μBEP. In Figure 3.2 the plot of μBEPs with respect to ρ is shown.

Higher performances characterize the NLP-driven model for any ρ: this suggests an inherent superiority of such source features. The single ρ can be tuned so that quasi-optimal μBEP values are also obtained for the Tokens-based model (i.e. $\rho=5$). However, a different setting ($\rho=11$) allow the other (NLP) model to outperform it. The impact of the more selective PRC model (i.e. $\rho \forall i$) on this aspect is discussed in the next section.
Figure 3.3: μBEP comparisons between Rocchio classifier trained with Tokens and NLP-features, according to different ρ values.

For studying the impact of the source linguistic information on performances, independent analysis for each category has been run. Figures 3.4, 3.5, 3.6, 3.7, 3.8 and 3.9 show separate performances over some classes.

Figure 3.4: BEP of the Rocchio classifier over two feature sets (i.e. Tokens and NLP-derived) according to different ρ values for Trade category of the Reuters Corpus.

It can be observed that the Rocchio takes advantage of NLP-features as slight improvement it is obtained over the Tokens. The richest categories in terms of the number training and test documents receive the lowest performance increase. Small categories like Rubber and Dlr are instead improved significantly by the NLP process. This may suggest that poorer category profiles are modeled
3.3. EXPERIMENTS ON ADVANCED NLP-FEATURES

Figure 3.5: BEP of the Rocchio classifier over two feature sets (i.e. Tokens and NLP-derived) according to different ρ values for Grain category of the Reuters Corpus.

Figure 3.6: BEP of the Rocchio classifier over two feature sets (i.e. Tokens and NLP-derived) according to different ρ values for Dlr category of the Reuters Corpus.

better by linguistic information.

3.3.3 Cross-corpora/classifier validations of NLP-features

In order to achieve the most general results cross validation has been carried out on three corpora: Reuters3, Ohsumed and ANSA. We have evaluated Rocchio, PRC and SVM classifiers to measure the impact of the NLP-features in TC. These latter were merged together with the Tokens set to test if they improve the performances of the most general bag-of-words set.
For the evaluation we have adopted the same technique of Section 2.7.3 to estimate performances from several samples. Tables 3.10, 3.11 and 3.12 report the BEP, f_1, μ_{BEP} and μ_f (defined in Section 2.4.2). The accuracy of the Rocchio classifier parameterized with $\rho = 0.25$ has been measured by means of the BEP. Only experiments over Tokens are reported for Rocchio (column 2 of each table).

PRC has been experimented with three feature set: Tokens, Tokens+TE and Tokens+TE+POS. Tables 3.10 shows the uselessness of POS information
for Reuters corpus as the measures in column 6 (+TE) and 7 (+POS+TE) assume similar values. SVM has been ran on simple tokens (column 7) and on terminological expressions (column 8) as they have been shown to bring more selective information in PRC. Similar type of measures are reported in tables 3.11 and 3.12. The global performances (microaverage) in the tables show small improvements wrt the bag-of-words approach (column Tokens) for PRC.

Table 3.10: Rocchio, PRC and SVM performances on different feature sets of the Reuters corpus

<table>
<thead>
<tr>
<th>Category</th>
<th>(\text{BEP})</th>
<th>(\text{BEP})</th>
<th>(f_1)</th>
<th>(f_1)</th>
<th>(f_1)</th>
<th>(f_1)</th>
<th>(\text{BEP})</th>
<th>(\text{BEP})</th>
<th>(f_1)</th>
<th>(f_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>earn</td>
<td>95.20</td>
<td>95.17</td>
<td>95.40</td>
<td>95.25</td>
<td>98.80</td>
<td>99.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acq</td>
<td>80.91</td>
<td>86.35</td>
<td>86.12</td>
<td>87.83</td>
<td>87.46</td>
<td>96.97</td>
<td>97.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>money-fx</td>
<td>73.34</td>
<td>77.80</td>
<td>77.81</td>
<td>79.03</td>
<td>79.04</td>
<td>87.28</td>
<td>87.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>grain</td>
<td>74.71</td>
<td>88.74</td>
<td>88.34</td>
<td>87.90</td>
<td>87.89</td>
<td>91.36</td>
<td>91.44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>crude</td>
<td>83.44</td>
<td>83.33</td>
<td>83.37</td>
<td>83.54</td>
<td>83.47</td>
<td>87.16</td>
<td>86.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trade</td>
<td>73.38</td>
<td>79.39</td>
<td>78.97</td>
<td>79.72</td>
<td>79.59</td>
<td>79.13</td>
<td>81.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>interest</td>
<td>65.30</td>
<td>74.60</td>
<td>74.39</td>
<td>75.93</td>
<td>76.05</td>
<td>82.19</td>
<td>80.57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ship</td>
<td>78.21</td>
<td>82.87</td>
<td>83.17</td>
<td>83.30</td>
<td>83.42</td>
<td>88.27</td>
<td>88.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wheat</td>
<td>73.13</td>
<td>89.07</td>
<td>87.91</td>
<td>87.37</td>
<td>86.76</td>
<td>83.90</td>
<td>84.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>corn</td>
<td>64.82</td>
<td>88.01</td>
<td>87.54</td>
<td>87.87</td>
<td>87.32</td>
<td>83.57</td>
<td>84.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MicroAv.(93 cat.)</td>
<td>80.07</td>
<td>84.90</td>
<td>84.42</td>
<td>84.97</td>
<td>84.82</td>
<td>88.58</td>
<td>88.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>±0.51</td>
<td>±0.58</td>
<td>±0.52</td>
<td>±0.46</td>
<td>±0.49</td>
<td>±0.49</td>
<td>±0.47</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.9: BEP of the Rocchio classifier over two feature sets (i.e. Tokens and NLP-derived) according to different \(\rho \) values for Rubber category of the Reuters Corpus

Table 3.10: Rocchio, PRC and SVM performances on different feature sets of the Reuters corpus.
Table 3.11: Rocchio, PRC and SVM performances on different feature sets of the Ohsumed corpus

<table>
<thead>
<tr>
<th>Category</th>
<th>Rocchio Tokens</th>
<th>PRC Tokens</th>
<th>PRC f_1</th>
<th>SVM Tokens</th>
<th>SVM f_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology</td>
<td>37.57</td>
<td>50.58</td>
<td>48.78</td>
<td>49.36</td>
<td>51.13</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>71.71</td>
<td>77.82</td>
<td>77.61</td>
<td>77.48</td>
<td>77.74</td>
</tr>
<tr>
<td>Immunologic</td>
<td>60.38</td>
<td>73.92</td>
<td>73.57</td>
<td>73.51</td>
<td>74.03</td>
</tr>
<tr>
<td>Neoplasms</td>
<td>71.34</td>
<td>79.71</td>
<td>79.48</td>
<td>79.38</td>
<td>79.77</td>
</tr>
<tr>
<td>Digestive Sys.</td>
<td>59.24</td>
<td>71.49</td>
<td>71.50</td>
<td>71.28</td>
<td>71.46</td>
</tr>
<tr>
<td>Hemic & Lymph.</td>
<td>41.06</td>
<td>65.75</td>
<td>65.80</td>
<td>65.93</td>
<td>65.85</td>
</tr>
<tr>
<td>Neonatal</td>
<td>41.84</td>
<td>49.98</td>
<td>50.05</td>
<td>52.83</td>
<td>52.71</td>
</tr>
<tr>
<td>Skin</td>
<td>47.93</td>
<td>60.59</td>
<td>60.38</td>
<td>60.53</td>
<td>60.80</td>
</tr>
<tr>
<td>Nutritional</td>
<td>53.23</td>
<td>60.20</td>
<td>60.08</td>
<td>60.66</td>
<td>60.75</td>
</tr>
<tr>
<td>Endocrine</td>
<td>39.80</td>
<td>48.76</td>
<td>44.80</td>
<td>43.96</td>
<td>48.87</td>
</tr>
<tr>
<td>Disorders</td>
<td>51.76</td>
<td>64.58</td>
<td>64.54</td>
<td>64.94</td>
<td>64.98</td>
</tr>
<tr>
<td>Animal</td>
<td>25.21</td>
<td>38.02</td>
<td>34.35</td>
<td>37.39</td>
<td>39.45</td>
</tr>
<tr>
<td>Microaverage</td>
<td>54.36</td>
<td>66.06</td>
<td>65.81</td>
<td>65.90</td>
<td>66.32</td>
</tr>
</tbody>
</table>

An explanation may be that the number of terminological expressions in these experiments is rather lower than the cardinality of Tokens: in Ohsumed we observed, in the feature dictionary, a ratio of about 15:1 between simple tokens and terminological expressions. This results obviously in a small impact on the microaverages.

The SVM global performance are slightly penalized by the use of NLP-derived features. SVM seems to not need additional features derived from a
combination of simpler words like phrases. If we look at the individual category performance, we observe that some classes take significant advantage from linguistic material (e.g., *Neonatal Disease* & *Abnormalities* in Ohsumed). The ANSA collection is more sensible to terminological information as some more specific categories, like *Politics* or *Economic Politics*, increase in BEP accuracies.

3.3.4 Experiments on word senses

In these experiments the performances over *Tokens* have been compared against the performances over the semantic feature set. This latter has been obtained by merging the *Tokens* set with the set of disambiguated senses of all document nouns. We have used 3 different methods to disambiguate senses: the baseline, i.e. by picking-up the first sense, Alg1 that uses the gloss words, Alg2 that employs the notion of collocations and the Alg3 one of the most accurate commercial algorithm.

The *Reuters-21578* and 20 NewsGroups have been used to measure the accuracies. The latter was chosen as it is richer, in term of senses, than the other scientific or journalistic corpora. The performances are measured via f_1 for the single categories and μf_1 for the global results.

For the experiments, again, we have generated 20 splits between the training and the testing sets. For each split we have trained the classifiers and evaluated them on the test data. The performance reported in this paper is the average of all 20 splits.

Table 3.13: Performance of SVM text classifier on the Reuters corpus.

<table>
<thead>
<tr>
<th>Category</th>
<th>Tokens</th>
<th>BL</th>
<th>Alg1</th>
<th>Alg2</th>
<th>Alg3</th>
</tr>
</thead>
<tbody>
<tr>
<td>earn</td>
<td>97.70±0.31</td>
<td>97.82±0.28</td>
<td>97.86±0.29</td>
<td>97.90±0.29</td>
<td>97.68±0.29</td>
</tr>
<tr>
<td>acq</td>
<td>94.14±0.57</td>
<td>94.28±0.51</td>
<td>94.17±0.55</td>
<td>94.10±0.53</td>
<td>94.21±0.51</td>
</tr>
<tr>
<td>money-fx</td>
<td>84.68±2.42</td>
<td>84.56±2.25</td>
<td>84.46±2.18</td>
<td>84.67±2.22</td>
<td>84.57±1.25</td>
</tr>
<tr>
<td>grain</td>
<td>93.43±1.38</td>
<td>93.74±1.24</td>
<td>93.71±1.44</td>
<td>93.14±1.26</td>
<td>93.34±1.21</td>
</tr>
<tr>
<td>crude</td>
<td>86.77±1.65</td>
<td>87.49±1.50</td>
<td>87.06±1.52</td>
<td>87.30±1.67</td>
<td>87.91±1.95</td>
</tr>
<tr>
<td>trade</td>
<td>80.57±1.90</td>
<td>81.26±1.79</td>
<td>80.22±1.56</td>
<td>80.17±1.21</td>
<td>80.71±2.07</td>
</tr>
<tr>
<td>interest</td>
<td>75.74±2.27</td>
<td>76.73±2.33</td>
<td>76.28±2.16</td>
<td>76.52±2.00</td>
<td>78.60±2.34</td>
</tr>
<tr>
<td>ship</td>
<td>85.97±2.83</td>
<td>87.04±2.19</td>
<td>86.43±2.05</td>
<td>86.35±2.13</td>
<td>86.08±3.04</td>
</tr>
<tr>
<td>wheat</td>
<td>87.61±2.39</td>
<td>88.19±2.03</td>
<td>87.61±2.62</td>
<td>87.71±2.40</td>
<td>87.84±2.29</td>
</tr>
<tr>
<td>corn</td>
<td>85.73±3.79</td>
<td>86.36±2.86</td>
<td>85.24±3.06</td>
<td>85.40±3.00</td>
<td>85.88±2.99</td>
</tr>
<tr>
<td>μf_1 (90 cat.)</td>
<td>87.64±0.55</td>
<td>88.00±0.48</td>
<td>87.80±0.53</td>
<td>87.87±0.46</td>
<td>87.98±0.38</td>
</tr>
</tbody>
</table>

Table 3.13 shows the performance of *SVM* for some categories of the Reuters corpus, measured by the f_1 score. *Tokens* is the usual set of tokens described in Section 2.1.2 (the adopted *bag-of-words*); BL stands for the baseline algorithm, Alg i stands for Algorithm i. We can notice that the presence of semantic
information for each document word have globally enhanced the classifier. Sur-
prisingly, the microaverage f-score (μf_1) of the baseline WSD method is higher
than those of the more complex WSD algorithms. Nevertheless, the ranking
among Alg1, Alg2 and Alg3 is that expected one. In fact, Alg3, i.e. the com-
plex model of LCC, obtains an accuracy better than Alg2 and Alg1, which are
simpler algorithm based on glosses. Alg2 that uses hyponym hierarchy is slightly
better than Alg1. However, these are only speculative reasoning since the values
of the Standard Deviations ([0.38, 0.53]) prevent a statistical assessment of our
conclusions.

Table 3.14: PRC and SVM μf_1 performances on 20 NewsGroups.

<table>
<thead>
<tr>
<th>Category</th>
<th>Tokens</th>
<th>BL</th>
<th>Alg1</th>
<th>Alg2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM</td>
<td>83.38±0.33</td>
<td>82.91±0.38</td>
<td>82.86±0.40</td>
<td>82.95±0.36</td>
</tr>
</tbody>
</table>

3.3.5 Discussion

The extensive empirical evidences provided in sections 3.3.1, 3.3.2, 3.3.3 and
3.3.4 provides themes for a wide discussion that will be attempted hereafter.

Bag-of-words results

First of all, the PRC model, again, produces a significant improvement in per-
formance with respect to other proposed uses of the Rocchio formula. Tables
3.10, which provide the most general results, shows the superior accuracy of the
PRC on Reuters3 (80.07% vs. 84.90%). The difference of PRC accuracies
measured on the Reuters fixed test-set and on cross validation is remarkable,
e.g., 82.15% vs. 84.42% for the Tokens set. This is not due to the accuracy
variability that is lower than 1% (the Std. Dev. is ~0.5 for every accuracy mea-
sures). The major reasons for such difference is the use of TREVI-tokens (about
19,000 features) in the experiments on Reuters3 fixed test-set vs. the 35,000
(of the Tokens set) used for cross validation. As previously pointed out in our
general performance evaluation we included numbers and strings containing spe-
cial characters that helped the categorization of document containing numerical
tables, e.g., many documents of the Earn category.

It is worth noticing that Rocchio, PRC and SVM accuracies, using the
Tokens set over Reuters3 corpus, are higher than those obtained, using Tokens
set on Reuters-21578 tested in Section 2.6 (80.07%, 84.42% and 88.58% vs.
78.92%, 82.83% and 87.64%). They differ approximately about 1 percent point.
This suggests that removing the unlabeled documents [Yang, 1999] makes slightly
easier the classification task.
3.3. EXPERIMENTS ON ADVANCED NLP-FEATURES

Syntactic information results

A second line of analysis focused on the role of syntactic information. The comparative evaluation of simpler with linguistically motivated features (carried out in the previous section) confirms the superiority of the latter (at least when PRC model is used). The adoption of the effective selection and weighting method, as proposed in Equation 2.20, optimizes those meaningful features and limit the effect of sparse data often affecting linguistic approaches as derived in [Gale and Church, 1990]. This has been shown in Figures 3.4, ..., 3.9. The parameter setting of ρ provides a systematic way to filter the source linguistic information. It has to be noted that in experiment +PN+POS+TE we obtained a source set of 9,650 features for the Reuters acq category. After ρ_{acq} setting, only 4,957 features are assigned with a weight greater than 0. A data compression of about $\sim 51.3\%$ is thus the overall effect of Eq. 2.20.

The cross (corpus/language) evaluation of linguistic performances has added some important evidence. The results shown in Tables 3.10, 3.11 and 3.12 suggest that an improvement is always observed when linguistic features are employed in PRC. Although we observe a minor impact on some collection (i.e. the Ohsumed) we stably have higher results. It is worth noting that when the TREVI-tokens are extended by NLP-features the performance increase of ~ 1.5 points on the Reuters3 fixed split (see Tab. 3.9). When the Tokens set is used as basic feature set, such improvement decrease to 0.5 (see Tab. 3.10). As the ratio between terminological entries and simple tokens in the system dictionary is lowered to 1:15 the contribution of the latter is inherently weakened. Moreover, the numerical tables impact negatively on NLP-features as: (a) weakens their expressiveness, and (b) possibly caused errors in POS-tagging assignment, lemmatization and the application of complex nominal grammars.

SVM reaches high performances on many features. In a preliminary experiment with only TREVI-tokens over Reuters3 test-set we found the same accuracy (~ 85) measured in other works, e.g., [Joachims, 1998]. When the Tokens were used it has increased its performance by ~ 2.5 percent points. On NLP-features, SVM decreases its accuracy. An explanation could be that SVM is negatively influenced by redundant features. In fact, terminological expressions contain the words already present in the Tokens set and often they bring as much information as single words. For example fetal growth and early pregnancy, in the Neonatal category, have probably the same indexing information of fetal and pregnancy as single features. However, some categories (Acq for Reuters and Neonatal for Ohsumed) show higher SVM f_1 when the advanced linguistic representation is adopted. We may argue that the NLP has selected relevant features as good performances are obtained even by PRC on the same categories.

The syntactic NLP methods allow to includes as features n-grams not bound to a specific n. The adopted NLP use polynomial time complexity (see [Basili et al., 1998c] for a description of the adopted robust parsing technique) and it selects more significant n-grams without overgeneration, thus limiting the size of the feature space. Terminological expressions may span over more than 2 or
3 constituents: complex proper nouns like *Federal Home Loan Bank* are usually captured. More interestingly, chains of noun phrases modifying other nouns or even proper nouns, as in *federal securities laws, temporary restraining order, Federal Home Loan Bank board* are recognized and normalized accordingly. On the contrary shallow techniques, to limit the exponential complexity of generating all possible n-grams, apply the selection\(^{12}\) of word sequences according to minimal word frequencies. If the target word does not overcome such thresholds it cannot be part of any n-gram. This limits the quality of n-grams since relevant word sequences could contain some infrequent word. If we assume that word sequences useful for categorization are those that refer to important category concepts, the NLP derived phrases should be superior to the n-grams.

Why does syntactic information not help?

NLP derived phrases seems to be superior to the *bag-of-words*, nevertheless, this section has shown that phrases produce small improvement for weak TC algorithms, i.e., Rocchio and PRC, and no improvement for theoretically motivated machine learning algorithm, e.g., *SVM*. The possible explanations are:

- Word information cannot be easily subsumed by the phrase information. As an example, suppose that in the target document representation *proper nouns* are used in place of their compounding words. Our task is to design a classifier that assigns documents to a *Politic* category, i.e. describing political events. The training documents could contain the feature *George_Bush* derived by the proper noun *George Bush*. If a political test document contains the feature *George_Bush* against the category feature *George Bush* will not be enabled. In [Caropreso et al., 2001] the approach of replacing the words compounding the n-grams with unique features has shown a decreasing of Rocchio accuracy.

- The information added by the sequence of words is very poor. Note that, a sequence of words classifies better than its compound words only if two conditions are verified:

 (a) The words of a sequence appear not sequentially in the wrong documents. For example the words *George* and *Bush* are included in a document not related to Political category.

 (b) Documents that contain the whole sequence *George Bush* are categorized in Political category.

On one hand, the words *George Bush* is a strong indication of political category, on the other hand the single words *Bush* and *George* are not

\(^{12}\)Most relevant n-grams can be selected by applying feature selection techniques [Caropreso et al., 2001]. Even in this case the initial set of n-grams cannot be generated as Tokens\(^5\).
related to the political category. Such situation is improbable in natural language documents, where many co-references between two referentials (in which at least one is a sequence of words) are triggered by specifying a common subsequence (e.g. Bush and George Bush). The same situation occurs frequently for the complex nominals, in which the head is used as a short referential. This suggests that terms are rarely not related to their compounding words.

- The role of phrases seem to make simpler the estimation of the TC parameters, in our case thresholds and ρ. For example Figure 3.3 shows that the maximal performances achieved with both Tokens and NLP-features are approximately the same, but the convex curve is wider for the NLP-features. This allows PRC a more easy estimation of good ρ values. When phrases are used for SVM, which does not need the estimation of any critical parameter (e.g. thresholds or ρ), no improvement is produced.

Semantic Information

The experiments on WSD provide mixed results. On one hand, the sense representation obtained with the baseline WSD improves the TC accuracy using the bag-of-words. On the other hand, more accurate WSD algorithms does not produces better TC results than the WSD baseline algorithm. We may conclude that senses are effective for TC but these outcome should be analyzed considering our conclusive recommendations of Section 3.4.2.

In summary, NLP can be used to improve TC but the results are not impressive. Syntactic information seems to produce improvement only for weak TC algorithms. Semantic information still produces low improvement that enhances the best figure classifier. Next section examines the successful use of NLP in literature work.

3.3.6 Related Work

Previous section has revealed that NLP, especially efficient techniques, can be used to slightly improve efficient TC, i.e. profile-based classifiers. When more complex learning algorithms are used, e.g. SVM, only the semantic information can slightly improve the system. *Is this the role of NLP in TC?* To answer the question we examined some literature work that claim to have used language processing techniques to enhance TC. Hereafter, we attempt to explain the reasons for such successful outcomes:

- In [Furnkranz et al., 1998] advanced NLP has been applied to categorize the HTML documents. The main purpose was to recognize the student home pages. For this task, the simple word *student* cannot be sufficient to obtain a high accuracy since the same word can appear, frequently, in other University pages. To overcome this problem, the AutoSlog-TS, Information Extraction system [Riloff, 1996] was applied to automatically
extract syntactic patterns. For example, from the sentence *I am a student of computer science at Carnegie Mellon University*, the patterns: *I am*, *is student*, *student of*, and *student at* are generated. AutoSlog-TS was applied to documents collected from various computer science department and the resulting patterns were used in combination with the simple words. Two different TC models were trained with the above set of features: Rainbow, i.e. a bayesian classifier [Mitchell, 1997] and RIPPER. The positive results, reported by the authors, are higher precisions when the NLP-representation is used in place of the than *bag-of-words*. These improvements were obtained for recall lower than 20% only. The explanation was that the above NLP-patterns have low coverage, thus they can compete with the simple words only in low recall zone. This kind of result, even if important, cannot testify in favor of the thesis: *NLP improves TC*.

* [Mladenić and Grobelnik, 1998] reports the experiments using *n*-grams with $1 \leq n \leq 5$. These latter have been selected by using an incremental algorithm. The web pages in the Yahoo categories: *Education* and *References* were used as reference corpus. Both categories contain a sub-hierarchy of many other classes. An individual classifier was designed for each sub-category. The set of classifiers was trained with the *n*-grams contained in few training document available. The results showed that *n*-grams produce an improvement about 1 percent point (in terms of *Precision* and *Recall*) for *Reference* category and about 4% on the *Educational* category. This latter outcome may represent a good improvement over the *bag-of-words*, but we have to consider that:

- The experiment were done on 300 documents only, even if a cross validation was carried out.
- The classifier adopted is weak, i.e. a *Bayesian* model, not very accurate. Its improvement using *n*-grams does not prove that the best figure classifier improves too.
- The task is not standard: many sub-categories (e.g., 349 for *Educational*) and few features for each classifier. There are not other researches that have measured the performance on this specific task, i.e., it is not possible to compare the results.

As best hypothesis we can claim that an efficient classifier (medially accurate) has been shown improving its performance by using *n*-grams. The task involved few data and many categories.

* In [Furnkranz, 1998] is reported the experimentation of *n*-grams for *Reuters-21578* and 20 NewsGroups corpora. *n*-grams were, as usual, merged with the words to improve the *bag-of-words* representation. The selection of features was done using the simple document frequency [Yang and Pedersen, 1997]. Ripper was trained with both *n*-grams and simple words. The improvement over the *bag-of-words* representation, for the Reuters
3.3. EXPERIMENTS ON ADVANCED NLP-FEATURES

corpus was less than 1%, i.e. similar to our evaluation of terminological expressions. For 20 NewsGroups no enhancement is reported.

• Other experiments of n-grams using Reuters corpus are reported in [Tan et al., 2002]. Only bigrams were considered. Their selection is slightly different from the previous work, as Information Gain was used in combination with the document frequency. The experimented TC models were Naive Bayes and Maximum Entropy classifier [Nigam et al., 1999] both fed with bigrams and words. On Reuters-21578 the authors present an improvement of 2 % for both classifiers. The achieved accuracies were 67.07% and 68.90%13 respectively for Naive Bayes and Maximum Entropy. What we are wondering is the following: why to obtain an improvement using phrases have we to design TC models about 20% percent points less accurate than the best figure? Unfortunately even the study in [Tan et al., 2002] cannot be used to assess that some simple NLP-derived features as the n-grams, is useful for TC. A higher improvement was reported for the other experimented corpus, i.e. some Yahoo sub-categories. Again to validate these finding is necessary that some common corpora are adopted. This allows researchers to replicate the results. Note that it is not possible to compare the performances with [Mladen\’ic and Grobelnik, 1998] as the set of documents and Yahoo categories are quite different.

• On the contrary, in [Raskutti et al., 2001] were experimented bigrams using SVM on the Reuters-21578. This enables the comparison with (a) the literature results and (b) the best figure TC. The selection algorithms that was adopted is interesting. They used the n-grams over characters to weight the words and the bigrams inside categories. For example, the sequence of characters to build produces the following 5-grams: “to bu”, ”o bui”, ”buil” and ”build”. The occurrences of the n-grams inside and outside categories were used to evaluate the n-gram scores in the target category. In turn n-gram scores are used to weight the characters of a target word. For instance, the character ”o” in the word ”score” in the context ”to score by” receive a contribution from the 5-grams, ”o scor”, ” score”, ”score”, ”core”, and ”ore b”. The 5-grams scores are apportioned giving more ratio to the most centered n-gram, i.e. the scores are multiplied respectively by 0.05, 0.15, 0.60, 0.15, 0.5. These weights are used to select the most relevant words and bigrams. The selected sets as well as the whole set of words and bigrams were compared on Reuters-21578 fixed test-set. According to the results SVM improved about 0.6% when bigrams were added either to all words or to the selected words. This may be important because to our knowledge is the first improvement on SVM using phrases. However, we have to consider that:

– No cross validation was applied. The fact that bigrams improve SVM on the Reuters fixed test-set does not prove that they improve the

13Very low results as they used only the top 12 populated categories. Dumais reported for the top 10 categories a \(\mu f_1\) of 92 \% for SVM [Dumais et al., 1998].
CHAPTER 3. NLP FOR TEXT CATEGORIZATION

general SVM accuracy. The major reason for the above claim is that in our cross validation over Tokens (Section 2.7.3) and in [Dumais et al., 1998], SVM reaches an accuracy over 87%, that is higher than \(\mu_{BEP} = 86.2 \) obtained by Raskutty et al. with bigrams. However, they used a larger number of categories and possibly this lowered the \(\mu_{BEP} \).

- The improvement on simple words reported in [Raskutti et al., 2001] is 0.6\% = 86.2\% - 85.6\%. If we consider that the Std. Dev. in our and other experiments [Bekkerman et al., 2001] is \(\sim 0.4 \), 0.6\%, the improvement is not statistically sufficient to assess the superiority of the bigrams.

- Only, the words were used, special character strings and numbers were removed. As it has been proven in sections 3.3.1 and 3.3.3 they strongly affect the results by improving the unigram model. Thus the baseline could be higher than those reported (i.e. 85.6\%).

According the above consideration, we can asses that on the Reuters corpus is not proven yet that phrases increase the best figure classifier accuracy. On the contrary, another corpus experimented in [Raskutti et al., 2001], i.e., ComputerSelect shows higher SVM \(\mu_{BEP} \) when bigrams are used, i.e. 6 percent points. But again the ComputerSelect collection is not standard. This makes difficult to replicate the results.

The above literature, favorable to the use of phrases in TC, shows that these latter do not affect the accuracy (or at least the best classifier accuracy) on the Reuters corpus. This could be related to the structure and content of its documents, as it has been pointed out in [Raskutti et al., 2001]. Reuters news are written by journalists to disseminate information and hence contain precise words that are useful for classification, e.g., grain and acquisition whereas other corpore such as Yahoo or ComputerSelect categories contain words like software and system, which are useful only in context, e.g., network software and array system.

On the same line is the opinion expressed in [Bekkerman et al., 2001]. They applied the Information Bottleneck (IB) feature selection technique to cluster similar features. The important idea was that a classical feature-filtering model cannot achieve good performances for the text classification problem as it is usually not related with the adopted machine learning algorithm. The IB allows to cluster words according to their relationship with categories. More precisely, it attempts to derive a good trade-off between the minimal number of word clusters and the maximum mutual information between the clusters and document categories. The information bottleneck method relates to the distributional clustering approach that has been shown not particularly useful to improve "weak" TC model performances (e.g., Naive Bayes TC). However, a more powerful TC model like SVM was shown to take advantage of word clustering techniques. Thus, SVM fed with IB derived clusters was experimented on three different corpore: Reuters, WebKB and 20 NewsGroups.
3.4. CONCLUSIONS

Only 20 NewsGroups corpus showed an improvement of performances when IB method was used. This was explained by studying the "complexity" of the involved corpora. The above analysis revealed that Reuters and WebKB corpora require a small number of features to obtain optimal performance. The conclusion is that IB can be adopted to reduce the complexity of the problem as well as to increase the SVM performance by using a concise space representation. The improvement on 20 NewsGroups, using the cluster representation, was ~ 3 percent points.

In our own opinion, to correctly assess their improvement other experimentation is needed. In fact, their enhancement is related to a particular subset selection of simple word features. 15,000 features for the bag-of-words and 300 for the cluster representation were selected via mutual information. Other subsets of features may led to different results.

3.4 Conclusions

After the extensive experimentation carried out in this chapter some almost definitive conclusions can be derived about the use of NLP for improving TC accuracy. We have divided our conclusions in two parts: (a) The use of efficient NLP, i.e. the basic NLP-features and (b) the uses of more expensive technique such as phrases and word senses.

3.4.1 Efficient NLP for Efficient TC

In this chapter an extensive evaluation of different profile-based TC architectures has been reported. Real data (Health on line services and Reuters news agency) as well known benchmarking corpora have been used for comparative analysis. The results of such large-scale experiments allowed to systematically examine the following design choices for profile based TC:

- Two document weighting schemes (IWF and IDF)
- Two weighting schemes for profile building ($Rocchio$ and Summing-up)
- Two adjustment methods over similarity scores (LR and RDS)
- Two inference methodologies ($Scut$ and $Rcut$)

Data analysis has shown that different document weighing schemes can improve performance only if they are suitably combined with the related profile-weighting scheme. The best combination of them seems to depend on the nature of the target corpus. On the contrary, every corpus seems to require classification inferences depending on cross-categorical knowledge, i.e. information provided by all the categories. The improvements supplied by the RDS technique and LR confirms the above issues in every test.

The best text classifier combination is an original classifier sensitive to linguistic content, and characterized by a novel score adjustment method (RDS)
able to effectively approach the scale and dynamics of operational scenarios. The model obtained has been thus called Language-driven Profile-Based text Classifier (LPBC). LPBC exhibits good performance within linear statistical classifiers and throughout different corpora. Slightly increase of performances is also characterized by basic NLP-features that are straightforwardly integrated within the underlying statistical framework. The impact of Natural Language Processing in these experiments was based on:

- NLP functionalities that produce an inherent corpus reduction by pruning less informative units, like function words and functional expressions (e.g., in order to, as well as..) from the candidate feature set;
- proper nouns (PN) are useful in order to determine significant complex features (e.g., n-grams expressing domain concepts, e.g., bond issues, or entities, Shell Transport & Trading Co. PLC);
- Lemmatization better supports feature representation: it focuses only on meaningful syntactic categories (e.g., nouns, verbs) and makes available for them canonical forms rather than stemmed strings;
- POS tagging augments the expressiveness of feature representation. It allows to better characterize the conceptual role of a feature resulting in higher retrieval precision;
- The linguistic features are declarative, so that manual validation is also viable. This can be especially useful in profile-based classifier where the category-specific features can be found in the profile itself.

The resulting LPBC model seems to have two appealing properties: (a) it maintains the efficiency in learning and classification typical of profile-driven system. (b) RDS emphasizes the linguistic information and it increases the performance to a good levels. Notice that, while state-of-the-art TC models are hardly applicable in operational scenarios, LPBC has already been used effectively within different "realistic" scenarios (e.g., the TREVI project).

3.4.2 The role of NLP for Text Categorization

The throughout study of the impact of advanced NLP-features on TC allows to derive these main conclusions:

First, the experimented NLP-features have a positive effect only if the number of true words has a high rate in the feature set. Non linguistic data highly influence the accuracy of TC and at the same time it prevents the consistency of the overall linguistic model. For instance, when Tokens including numbers and special strings are added to the NLP-features, these latter reduce their positive effect: high quality POS-tagging can improves TC accuracy only if the larger portion of features are words.

Second, the efficient extraction of advanced type of phrasing, i.e., terminological expressions, has been applied. The methods, for automated extraction
of terminological information, extend the set of linguistic information derivable from the training texts, by making available terminological dictionaries for different target categories. The experiments of Section 3.3.3 demonstrate over three different collections (in two languages, English and Italian) that weak statistical TC models can be slightly improved with NLP tools whereas theoretical motivated text classifiers, such as SVM do not receive any benefit. We have provided two possible explanations:

(a) Syntactic NLP information impact only the parameterization of TC models, i.e., they make easier the estimation of the optimal parameters. Since SVM does not need critical parameterization (e.g. the setting of acceptance thresholds), its performance is not affected.

(b) SVM better exploits the word representation, so redundant information is not useful for it. Phrases often bring as much information as single words. For example fetal growth and early pregnancy probably have the same relevance of fetal and pregnancy in the Neonatal category.

It is worth noting that some categories (e.g., Neonatal Disease & Abnormalities and Acquisition) show improvement for both PRC and SVM performances when linguistic features are adopted, but as we have discussed in Section 3.3.6, to prove the effectiveness of linguistic features, a more general data is needed, e.g. the improvement on μ_{f_1}.

Third, terminological expressions selected via NLP are more general than other generic n-grams, at least from a linguistic point of view. Thus, our experiments could be considered representative for different types of n-grams. As the global performance of SVM over terminological expressions is shown to not improve the accuracy on the Tokens features, there are few chances to obtain better results with the rougher n-grams.

Finally, some literature work have claimed that TC improves using n-grams representations. These approaches differ from the techniques that select the relevant n-grams set. A careful analysis has revealed that small improvements for particular corpora, classifiers and feature sets were obtained. In our own opinion if a richer representation produces a better accuracy in TC this should be verified for any feature subset and for any parameter used. Moreover, the improvement should be more or less the same on different corpora. If the enhancement is obtained only for one specific corpus, the overall impression is that the researcher has looked for finding an instance that satisfies its model rather than to design a model that satisfies all the instances. In order to avoid common pitfalls in finding useless (for TC) advanced document representations, we recommend to follow some steps in the experiments:

- Use corpora that have been already experimented for other TC researches and align your own baseline results to those reported in literature. If they differ too much something is going wrong.

- Consider the whole bag-of-words. If some portion is held-out, e.g., the tokens derived from numbers, the baseline could be lower than the real one. The corresponding improvements are, thus, not realistic.
• The improvement on the accuracy should be proven for the new feature-set or for the new feature-set \cup bag-of-words. If the enhancement of TC model requires that feature selection is applied to the bag-of-words (or indirectly to the new feature-set \cup bag-of-words), feature selection may be the responsible for the improvement. Text classifiers are not already properly parameterized for the target corpus (or test-set). Feature selection, sometime, has the effect to fit the corpus for the classifier default parameterization. Such effect could be neither prevented by cross-validation.

• The improvement should be obtained for the best TC figure otherwise we are simple making stronger weak models. Improving weak but efficient models can be useful if (a) the complexity of the new models do not relevantly increase and (b) the accuracy approach those of the best figure.

• Cross validation is essential to prove that a representation is better than another one. This because some feature sets could be suited for a particular split, i.e., the default parameters are suited for that particular feature proportion between test and training.

• The improvement should be at least of 3 percent point otherwise: (a) it is not really useful and (b) It may be due to the classifier parameters.

• Adopt all corpus categories. This makes more general the results as different conditions will be tested, e.g., category sizes, linguistic contents and feature distributions.
Chapter 4

Advanced NLP systems via Text Categorization

Chapter 3 has shown that using current NLP for general TC is not effective. On the contrary TC is often used to improve advanced NLP systems. A simple use of TC is the enrichment, with the category label, of the document presented to the final user. The TREVI system (discussed in Section 3.1.1) is such an example as its purpose is to provide as much as possible information to the final user. Other natural language oriented systems like Yahoo.com, use categorization schemes as a navigation method to locate the user needed data.

In this chapter we discuss three novel ways to use TC for subtasks of three important NLP applications. First, we show as TC could be used to enable the Open Domain Information Extraction. This latter has been approached via semantic labeling technique based on information encoded in FrameNet frames, introduced in Section 1.3.1. Sentences are labeled for frames using TC models. As frames are relevant to any new Information Extraction domain, they are used for the automatic acquisition of extraction rules for the new domains. The experimental results show that both the semantic labeling and the extraction rules enabled by the labels are generated automatically with a high precision.

Second, we present a study on a Question/Answering system that involves several models of question and answer categorization. Knowing the question category has the potential of enhancing a more efficient answer extraction mechanism. Moreover, the matching of the question category with the answer category allows to (1) re-rank the answers and (2) eliminate incorrect answers for improving the Q/A precision. Experimental results show the effects of question and answer categorization on the overall Question Answering performance.

Finally, we describe category-based summarization methods for fast retrieval of user information. The automatic delivery of textual information to interested users is often based on the notion of text categories. The approach generally adopted by news providers consists of categorizing news items in predefined classification schemes and, then selectively delivering information to interested
consumers. We propose the use of indicative and informative summaries as explanations of the categorizer decision for the target document. The summaries are produced using the explicit information inside the category profile. This latter contains simple terms (i.e., words) as well as complex nominals and coarse event representations. Specific experiments over a medical corpus have been settled to evaluate the impact of the document explanation model on the users’ comprehension of the categorization process.

This chapter is organized as follows: Section 4.1 discusses our approach to use TC for IE. Section 4.2.2 presents the use of TC for Q/A. Section 4.3 describes the summarization system that adopted TC information. Finally Section 4.4 summarizes the conclusions on using TC for NLP.

4.1 Text Categorization for Information Extraction

With the advent of the Internet, more and more information is available electronically. Most of the time, information on the Internet is unstructured, generated in textual form. One way of automatically identifying information of interest from the vast Internet resources is by employing Information Extraction (IE) techniques.

IE is an emerging NLP technology, whose purpose is to locate specific pieces of information called facts (e.g., events or finer grained data), from unstructured natural language texts. These information are used to fill some predefined database table. The current methods to extract information use linguistic motivated patterns. Typical patterns are regular expressions for which is provided a mapping to a logical form. More complex and general patterns can be obtained using semantic constraints, e.g., relations among WordNet concepts. Each topic, e.g., bombing events or terrorist acts, requires different customized pattern sets to extract the related facts. The construction of pattern base for new topics is a time-consuming and expensive task, thus methods to automatically generating the extraction pattern have been designed.

Categorized documents have been used to enable the unsupervised patterns extraction in AutoSlog-TS [Riloff, 1996] (see sections 1.3.1 and 3.3.6). This method allows the IE designers to save time as it generates the ranked list of patterns that can be validated quicker than the manual annotation of the extraction rule from texts. However, this type of IE is clearly domain based.

We propose an approach of Open Domain Information Extraction that is based on sentence categorization in semantic FrameNet\(^1\) categories. The aim of the FrameNet project is to produce descriptions of words based on semantic frames. Semantic frames, as they have been introduced by [Fillmore, 1982], are schematic representations of situations involving various participants, properties and roles, in which a word may be typically used. This kind of information can

\(^1\)FrameNet is a lexico-semantic database, made recently available in www.icsi.berkeley.edu/~framenet.
be successfully used for generating domain knowledge required for any new
domain, i.e. Open-Domain Information Extraction. The corpus annotation
available from FrameNet enables us (a) to design algorithms for learning the
sentence categorization function in FrameNet frames and (b) once available
the target frame, to define the extraction rules for any domain. Next sections
describe in more details the adopted Information Extraction algorithm as well
as the use of sentence categorization.

4.1.1 Information Extraction

IE is typically performed in three stages. First, the information need is ab-
stracted and expressed as a structured set of inter-related categories. These
structures are called templates and the categories that need to be filled with in-
formation are called slots. For example, if we want to extract information about
natural disasters, we may be interested in the type of disaster, the damage pro-
duced by the disaster, in the casualties as well as in the date and location where
the disasters occurred. Therefore, we may generate a template listing such cate-
gories as \textit{DAMAGE}, \textit{NUMBER_DEAD}, \textit{NUMBER_INJURED}, \textit{LOCATION} and
\textit{DATE}.

Second, as the extraction template is known, text snippets containing the
information that may fill the template slots need to be identified. The recog-
nition of textual information of interest results from pattern matching against
extraction rules, which are very much dependent on the knowledge of the do-
main of interest. For example, if we want to extract information about natural
disasters, we need to recognize (a) types of disasters, names of locations and
dates; and (b) all the syntactic alternations of expressions that report to natural
disasters, e.g.:

- "A tornado hit Dallas Monday at 8am."
or
- "Reports on a tornado touch down in Dallas came as early as 8 in
 the morning."
or
- "Two people were injured when a tornado touched down in Dallas
 last Monday."

In the third phase, after information of interest is identified in the text of
electronic documents, it needs to be mapped in the correct template slot. This
mapping is not trivial, as rarely we can identify in the same sentence all fillers
of a template.

All these phases of IE are dependent on knowledge about the events, states or
entities that are of interest, also known as \textit{domain knowledge}. Every time when
the information of interest changes, new domain knowledge needs to be acquired
and modeled in the extraction rules. This task is complex, as it has been
reported in [Riloff and Jones, 1999; Harabagiu and Maiorano, 2000; Yangarber
\textit{et al.}, 2000; Basili \textit{et al.}, 2000c], and it requires both high quality seed examples
and texts relevant to the extraction domain. The two limitations hinder the
extension of IE techniques to virtually any topic of interest, or Open-Domain
IE. To solve this problem we have considered the knowledge extracted from
FrameNet that can be used to model any new domain. Next section describes
4.1.2 Semantic Frames

The Semantic Frames available from FrameNet are in some way similar to efforts made to describe the argument structures of lexical items in terms of case-roles or thematic-roles. However, in FrameNet, the role names, which are called Frame Elements (FEs) are local to particular frame structures. Some of these FEs are quite general, e.g., AGENT, PHENOMENON, PURPOSE or REASON, while others are specific to a small family of lexical items, e.g., EXPERIENCER for Emotion words or INTERLOCUTOR for Communication words. Most of the frames have a combination of FEs, some are general, and some are specific. For example, the FEs of the ARRIVING frame are THEME, SOURCE, GOAL and DATE. They are defined in the following way: the THEME represents the object which moves; the SOURCE is the starting point of the motion; the PATH is a description of the motion trajectory which is neither a SOURCE nor a GOAL; the GOAL is the expression which tells where the theme ends up.

A frame has also a description that defines the relations holding between its FEs, which is called the scene of the frame. For example, the scene of ARRIVING is: the THEME moves in the direction of the GOAL, starting at the SOURCE along a PATH. Additionally, FrameNet contains annotations in the British National Corpus (BNC) of examples of words that evoke each of the frames. Such words are called target words, and they may be nouns, verbs or adjectives. Although all these three major lexical categories can be frame bearing, the most prominent semantic frame evoked in a particular sentence is usually one evoked by a verb. For example, the target words evoking the ARRIVING frame are: approach(v), arrival(v), arrive(v), come(v), enter(v), entrance(n), return(n), return(v), visit(n) and visit(v).

\[S1: \text{[Yorke] \quad \text{[from a charity event]} \quad \text{[returning]} \quad \text{[home]} \quad \text{[at 2am, the city's magistrates heard].}} \]

\[S2: \text{[Returning] \quad \text{[across the square]} \quad \text{[she]} \quad \text{[felt she was going home; not for one moment did she confuse such a place with the Aber House Hotel.}} \]

\[S3: \text{You heard [she] \quad \text{[returned] \quad \text{[heartlessly]} \quad \text{[her]} \quad \text{[PT=NP]} \quad \text{[AVP]} \quad \text{[Ext]}]} \]

Figure 4.1: Example of sentences mapped in FrameNet.

\(^2n\) stands for noun and v stands for verb.
In FrameNet the annotations seek to exemplify the whole range of syntactic and semantic dependencies that the target word exhibit with any possible filler of a FE. For example, Figure 4.1 shows four FrameNet annotations corresponding to the verb return. The FrameNet tagset used to annotate the BNC sentences contain different tags, which were described in [Johnson and Fillmore, 2000]. In our experiments we relied only on these tags: (1) the target word (TARGET); (2) the phrase type (PT); and (3) the grammatical function (GF). The first sentence illustrated in Figure 4.1 has annotations for the THEME, GOAL and SOURCE FEs, whereas the second sentence has an annotation for the PATH frame element. The annotations from Figure 4.1 also use different possible values from the phrase type (PT) tags and the grammatical function (GF) tag. These values are listed in Tables 4.1 and 4.2. Sentence S3 contains an annotation for MANNER. Figure 4.2 illustrates a part of the FrameNet hierarchy. Sometimes multiple frames have the same FEs, e.g., the ARRIVING and DEPARTING frames, but their scenes contrast their semantic interpretation.

The FrameNet structures and their annotations can be used for extracting information in a topic that relates to the domains they encode. To experiment with the usage of FrameNet for IE, we have employed the extraction definitions used in the Hub-4 Event’99 evaluations [Hirschman et al., 1999]. The purpose of this extraction task was to capture information on certain newsworthy classes of events, e.g., natural disasters, deaths, bombings, elections, financial fluctuations. Extraction tasks do not use frames, but instead they produce results in the form of templates. For example, let us consider the template devised for capturing the movement of people from one location to another. Individual templates were generated for fifteen different generic events.

We have used these templates for studying ways of mapping their slots into FEs of FrameNet frames. We have noticed that one Event’99 template is generally mapped into multiple FrameNet frames. The slots of the template are: PERSON, FROM_LOCATION, TO_LOCATION and DATE. Figure 4.3 illus-
Table 4.1: Phrase types annotated in FrameNet

<table>
<thead>
<tr>
<th>Label</th>
<th>Phrase Type Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP</td>
<td>Noun Phrase (the witness)</td>
</tr>
<tr>
<td>N</td>
<td>Non-maximal nominal (personal chat)</td>
</tr>
<tr>
<td>Poss</td>
<td>Possessive NP (the child’s decision)</td>
</tr>
<tr>
<td>There</td>
<td>Expletive there (there was a fight)</td>
</tr>
<tr>
<td>It</td>
<td>Expletive it (it’s nice that you came)</td>
</tr>
<tr>
<td>PP</td>
<td>Prepositional phrase (look at me)</td>
</tr>
<tr>
<td>Ping</td>
<td>PP with gerundive object (keep from laughing)</td>
</tr>
<tr>
<td>Part</td>
<td>Particle (look it up)</td>
</tr>
<tr>
<td>VPfin</td>
<td>Finite verb phrase (we ate fish)</td>
</tr>
<tr>
<td>VPbrst</td>
<td>Bare stem VP (let us eat fish)</td>
</tr>
<tr>
<td>VPTo</td>
<td>To-marked infinitive VP (we want to eat fish)</td>
</tr>
<tr>
<td>VPwh</td>
<td>WH-VP (we know how to win)</td>
</tr>
<tr>
<td>VPing</td>
<td>Gerundive VP (we like winning)</td>
</tr>
<tr>
<td>Sfin</td>
<td>Finite clause (it’s nice that you came)</td>
</tr>
<tr>
<td>Swh</td>
<td>WH-clause (ask who won)</td>
</tr>
<tr>
<td>Sif</td>
<td>If/whether clause (ask if we won)</td>
</tr>
<tr>
<td>Sing</td>
<td>we clause (we saw them running)</td>
</tr>
<tr>
<td>Sto</td>
<td>To-marked clause (we want them to win)</td>
</tr>
<tr>
<td>Sforto</td>
<td>For-to marked clause (we would like for them to win)</td>
</tr>
<tr>
<td>Sbrst</td>
<td>Bare stem clause (we insist that they win)</td>
</tr>
</tbody>
</table>

trates a mapping from the slots of this template to the FEs of two different frames encoded in FrameNet.

In our experiments we have manually produced the mappings. Since mappings are possible from any given template to FEs encoded in FrameNet, we developed a five-step procedure of acquiring domain information in the form of extraction rules for any topic. The procedure is:

Open-domain Information Extraction (Template)

1. **Map Template slots into the FEs of frames from FrameNet.**
2. **Given a text, label each sentence either with F_A, if it contains information from the domain of frame A, or with ϕ.**
3. **In each labeled sentence identify:**
 3.1 the target word
 3.2 instantiations of FEs from frame A
4. **For each verb identified as**
 (a) target word or in a Subject-Verb-Object dependency with the target word; or
 (b) in a FE instantiation
 collect all Subject-Verb-Object triplets as well as all the prepositional attachments of the verb;
Table 4.2: Grammatical functions annotated in FrameNet

<table>
<thead>
<tr>
<th>Label</th>
<th>Grammatical Function Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ext</td>
<td>External argument (Argument outside phrase headed by target verb, adjective or noun)</td>
</tr>
<tr>
<td>Comp</td>
<td>Complement (Argument inside phrase headed by target verb, adjective or noun)</td>
</tr>
<tr>
<td>Mod</td>
<td>Modifier (Non-argument expressing FE of target verb, adj. or noun)</td>
</tr>
<tr>
<td>Xtrap</td>
<td>Extrapos (Verbal or clausal compl. extraposed to the end of VP)</td>
</tr>
<tr>
<td>Obj</td>
<td>Object (Post-verbal argument; passivizable or not alternate with PP)</td>
</tr>
<tr>
<td>Pred</td>
<td>Predicate (Secondary predicate compl. of target verb or adjective)</td>
</tr>
<tr>
<td>Head</td>
<td>Head (Head nominal in attributive use of target adjective)</td>
</tr>
<tr>
<td>Gen</td>
<td>Genitive determiner (Genitive determ. of nominal headed by target)</td>
</tr>
</tbody>
</table>

5. *Generate extraction rules for the topic.*

The result of this procedure is that we obtain as many extraction rules as many different verbs we have identified. Their subjects, objects and prepositional objects are matched by any noun groups having the head in the same semantic category as those learned at training time from the FrameNet annotations. Central to this procedure is step 2, which identifies relevant sentences. Based on this categorization, we can perform step 3 with high precision, in a second labeling pass.
4.1.3 Semantic Labeling via TC models

The first pass of labeling concerns identifying whether a sentence contains information pertaining to a frame encoded in FrameNet or not. It is possible that a sentence is relevant to two or multiple frames, thus it will have two or multiple labels. In the second pass text snippets containing a target word and the instantiation of a frame elements are detected.

Sentence labeling

The problem of semantic labeling of sentences is cast as a classification problem that can be trained on the BNC sentences annotated in FrameNet.

To implement the classifier we have chosen the Support Vector Machine (SVM) model as previous chapters have known that it generally obtains high classification accuracy. Moreover, its learning algorithm allows to generalize well without requiring high quality training data [Vapnik, 1995]. In our SVM-based procedure we have considered the following set of features: each distinct word from the training set represents a distinct feature; additionally, each distinct <Phrase Type - Grammatical function> pair (<PT-GT>) that is annotated in the training set represents a distinct feature. In our experiments, we have used 14,529 sentences (60% of the corpus) containing 31,471 unique words and 53 distinct <PT-GF> pairs. The total number of features was $N = 31,524$. The sentences were selected from the FrameNet examples corresponding to 77 frames.

For each frame F_{α} we have trained a different classifier C_{α}. Considering each sentence s from the training corpus T_S, we generate the Vector Space Model for the sentences. The dimensions are all the features $F = \{f_1, f_2, ..., f_N\}$ inside the sentences of T_S, and the sentences s are represented as vectors of weights $\vec{w}_s = <w_{s,f_1}, ..., w_{s,f_N}>$. Similarly to the document weighting strategy of Section 2.2, we evaluate the weights for each feature f observed in the sentence using:

- M_s, the number of sentences in T_S,
- M_{sf}, the number of sentences in which the features f appears and
- o_{sf}, the occurrences of the features f in the sentence s.

Accordingly, the sentence weights are:

$$w_s^f = \frac{l_s^f \times ISF(f)}{\sqrt{\sum_{r \in F}(l_s^r \times ISF(r))^2}} \tag{4.1}$$

where l_s^f is defined as

$$l_s^f = \begin{cases}
0 & \text{if } o_{sf}^f = 0 \\
\log(o_{sf}^f) + 1 & \text{otherwise}
\end{cases} \tag{4.2}$$

and the $ISF(f)$ is the Inverse Sentence Frequency evaluated similarly to the IDF, i.e., $\log \frac{M}{M_T}$. In other words, we adopted for the sentences the same
weighting schemes used for the documents, by considering sentences as small documents.

To classify new sentences s' for a frame F_α with SVM we need to learn the gradient vector \vec{a} and the threshold b (see Section 2.5.3). This can be done by solving the equation 2.19 for the new Vector Space Model, i.e.:

$$
\begin{align*}
&\text{Min} \quad |\vec{a}| \\
&\vec{a} \times \vec{w}_s + b \geq 1 \quad \forall s \in T_c \text{ labeled for } F_\alpha \\
&\vec{a} \times \vec{w}_s + b \leq -1 \quad \forall s \in T_c \text{ not labeled for } F_\alpha
\end{align*}
$$

The SVM classifier C_α for the frame F_α applies the signum function (sgn) to the linear function $l_s = \vec{a} \times \vec{w}_s + b$, i.e., $C_\alpha(s) = \text{sgn}(l_s(s))$. A sentence s' is labeled for F_α only if $C_\alpha(\vec{w}_{s'}) = 1$.

The above classification algorithm requires two type of features: words and the pairs $<PT-GF>$. The former can be extracted with the usual TC techniques whereas for the latter we need some heuristics that discover the probable target word with its phrase type and grammatical function. Next section defines some heuristic that can be used for this second task.

Refining Semantic Labels

For the purpose of open-domain IE, we need to know additionally which text snippets from a sentence stand for (a) a target word and (b) an instantiation of a frame element.

To identify the target words we simply collected all the words that evoke each frame and implemented a two-step procedure: (1) recognize any of these words in the text sentence; (2) if a word could not be recognized, rank all sentence words by semantic similarity to the evoking words and select the highest ranking word. Semantic similarity is computed with the same procedure employed for generating lexical chains as reported in [Barzilay and Elhadad, 1997].

The recognition of FE boundaries is based on a set of heuristics. For example, for the **Arriving** frame, we used a set of 4 heuristics. To describe them, we call *siblings* two phrases that have the same parent in the syntactic parse tree of the sentence being analyzed.

- **Heuristic 1** An instantiation of an FE is recognized as an adverbial phrase (ADVP) if:

 (a) The ADVP is a sibling of the target word;

 (b) The head of the ADVP identifies a physical location;

For example, in the sentence:

"Amy arrived home from school early one afternoon."

Heuristic 1 recognizes [home] as an instantiation of a FE because it is labeled as ADVP by the parser, it is a sibling of the target word *arrive* since they have a common parent (VP) and *home* is a location.
• **Heuristic 2** An instantiation of an FE is recognized as a verb phrase (VP) if:
 (a) The VP is a sibling of the target verb;
 (b) The VP’s head is a gerund verb;
For example, in the sentence "The Princess of Wales arrived smiling and dancing at a Christmas concert last night.", Heuristic 2 recognizes the verb phrase "smiling and dancing" as a FE instantiation because its head is a gerund verb and a sibling of the target word *arrived*.

• **Heuristic 3** An instantiation of an FE is recognized as a prepositional phrase (PP) if its leading preposition belongs to this list: *from, to via, through, in, at, on, at, of, towards* or *by*, and one of the following three conditions is true:
 (a) The PP is a sibling of the target word;
 (b) The target word is verbal and the PP is a child of one of its siblings; in one of the following:
 (c) The target word is nominal and the PP is a sibling of its parent.
In the previous example, Heuristic 3 recognizes the prepositional phrase "at a Christmas concert last night" because it is a sibling of the target word and its preposition is *at*.

• **Heuristic 4** An instantiation of an FE is recognized as a noun phrase (NP) or a wh-phrase (WHNP) if:
 (a) The right-end of the NP or wh-phrase precedes the target word and;
 (b) The NP or wh-phrase are siblings of an ancestor of the target word in the parse tree;
 (c) The NP or the wh-phrase is connected to the target word in the parse tree only through S, SBAR, VP or NP nodes. The NP nodes are allowed only if the target word is of a gerund.
 (d) The NP or the wh-phrase is the top-most and right-most phrase of these types that satisfy conditions (a), (b) and (c).
For example, in the sentence "The first of the former concentration camp prisoners and their families will start arriving from the war-torn former Yugoslav republic within days", Heuristic 4 recognizes the noun phrase "The first of the former concentration camp prisoners and their families" as an instantiation of a FE.

Once the boundaries have been discovered it is possible extract the pair <PT-GF> for the target word. Then the sentence classification algorithm is applied to determine the most suitable FrameNet frame for the sentence. Finally, the frame provides the information extraction patterns given the mapping between FrameNet and the target domains.

3A wh-phrase contains a relative pronoun like *who, what or which*
4.1.4 Experiments

The quality of the extraction rules required for any new domain depends on the accuracy with which sentences are labeled with semantic frames relevant to the domain. In our experiments, we measured the performance of sentence categorization in the same way it has been done for TC:

(a) the *Precision*, defined as the ratio between the number of correctly labeled sentences (by C_α) for a frame F_α over the number of sentences processed;

(b) the *Recall* defined as the ratio between the number of sentences correctly labeled with a frame F_α (by C_α) over the number of sentences processed that were labeled (by annotators) for F_α.

(c) The *combined f-measure* defined as f_1 and the μf_1, by using equations 2.11, 2.12, 2.13 and 2.15.

In our experiments we have used 9687 sentences (40% of the corpus as test collection) from FrameNet annotations. Table 4.3 shows the result of our first pass of the sentence semantic labeling. The table shows the performance of SVM classifiers for 10 frames that had the largest number of examples annotated in FrameNet. Precision ranges between 73% and 90%, depending on the semantic frame, whereas recall ranges from 55% to 89%. In addition, to measure the average performance of the classifiers, we have computed the microaverage measures.

The results listed in Table 4.3 show that the μf_1 of 80.94% distributed for the entire experiment involving 10 frames. It is close to the f_1 for some of the best-classified frames that lend the largest number of annotations in FrameNet, i.e. *Judgment*, *Mental property* or *Perception-noise*.

In each sentence labeled for a frame F_α, we also identify (a) the target word and (b) the boundaries of the FEs that account for the semantic information pertaining F_α. For this purpose we have employed 14 heuristics, many of them applicable across frames that share the same FE. In our experiments, the precision of identification of FEs was 92% while the recall was 78%. When 5624 sentences were processed for the following frames: *Self-motion*, *Arriving*, *Departing* and *Transportation*, that we called MOVEMENT-Frames. From the sentences annotated for MOVEMENT-Frames, we have identified 285 verbs, called MOVEMENT-verbs, out of which 158 were target words whereas 127 are verbs identified in the boundaries of FEs. We have identified in the parse trees of the sentences labeled by MOVEMENT-Frames 285 Subject-Verb-Object triplets.

When applying these new extraction rules to the text evaluated in Event-99, they identified relevant text snippets with a precision of 82% and recall of 58%, thus an f_1 of 68%. This result is important because, as reported in [Yangarber et al., 2000], if extraction rules perform with high precision, more rules can be

4 In these experiments, we have used the SVM implementation from the Rainbow package [McCallum, 1996].
learned, thus enhancing the recall. Additionally, the high precision of detecting boundaries of FEs is an essential pre-requisite of semantic parsing of texts, as reported in [Gildea and Jurasky, 2002]. To our knowledge, this identification is performed manually in current semantic parsers.

This section has shown an original way to exploit text categorization for an important NLP task, such as IE. The key concept was the use of text categorization algorithm to associate semantic information to sentences in open texts. The most important contribution is that small text fragments, such as the sentences, can be classified in the same way of documents with a high accuracy. This idea will be used in the next section for Question Answering systems. The challenge here is tougher as we enable the classification of even smaller text fragments, i.e. the questions.

<table>
<thead>
<tr>
<th>Name</th>
<th>Recall</th>
<th>Precision</th>
<th>f_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>self-motion</td>
<td>89.74</td>
<td>87.81</td>
<td>88.76</td>
</tr>
<tr>
<td>statement</td>
<td>77.67</td>
<td>80.26</td>
<td>78.94</td>
</tr>
<tr>
<td>judgment</td>
<td>83.16</td>
<td>87.36</td>
<td>85.21</td>
</tr>
<tr>
<td>perception_noise</td>
<td>75.62</td>
<td>87.18</td>
<td>80.99</td>
</tr>
<tr>
<td>experiencer-obj</td>
<td>60.93</td>
<td>80.59</td>
<td>69.39</td>
</tr>
<tr>
<td>body-movement</td>
<td>68.56</td>
<td>81.95</td>
<td>74.66</td>
</tr>
<tr>
<td>communication_noise</td>
<td>68.74</td>
<td>73.90</td>
<td>71.23</td>
</tr>
<tr>
<td>placing</td>
<td>58.06</td>
<td>76.99</td>
<td>66.20</td>
</tr>
<tr>
<td>mental-property</td>
<td>79.72</td>
<td>90.81</td>
<td>84.90</td>
</tr>
<tr>
<td>leadership</td>
<td>55.89</td>
<td>79.74</td>
<td>66.72</td>
</tr>
<tr>
<td>MicroAverage (μ)</td>
<td>77.71</td>
<td>84.46</td>
<td>80.94</td>
</tr>
</tbody>
</table>
4.2 Text Categorization for Question Answering

One method of retrieving information from vast document collections is by using textual Question/Answering. Q/A is an Information Retrieval (IR) paradigm that returns a short list of answers, extracted from relevant documents, to a question formulated in natural language. Another, different method of finding the desired information is by navigating along subject categories assigned hierarchically to groups of documents, in a style made popular by Yahoo.com among others. When the defined category is reached, documents are inspected and the information is eventually retrieved.

Q/A systems incorporate a paragraph retrieval engine, to find paragraphs that contain candidate answers, as reported in [Clark et al., 1999; Pasca and Harabagiu, 2001]. To our knowledge no information on the text category of these paragraphs is currently employed in any of the Q/A systems. Instead, semantic information, e.g., the class of the expected answers, derived from the question processing, is used to retrieve paragraphs and later to extract answers. Typically, the semantic classes of answers are organized in hierarchical ontologies and do not relate in any way to semantic categories typically associated with documents. The ontology of expected answer classes contains concepts like PERSON, LOCATION or PRODUCT, whereas categories associated with documents are more similar to topics than concepts, e.g., acquisitions, trading or earnings. Given that categories indicate a different semantic information than the classes of the expected answers, we argue in this paper that text categories can be used for improving the quality of textual Q/A.

In fact, we show that by automatically assigning categories to both questions and texts, we are able to filter out many incorrect answers and moreover to improve the ranking of answers produced by Q/A systems.

4.2.1 Textual Question Answering

The typical architecture of a Q/A system is illustrated in Figure 4.4. Given a question, it is first processed for determining (a) the semantic class of the expected answer, (b) what keywords constitute the queries used for retrieving relevant paragraphs. Question processing relies on external resources for identifying the class of the expected answer, typically in the form of semantic ontologies (Answer Type Ontology). The semantic class of the expected answer is later used to (a) filter out paragraphs that do not contain any word that can be cast in the same class as the expected answer, and (b) locate and extract the answers from the paragraphs. Finally, the answers are extracted and ranked based on their unification with the question.

Question Processing

To determine what a question asks about, several forms of information can be used. Since questions are expressed in natural language, sometimes their stems, e.g., who, what or where indicate the semantic class of the expected answer,
i.e. PERSON, ORGANIZATION or LOCATION, respectively. To identify words that belong to such semantic classes, Name Entity (NE) recognizers are used, since most of these words represent names. NE Recognition is a natural language technology that identifies names of people, organizations, locations and dates or monetary values.

However, most of the time the question stems are either ambiguous or they simply do not exist. For example, questions having *what* as their stem may ask about anything and thus (1) another word from the question needs to be used for determining the semantic class of the expected answer; and (2) that word must be semantically classified against an ontology of semantic classes. To determine which word indicates the semantic class of the expected answer, the syntactic dependencies between the question words may be employed. By using any of the syntactic parsers publically available, e.g., [Charniak, 2000; Collins, 1997], the binary dependencies between the head of each phrase can be captured.

The formulation of questions typically uses \(w_a \), the head of the first phrase from left to right that has the most binary dependencies as the word indicating the semantics of the answer. This result was previously reported in [Harabagiu et al., 2000; Pasca and Harabagiu, 2001; Harabagiu et al., 2001]. To find the semantic class of the answer, the word \(w_a \) is identified in an ontology of possible classes of answers, comprising hierarchies of nouns and verbs imported from WordNet database [Fellbaum, 1998]. Such ontologies encode thousands of words, but (1) do not necessarily cover all the English words; or (2) sometimes misclassify words because of the semantic ambiguity words have. Consequently, sometimes the semantic class of the expected answers cannot be identified, e.g., in the former case or is erroneously identified, e.g., in the latter case.

The above failure can cause some errors in retrieval the correct answers. The use of text classification aims to filter out the final set of answers that Q/A systems provide.
4.2. TEXT CATEGORIZATION FOR QUESTION ANSWERING

Paragraph Retrieval

Once the question processing has chosen the relevant keywords of questions, some term expansion techniques are applied: all nouns and adjectives as well as morphological variations of nouns are inserted in a list. To find the morphological variations of the nouns, we used the CELEX [Baayen et al., 1995] database. The list of expanded keywords is then used in the boolean version of the SMART system to retrieve paragraphs relevant to the target question. Paragraph retrieval is preferred over full document retrieval because (a) it is assumed that the answer is more likely to be found in a small text containing the question keywords and at least one other word that may be the exact answer; and (b) it is easier to process syntactically and semantically a small text window for unification with the question than processing a full document.

Answer Extraction

The procedure for answer extraction that we used is reported in [Pasca and Harabagiu, 2001], it has 3 steps:

Sentence-length Answer Extraction:

Step 1: Identification of Relevant Sentences:

Knowledge about the semantic class of the expected answer generates two cases:

Case 1 When the semantic class of the expected answers is known, all sentences from each paragraph that contain a word identified by the Named Entity recognizer as having the same semantic classes as the expected answers are extracted.

Case 2 The semantic class of the expected answer is not known, therefore all sentences that contain at least one of the keywords used for paragraph retrieval are selected.

Step 2: Sentence Ranking:

We compute the sentence ranks as a by product of sorting the selected sentences. To sort the sentences, we may use any sorting algorithm, e.g., the quicksort, given that we provide a comparison function between each pair of sentences. To learn the comparison function we use a simple neural network, namely, the perceptron, to compute a relative comparison more between any two sentences. This score is computed by considering four different features for each sentence S:

- $f^*_1 = \text{number of question words matched in sentence } S$
- $f^*_2 = \text{number of question words that are matched in a window of } \pm 5 \text{ words from the word having the same semantic class as the expected answer.}$
- $f^*_3 = \text{number of words occurring in the same order both in the question and in the sentence.}$
\[f^*_q = \text{the average distance between each question word and the sentence word having the same semantic class as the expected answer.} \]

Step 3: Answer Extraction We select the top 5 sentences that are ranked and return them as answers. If we lead fewer than 5 sentences to select from, we return all of them.

Once the answers are extracted we can apply an additional filter based on text categories. The idea is to match the categories of the answers against those of the questions. Next section addresses the problem of question and answer categorization.

4.2.2 Text and Question Categorization

To exploit category information for Q/A we categorize both answers and questions. For the former, we define as categories of an answer \(a \) the categories of the document that contain \(a \). For the latter, the problem is more critical as it is not clear what can be considered as categories of a question.

To define question categories we assume that users have in mind a specific domain when they formulate their requests. Although, this can be considered a strong assumption, it is verified in practical cases. In fact, if a question is sound it implies that the questioner knows some basic concepts about the application domains. As an example consider a random question from TREC-9:

"How much folic acid should an expectant mother get daily?"

The concept *folic acid* and *get daily* are related to the concept *expectant mother* as medical experts prescribe such substance to pregnant woman with a certain frequency. The hypothesis that the questioner has randomly generated this question without knowing the relations among the question concepts is unlikely. In turn, specific relations are typical of the application domains, i.e. they often characterize domains. Thus, the user by referring to some relations automatically refers to some specific domains (categories). In summary, the idea of question categorization is (a) users cannot formulate a consistent question on a domain that do not know, and (b) specific questions that express relation among concepts automatically define domains.

Moreover, the specificity of the questions depends on the categorization schemes which documents are divided in. For example the following TREC question:

"What was the name of the first Russian astronaut to do a spacewalk?"

may be considered generic, but if the categorization scheme include categories like *Space Conquest History* or *Astronaut and Spaceship* the above question is clearly specific of the above categories.

The same rationale cannot be applied to very short questions like: *Where is Belize located?*, *Who invented the paper clip?* or *How far away

5TREC-9 questions are available at http://trec.nist.gov/data/topics_eng/qa_questions_201-893.
4.2. TEXT CATEGORIZATION FOR QUESTION ANSWERING

is the moon? In these cases we cannot assume that a question category exists. However, our aim is to provide an additional answer filtering mechanism for a stand-alone Q/A systems. This means that when question categorization is not applicable, we can recognize this case and we can deactivate the filtering mechanism.

Next section describes the automatic question categorization model that exploits word statistics on category documents.

Question categorization

In Chapter 2 and 3 we have shown that modern TC algorithms are quite effective, whereas in Section 4.1 we have shown that natural language sentences can be accurately categorized in FrameNet frames. Thus, our idea is to consider questions (as we did for the sentences in Section 4.1.3) as a particular case of documents, in which the number of words is rather small.

The question categorization task is more difficult than sentence labeling as there are not available strong relevant features like phrase type and grammatical function. This poses two important problems:

(a) Can the question categorization models converge given the small number of words per questions?

(b) How big has to be the number of training questions to ensure the classifier convergence?

This latter question is very interesting for practical cases where the cost and the designing time for the target Q/A system strongly depend on the number of manually generated train questions. Note that, intuitively to ensure the convergence, the number of questions should be such that the training data includes a large portion of words that occur in feasible questions (this may be more than 10 thousands).

In order to overcome the above problems we dropped the idea to learn the question categorization function directly from a set of learning questions. We observe that, when the training of the target document categorization model is applied, an explicit set of relevant words together with their weights is defined for each category. Our idea is to exploit Rocchio and SVM learning on category documents to derive question categorization function.

We define for each question \(q \) a vector \(\tilde{q} = \langle w_1^q, ..., w_n^q \rangle \) where \(w_i^q \in \mathbb{R} \) are the weights associated with the question features, i.e. the question words. Ideally, the weights for the question features can be computed using the same formulae 2.2 and 2.3 and substituting: \(o_f^q \) with the \(o_f^q \), the frequency of feature \(f \) in question \(q \), and \(IDF(f) \) with the Inverse Questions Frequency, i.e., \(IQF(f) = log \frac{M_q}{M_{qf}} \), where \(M_q \) is the total number of questions and \(M_{qf} \) is the number of questions that contain \(f \). However, this is not practical for two reasons: (1) Each question has far less words than each document, and hence fewer features; and (2) generally the number of questions is also smaller than the number of documents. To address these two problems we have developed four different
methods computing the weights of question features, which in turn determine five models of question categorization:

Method 1: If the \(o^q \) is the frequency of feature \(f \) inside the question \(q \), then

\[
w^q_f = \frac{l^q_f \times IDF(f)}{\sqrt{\sum_{r \in F} (l^q_r \times IDF(r))^2}} \tag{4.3}
\]

where

\[
l^q_f = \begin{cases} 0 & \text{if } o^q_f = 0 \\ \log(o^q_f) + 1 & \text{otherwise} \end{cases} \tag{4.4}
\]

and \(F \) is the set of the training document features. This weighting mechanism uses the Inverse Document Frequency (IDF) of features instead of computing the Inverse Question Frequency. The rationale is that the number of questions is assumed smaller than the number of documents. When this method is applied to the Rocchio-based Text Categorization Model, by substituting \(w^d_f \) with \(w^q_f \), we obtain a model called the \(RTC0 \) model. When it is applied to the SVM model, by substituting \(w^d_f \) with \(w^q_f \), we call it SVM0.

Method 2: The weights of the question features are computed by formulae 4.3 and 4.4 employed in Method 1, but they are used in the Parameterized Rocchio Model. This entails that after questions are categorized on the training set of 120 questions, \(\rho \) from formula 2.20 as well as the threshold \(b \) are chosen to maximize the accuracy of categorization. We call this model of categorization \(PRTC \).

Method 3: The weights of the question features are computed by formulae 4.3 and 4.4 employed in Method 1, but they are used in an extended SVM model, in which two additional conditions enhance the optimization problem expressed by Eq. 2.19. The two new conditions are:

\[
\begin{align*}
\text{Min} & \quad ||\vec{a}|| \\
\vec{a} \times \vec{q} + b & \geq 1 \quad \forall q \in P_q \\
\vec{a} \times \vec{q} + b & \leq -1 \quad \forall q \in \bar{P}_q
\end{align*} \tag{4.5}
\]

where \(P_q \) and \(\bar{P}_q \) are the set of positive and negative examples of training questions for the target category \(C \). We call this question categorization model \(QSVM \).

Method 4: We use the output of the basic Q/A system to assign a category to questions. Each question has associated up to five answer sentences. In turn, each of the answers is extracted from a document, which can be categorized. The categories of documents containing the answers determine the question category in the following way:

Case 1: The most popular category associated with the answers is propagated back to the question;

Case 2: If categories are equally popular (e.g., out of the \(1 \leq k \leq 5 \) answers, each has a different category), they are all propagated back to the question.
Case 3: If no answers are generated, the question is not assigned any category.

We named this ad-hoc question categorization method that relies on the results of Q/A and the categorization of the documents containing the answers QATC.

4.2.3 Answers filtering and Re-Ranking based on Text Categorization

Many Q/A system extract and rank answers successfully, without employing any TC information. For such systems, it is interesting to evaluate if TC information improves the ranking of answers they generate. In fact, the question category can be used in two ways: (1) to re-rank the answer by pushing down in the list any answer that is labeled with a different category than the question; or (2) to simply eliminate answers labeled with a category different than the question category.

First, the basic Q/A system has to be trained on documents that are categorized (automatically or manually) in a predefined categorization scheme. Then, the target questions as well as the answers provided by the basic Q/A system are categorized. The answers receive the categorization directly from the categorization scheme, as they are extracted from categorized documents. The questions are categorized using one of the models described in the previous section. Two different impacts of question categorization on Q/A are possible:

- Answers that do not match at least one of the categories of the target questions are eliminated. In this case the precision of the system should increase if the question categorization models are enough accurate. The drawback is that some important answers could be lost because of categorization errors.

- Answers that do not match the target questions (as before) get lowered ranks. For example, if the first answer has categories different from the target question, it could shift to the last position in case of all other answers have (at least) one category in common with the question. In any case, all questions will be shown to the final users, preventing the lost of relevant answers.

More formally, the above two models are described by the following steps:

1. Given a basic Q/A system, train it with the target set of documents D that are categorized in a collection $\mathcal{C} = \{C_1, \ldots, C_n\}$.

2. Let ϕ the question categorization function implemented by one of the following models: RTC_0, SVM_0, $PRTC$, $Q SVM$ and $QATC$. ϕ maps questions $q \in Q$ in a subset of \mathcal{C}, i.e., $\phi : Q \rightarrow 2^{\{C_1, \ldots, C_n\}}$.

3. Let A_q be the answer set that the basic Q/A returns for the question q, d_a be the document that contain the answer $a \in A_q$ and $Cat(d)$ be the
set of categories of d. The output of the answer elimination model for
the question q is the answer sequence: $(a_1, a_2, ..., a_k) : a_i \in TC_A$ where
$(a_1, a_2, ..., a_n), \ n \geq k$ is the ranking provided by the basic Q/A system
and
$$TC_A = \{a \in A_q : \exists C \in C, C \in cat(d_a), C \in \phi(q)\}.$$

4. The answer re-ranking system takes into account the answer ordering by
providing the sequence:
$$(R(a_1), R(a_2), ..., R(a_n))$$ where $(a_1, a_2, ..., a_n)$ is the answer ranking pro-
vided by the basic Q/A system and $R : A_q \rightarrow A_q$ is a bijection function
such that $\forall i, j : i < j, R(a_i) \succ R(a_j) \text{ iff } a_i \notin TC_A, a_j \in TC_A.$

Table 4.4: Example of question labeled in the Crude category and its five
answers.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Category</th>
<th>Question: What did the Director General say about the energy floating production plants?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cocoa</td>
<td>"Leading cocoa producers are trying to protect their market from our product, " said a spokesman for Indonesia’s directorate general of plantations.</td>
</tr>
<tr>
<td>2</td>
<td>Grain</td>
<td>Hideo Maki, Director General of the ministry’s Economic Affairs Bureau, quoted Lyng as telling Agriculture Minister Mutsuki Kato that the removal of import restrictions would help Japan as well as the United States.</td>
</tr>
<tr>
<td>3</td>
<td>Crude</td>
<td>Director General of Mineral and Energy Affairs Louw Alberts announced the strike earlier but said it was uneconomic.</td>
</tr>
<tr>
<td>4</td>
<td>Veg-oil</td>
<td>Norbert Tanghe, head of division of the Commission’s Directorate General for Agriculture, told the 8th Antwerp Oils and Fats Contact Days “the Commission firmly believes that the sacrifices which would be undergone by Community producers in the oils and fats sector...</td>
</tr>
<tr>
<td>5</td>
<td>Nat-gas</td>
<td>Youcef Yousfi, director - general of Sonatrach, the Algerian state petroleum agency, indicated in a television interview in Algiers that such imports.</td>
</tr>
</tbody>
</table>

An example of the answer elimination and answer re-ranking is provided
by the Table 4.4. As basic Q/A system we adopted the LCC-Q/A system\(^6\).
TREC conference provides data-set for testing Q/A system, but unfortunately
texts and questions are not categorized. Thus we trained the LCC-Q/A system
with all Reuters-21578 documents. Table 4.4 shows the five answers generated
\(^6\)It is an advanced question answering system developed at Language Computer Corporation www.languagecomputer.com. LCC-Q/A won the TREC 2002 competition and other past TREC editions on question answering track.
for one example question and their corresponding rank. The categories of the
text from which the answer was extracted is displayed in column 1. The ques-
tion classification algorithm automatically assigned the *Crude* category to the
question.

The processing of the question identifies the word *say* as indicating the sem-
antic class of the expected answer and for paragraph retrieval it used the
keywords $k_1 = \text{Director}$, $k_2 = \text{General}$, $k_3 = \text{energy}$, $k_4 = \text{floating}$, $k_5 = \text{production}$ and $k_6 = \text{plants}$ as well as all morphological variations for the nouns.

For each answer from Table 4.4, we have underlined the words matched against
the keywords and emphasized the word matched in the class of the expected an-
swer, whenever such a word was recognized (e.g., for answers 1 and 2 only). For
example, the first answer was extracted because words producers, product and
directorate general could be matched against the keywords production, Director
and General from the question and moreover, the word *said* has the same sem-
antic class as the word *say*, which indicates the semantic class of the expected
answer.

The ambiguity of the word plants cause the basic Q/A system to rank answer
related to *Cocoa* and *Grain* plantations higher than the correct answer, which
is ranked as the third one. If the answer re-ranking or elimination methods are
adopted, the correct answer reaches the top as it was assigned the same category
as the question, namely the *Crude* category.

This example shows that question categorization captures extra important
information that the weighting schemes and the heuristics of the basic Q/A sys-
tem do not detect. The information added seems related to the relation among
specific concepts contained in the question. *Cocoa* and plantations relation in
the answer 1 is difficult to be detected as (a) the words are too much *distant*
so they need a discourse interpreter to be related and (b) world knowledge is
needed to derive that *Cocoa* can be a kind of plantation. On the contrary, the
categorization function establishes that the question is related to energy plant
whereas the category of the answer suggests that the stem plant (from plan-
tation) refers to vegetable. This is enough to detect that the plant sense in
the answer is different than the sense assumed by plant in the question. Text
Categorization seems to provide an effective WSD.

Next section describes in detail our experiments to prove that TC add some
important information for selecting relevant answers.

4.2.4 Experiments

The aim of the experiments is to prove that category information used as de-
scribed in previous section is useful for Q/A system. For this purpose we have
to show that the performance of a basic Q/A system is improved when the
question filtering is adopted. To implement our Q/A and filtering system we
need:

- A state of the art Q/A system. Low accurate systems may produce many
 wrong answers probably due to their weak weighting schemes. If we mea-
sure the improvements on these Q/A systems we cannot assess that we have added relevant information; probably we have added just a more accurate way to use the standard information. As previously stated we decided to use the Q/A LCC system that is the current state-of-the-art.

- A collection of categorized documents on which training our basic Q/A system. We cannot use the TREC corpora because they are not categorized. We decided to use the Reuters-21578 corpus because it is very common in TC experiments and it contains many categories. This last property is crucial as the more specific is the application domain the more specific is the categorization of the questions. High specificity produces a high level of filtering. In contrast, a low granular categorization schemes (i.e. few categories) does not capture the differences among questions. These latter would result too much general.

- A set of questions categorized according to the Reuters categories. A portion of this set is used for learning PRTC and QSVM models, the other disjoint portion is used to measure the performance of the Q/A systems.

Next section, instead describes the technique used to produce the question corpus.

Question generations

The idea of PRTC and QSVM models is to exploit a set of questions to improve the learning of the PRC and SVM text classifiers. This means that for each category of the Reuters corpus we need to have a set of questions that are categorized in it. If we choose to produce only 20 questions for each category, the total number of questions for 90 categories is $20 \times 90 \sim 2000$, thus, we decided to test our algorithms on 5 top-populated categories only. We chose **Acq, Earn, Crude, Grain, Trade** and **Ship** categories. To generate questions related to the above categories, we randomly selected a number of documents from each category. Then we tried to formulate questions related to the target documents. Three cases were found:

(a) The document does not contain feasible questions. We tried to formulate general questions. In contrast, many documents contain specific information that can be found in just one documents. Thus, some selected documents did not offer the possibility to create general questions.

(b) The document suggests general questions, in this case some of the words that are contained in the answer (of that document) are replaced with synonyms. This makes difficult the retrieval of the document from which the question was generated.

(b) A document d categorized in the category C suggests general questions. These latter are typical of categories different from C. We add these questions in our data-set associated with their true categories.
Table 4.5 lists a sample of the questions we derived from the target set of categories. It is worth noting that we include short queries also to maintain general our experimental set-up.

Table 4.5: Some training/testing Questions

<table>
<thead>
<tr>
<th>Category</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acq</td>
<td>Which strategy aimed activities on core businesses?</td>
</tr>
<tr>
<td></td>
<td>How could the transpacific telephone cable between the U.S. and Japan contribute to forming a joint venture?</td>
</tr>
<tr>
<td>Earn</td>
<td>What was the most significant factor for the lack of the distribution of assets?</td>
</tr>
<tr>
<td></td>
<td>What do analysts think about public companies?</td>
</tr>
<tr>
<td>Crude</td>
<td>What is Kuwait known for?</td>
</tr>
<tr>
<td></td>
<td>What supply does Venezuela give to another oil producer?</td>
</tr>
<tr>
<td>Grain</td>
<td>Why do certain exporters fear that China may renounce its contract?</td>
</tr>
<tr>
<td></td>
<td>Why did men in port’s grain sector stop work?</td>
</tr>
<tr>
<td>Trade</td>
<td>How did the trade surplus and the reserves weaken Taiwan’s position?</td>
</tr>
<tr>
<td></td>
<td>What are Spain’s plans for reaching European Community export level?</td>
</tr>
<tr>
<td>Ship</td>
<td>When did the strikes start in the ship sector?</td>
</tr>
<tr>
<td></td>
<td>Who attacked the Saudi Arabian supertanker in the United Arab Emirates sea?</td>
</tr>
</tbody>
</table>

We generated 120 questions and we used 60 for the learning and the other 60 for testing. To measure the impact that TC has on Q/A, we first evaluated the question categorization models presented in Section 2.5. Then we compared the performance of the basic Q/A system with the extend Q/A that adopts the answer elimination and re-ranking methods.

Performance Measurements

The question categorization algorithms are evaluated by using the f_1 measure. This latter has been evaluated as it is done for the document categorization by considering questions as small documents.

The Q/A performance is computed by the reciprocal value of the rank (RAR) of the highest-ranked correct answer generated by the Q/A system. Given that only the first five answers for the question i were considered, RAR is defined as $1/rank_i$, its value is 1 if the first answer is correct, 0.5 if the second answer is correct but not the first one, 0.33 when the correct answer was on the third position, 0.25 if the fourth answer was correct, and 0.1 when the fifth answer was correct. If none of the answers are correct, RAR=0. The Mean Reciprocal
Answer Rank (MRAR) is used to compute the overall performance of Q/A\(^7\), defined as \(MRAR = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{rank_i} \), where \(n \) is the number of questions.

Since we believe that TC information is meaningful for preferring out incorrect answers, we defined a second measure for evaluating Q/A. For this purpose we replaced the MRAR measure with a signed reciprocal (SRAR), which is defined as \(\frac{1}{n} \sum_{j \in A} \frac{1}{|srank_j|} \), where \(A \) is the set of answers given for a set of questions, \(|srank_j|\) is the rank position of the answer \(j \) and \(srank_j \) is positive if \(j \) is correct and negative if it is not correct. The Mean Signed Reciprocal Answer Rank can be evaluated over a set of questions as well as over only one question. SRAR for a single question is 0 only if none answer was provided for it.

For example, given the answer ranking of Table 4.4 and considering that we have just one question for testing, the MRAR score is 0.33 while the SRAR is -1.52. If the answer re-ranking is adopted the MRAR improve to 1 and the SRAR becomes +1.33 -0.25 -0.1 = -0.18. The answer elimination produces a MRAR and a SRAR of 1.

Evaluation of Question Categorization

Table 4.6 lists the performance of question categorization for each of the models described in Section 2.5. We noticed better results when the PRTC and QSVM models were used. In the overall, we find that the performance of question categorization is not as good as the one obtained for TC (see Section 2.7.3).

<table>
<thead>
<tr>
<th></th>
<th>RTC0</th>
<th>SVM0</th>
<th>PRTC</th>
<th>QSVM</th>
<th>QATC</th>
</tr>
</thead>
<tbody>
<tr>
<td>acq</td>
<td>18.19</td>
<td>54.02</td>
<td>62.50</td>
<td>56.00</td>
<td>46.15</td>
</tr>
<tr>
<td>crude</td>
<td>33.33</td>
<td>54.05</td>
<td>53.33</td>
<td>66.67</td>
<td>66.67</td>
</tr>
<tr>
<td>earn</td>
<td>0.00</td>
<td>55.32</td>
<td>40.00</td>
<td>13.00</td>
<td>26.67</td>
</tr>
<tr>
<td>grain</td>
<td>50.00</td>
<td>52.17</td>
<td>75.00</td>
<td>66.67</td>
<td>50.00</td>
</tr>
<tr>
<td>ship</td>
<td>80.00</td>
<td>47.06</td>
<td>75.00</td>
<td>90.00</td>
<td>85.71</td>
</tr>
<tr>
<td>trade</td>
<td>40.00</td>
<td>57.13</td>
<td>66.67</td>
<td>58.34</td>
<td>45.45</td>
</tr>
</tbody>
</table>

Evaluation of Question Answering

To evaluate the impact of TC on Q/A we first scored the answers of a basic Q/A system for the test set, by using both MRAR and the SRAR measures.

Additionally, we evaluated (1) the MRAR when answers were re-ranked based on question and answer category information; and (2) the SRAR in the case when answers extracted from documents with different categories were eliminated. Table 4.8 shows that matching between the question category and the answer category improves both the MRAR (.6635 vs .6619) and the SRAR (.0356 vs .3724) score.

\(^7\)The same measure was used in all TREC Q/A evaluations.
4.2. TEXT CATEGORIZATION FOR QUESTION ANSWERING

Table 4.7: Performance comparison between basic Q/A and Q/A using question categories information for answer extraction

<table>
<thead>
<tr>
<th>Quest. Categ. method</th>
<th>RTC0</th>
<th>SVM0</th>
<th>PRTC</th>
<th>QSVM</th>
<th>QATC</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRAR (QCQA)</td>
<td>.6203</td>
<td>.6336</td>
<td>.6442</td>
<td>.6507</td>
<td>.5933</td>
</tr>
<tr>
<td>SRAR (QCQA)</td>
<td>-.4091</td>
<td>-.3912</td>
<td>-.3818</td>
<td>-.3954</td>
<td>-.4753</td>
</tr>
<tr>
<td>MRAR (basic Q/A)</td>
<td>.6619</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRAR (basic Q/A)</td>
<td>-.3724</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.8: Performance comparison between the answer re-ranking and the answer elimination policies.

<table>
<thead>
<tr>
<th>Quest. Categ. method</th>
<th>RTC0</th>
<th>SVM0</th>
<th>PRTC</th>
<th>QSVM</th>
<th>QATC</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRAR (answer re-ranking)</td>
<td>.6224</td>
<td>.6490</td>
<td>.6577</td>
<td>.6635</td>
<td>.6070</td>
</tr>
<tr>
<td>SRAR (answer elimination)</td>
<td>-.0894</td>
<td>-.1349</td>
<td>-.0356</td>
<td>-.0766</td>
<td>-.3199</td>
</tr>
</tbody>
</table>

In order to study how the number of answers impacts the accuracy of the proposed models, we have evaluated the MRAR and the SRAR score varying the maximal number of answers, provided by the basic Q/A system. We adopted as filtering policy the answer re-ranking.

Figure 4.5 shows that as the number of answers increases, the MRAR score for QSVM, PRTC and the basic Q/A increases, for the first four answers and it reaches a plateau afterwards. We also notice that the QSVM outperforms both PRTC and the basic Q/A. This figure also shows that question categorization per se does not greatly impact the MRAR score of Q/A.

Figure 4.6 illustrates the SRAR curves by considering the answer elimination policy. The figure clearly shows that the QSVM and PRTC models for question categorization determine a higher SRAR score, thus indicating that fewer irrelevant answers are left. The results presented in Figure 4.6 show that question categorization can greatly improve the quality of Q/A when irrelevant answers are considered. It also shows that perhaps, when evaluating Q/A systems with MRAR scoring method, the "optimistic" view of Q/A is taken, in which erroneous results are ignored for the sake of emphasizing that an answer was obtained after all, even if it was ranked below several incorrect answers.

In contrast, the SRAR score that we have described in Section 4.2.4 produce a "harsher" score, in which errors are given the same weight as the correct results, but are affecting negatively the overall score. This explains why, even for a baseline Q/A, we obtained a negative score, as illustrated in 4.7. This shows that the Q/A system generates more erroneous answers then correct answers.
Figure 4.5: The *MRAR* results for basic Q/A and Q/A with answer re-ranking based on question categorization via the PRTC and QSVM models.

Figure 4.6: The *SRAR* results for basic Q/A and Q/A with answer re-ranking based on question categorization via the PRTC and QSVM models.
This contrast between the MRAR scoring method and the SRAR scoring method is obvious in the results listed in Table 4.8. The five different text categorization methods generate MRAR scores that are quite similar. However, their SRAR scores vary more significantly.

If only the MRAR scores would be considered, two conclusions can be drawn:

1. text categorization does not bring significant information to Q/A for precision enhancement by re-ranking answers;

2. question categorization by using weighting scheme of text categorization does not perform correctly enough to be used for Q/A.

However, the results obtained with the SRAR scoring scheme, indicate that text categorization impacts on Q/A results, by eliminating incorrect answers. We plan to further study the question categorization methods and empirically find which weighting scheme is ideal.

In the next section a different use of Text Categorization is shown. Indicative and Informative summaries will be derived using categorical information.
4.3 Category-Based Text Summarization

One of use of TC is the automatic delivery of textual information to interested users based on the notion of text categories: first, news providers tag news items according to a predefined classification scheme and, second, they deliver the news to the interested users. On one hand, the more fine-grained is the classification structure the more specific information can be provided to the users. On the other hand, the more fine-grained is the category structure the less accurate is the system. Moreover, providers and consumers may have a different understanding of a huge classification scheme.

A common solution for this problem is the use of keywords or small summaries that gives and indication of which topics the target document is related to. The above information can be manually added to documents but this results in a high time consuming and costly activity. Automated method to generate keywords and summaries exploit traditional weighing scheme from IR. The relevant keywords can be considered as indicative summaries whereas relevant passages of a document or set of documents refer to as informative summary. Usually, the summaries are extracted based on queries, i.e. they are relevant passages and terms for the target query.

We introduce the concept of relevance with respect to a category. The indicative and informative summaries are extracted based on weighting schemes derived from the training data of the target category. In Chapter 3 has been shown that the bag-of-words representation is sufficient to achieve good performances. However, when an indicative explanation of document content is given in term simple words, it could not be sufficient to satisfy the users' information needs. On the contrary if the output keywords are terminological expressions or other complex nominals, their understandability improve. NLP cannot increase the classification accuracy but can improve the descriptive (at least for human point of view) quality of keywords.

A richer explanation can, also, help to recover misclassifications of the automatic categorization system. The user can better decide to thrust the system and read the news item, or, conversely, discard it. This may not be possible if he is exposed only to the document category and to the title of the current actual news. For instance, given the title: "Periventricular hyperintensity detected by magnetic resonance imaging in infancy.", it is not clear why the document of the medical domain in Tab. 4.9 is related to the Nervous System Diseases category of the Medical Subject Headings (MeSH).

If the user is provided also with an indicative summary represented by the complex nominals such as intracranial hemorrhage, cerebral palsy, brain damage and cerebral injuries, he may better understand if this incoming document is related to the above class. This perception may be improved if an informative summary is presented. This latter is built using the sentences that contain the

\[A \text{ complete description can be found in } \text{http://www.nlm.nih.gov/mesh} \]
4.3. CATEGORY-BASED TEXT SUMMARIZATION

<table>
<thead>
<tr>
<th>Title:</th>
<th>Periventricular hyperintensity detected by magnetic resonance imaging in infancy.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract:</td>
<td>Twenty-one infants younger than 12 months of age were diagnosed as having periventricular hyperintensity (PVH) on T2-weighted magnetic resonance imaging. Ten infants had experienced neonatal asphyxia, 6 intracranial hemorrhage, 2 bacterial meningitis, and 3 apnea. PVH was classified according to its extent. Round foci of PVH surrounding the frontal and occipital horns of the lateral ventricles were observed in 4 infants (PVH pattern I). Continuous PVH was observed in 17 infants (PVH patterns II and III). Fourteen infants with continuous PVH had spastic diplegia or quadriplegia. Developmental delay was demonstrated in 15 infants with continuous PVH. No PVH pattern I infants had cerebral palsy; only 1 such infant had mild developmental delay. Our study suggests that the extent of PVH reflects the severity of brain damage in neonates with cerebral injuries.</td>
</tr>
</tbody>
</table>

Table 4.9: Ohsumed sample news item

above concepts. Note that, to suggest the correct subject, the indicative and the informative summaries have to be related to the actual category. For example the complex nominals: neonatal asphyxia, lateral ventricles and magnetic resonance are useless or even misleading. The complex nominal and the simple nouns filtered by the profile weighting schemes are a kind of category-based explanation for the document content.

4.3.1 Representing documents for enriched categorization

In Chapter 2, we have shown that text classifiers based on a Vector Space Model represent documents as points in the space. The profile vector \vec{a} produced by Rocchio or by SVM learning algorithm contains the target category features ranked by their relevance for classifying documents in the target category. We speculate that if a feature f is very relevant to correctly categorize documents in the category C, f should be indicative also for a human being.

The expressiveness power of features can be improved if we use together with the simple words the complex nominal representations introduced in Section 3.1.3. In fact, we have shown in Chapter 3 that the indexing effectiveness of complex nominals is not lesser than the simple words. The problem to use them for TC is that they are subsumed by their compounding words. Anyhow, they are more meaningful for a human being than the bunch of words, apparently not related, that the classifier uses for categorization.
In Table 4.10 we show terminological features in the profile of the *Neonatal Diseases & Abnormalities* category of Ohsumed. Features are ranked according to the weight \vec{a}_f produced by the PRC model. In the Table the head and the tail of the list are shown in left and right columns, respectively.

Table 4.10: Complex Nominals extracted from the *Neonatal Dis.& Abnormalities* category texts and ranked according to the PRC model (*only non null weights are reported*)

<table>
<thead>
<tr>
<th>Head List</th>
<th>Weight</th>
<th>Tail list</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>cystic_fibrosis</td>
<td>0.017391</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>pulmonary_artery</td>
<td>0.005903</td>
<td>shear_stress</td>
<td>0.000074</td>
</tr>
<tr>
<td>congenital_heart_disease</td>
<td>0.005181</td>
<td>28_days</td>
<td>0.000074</td>
</tr>
<tr>
<td>birth_weight</td>
<td>0.003942</td>
<td>three_time</td>
<td>0.000070</td>
</tr>
<tr>
<td>premature_infant</td>
<td>0.003646</td>
<td>twin_transfusion</td>
<td>0.000066</td>
</tr>
<tr>
<td>congenital_anomalies</td>
<td>0.003396</td>
<td>significant_advantage</td>
<td>0.000060</td>
</tr>
<tr>
<td>intrauterine_growth_retardation</td>
<td>0.003175</td>
<td>lower_incidence</td>
<td>0.000058</td>
</tr>
<tr>
<td>fetal_growth</td>
<td>0.003067</td>
<td>data_collection</td>
<td>0.000054</td>
</tr>
<tr>
<td>cystic_fibrosis_gene</td>
<td>0.002897</td>
<td>lung_damage</td>
<td>0.000052</td>
</tr>
<tr>
<td>congenital_abnormalities</td>
<td>0.002711</td>
<td>structural_abnormalities</td>
<td>0.000046</td>
</tr>
<tr>
<td>outflow_tract</td>
<td>0.002527</td>
<td>imaging_technique</td>
<td>0.000045</td>
</tr>
<tr>
<td>double_inlet</td>
<td>0.002335</td>
<td>dose_group</td>
<td>0.000045</td>
</tr>
<tr>
<td>congenital_heart_defects</td>
<td>0.002274</td>
<td>3.6</td>
<td>0.000045</td>
</tr>
<tr>
<td>congenital_anomaly</td>
<td>0.001890</td>
<td>late_deaths</td>
<td>0.000044</td>
</tr>
<tr>
<td>early_pregnancy</td>
<td>0.001888</td>
<td>treatment_strategy</td>
<td>0.000039</td>
</tr>
<tr>
<td>full_term</td>
<td>0.001258</td>
<td>specific_binding</td>
<td>0.000039</td>
</tr>
<tr>
<td>23_weeks</td>
<td>0.001250</td>
<td>early_age</td>
<td>0.000035</td>
</tr>
<tr>
<td>color_flow_mapping</td>
<td>0.001180</td>
<td>skin_cancer</td>
<td>0.000034</td>
</tr>
<tr>
<td>low_cardiac_output</td>
<td>0.001115</td>
<td>social_class</td>
<td>0.000023</td>
</tr>
<tr>
<td>pulmonary_artery_distortion</td>
<td>0.001060</td>
<td>45_cases</td>
<td>0.000016</td>
</tr>
<tr>
<td>low_birth_weight_infants</td>
<td>0.001027</td>
<td>binding_proteins</td>
<td>0.000014</td>
</tr>
<tr>
<td>diabetic_women</td>
<td>0.000991</td>
<td>live_birth</td>
<td>0.000012</td>
</tr>
<tr>
<td>arch_obstruction</td>
<td>0.000868</td>
<td>bladder_wall</td>
<td>0.000009</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td>young_woman</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

As comparison, Table 4.11 the words that compound the complex nominals of the Table 4.10. They have been alphabetically ordered to make more difficult the recognition of the complex nominals. We notice that the bunch of words is less meaningful. For example the number 23 or the word weeks have no sense if they are taken alone. Instead, the complex nominal *23 weeks* evokes a recurrent period of time of pregnancy. Other examples are *congenital_heart_disease, low_birth_weight_infants* and *intrauterine_growth_retardation*. Their compound words alone are not very meaningful.

Moreover, note that in Table 4.10 concepts relevant for the *Neonatal* class (e.g., *congenital_anomaly, premature_infant*) appear higher in the ranking (Head list), while less topics oriented multiwords (e.g., *social_class*) receive a very low
4.3. CATEGORY-BASED TEXT SUMMARIZATION

Table 4.11: Single words extracted from the complex nominals of Table 4.10. They have been alphabetically ordered to better separate the compounding words

<table>
<thead>
<tr>
<th>Single Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
</tr>
<tr>
<td>abnormalities</td>
</tr>
<tr>
<td>anomalies</td>
</tr>
<tr>
<td>anomaly</td>
</tr>
<tr>
<td>arch</td>
</tr>
<tr>
<td>artery</td>
</tr>
<tr>
<td>birth</td>
</tr>
<tr>
<td>cardiac</td>
</tr>
<tr>
<td>color</td>
</tr>
<tr>
<td>congenital</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

(although not null) weight. This shows that NLP derived features filtered by the TC algorithm result more meaningful for a human being. In the next sections, we presents another NLP technique that allows us to detect more general of complex nominals than those extracted by using the methods of Section 3.1.3.

Extending the word-based document representation

The VSM based on simple words lacks in expressiveness. In fact, words, considered independent, provide only singleton surface forms. These latter are only a small part of the key concepts expressed in the documents and, moreover, are generally polysemic, i.e. denote more than one concept. The consequence is a very poor representation from the user point of view.

A large part of relevant concepts in domains is expressed by collocations of more than one word (e.g., *interim dividend* in the financial domain). Collocations have also the positive property of denoting generally only one concept. This is also true for terminology expressions [Jacquemin, 2001]. Phrases like the *risk factor* or *interim dividend* that match both the Noun Noun and Adjective Noun constraints are less polysemic than the isolated compounding words, i.e. *risk*, *interim*, *factor*, and *dividend*.

Other important phrase are expressed by verb-governed surface forms such as *companies buy shares*. This information may be useful "as it is" for the description of the class. Since the verb arguments may be very distant and in relatively free order, a normalized version may be used in the vector space model, to increase the number of matches.

The document representation that we want to produce is, thus, based on:

- concepts expressed with simple surface forms, i.e. words;
- concepts expressed with complex surface forms, i.e. complex terms;
• simple relations between concepts based on verbal contexts;

To support the discovery of such explicit descriptions some NLP tools have to be defined. Simple techniques based on barrier words are not sufficient. These approaches show their limits if applied to long distance dependencies such as the verb argumental relation.

Description of the Extraction Algorithm

In the terminology extraction techniques [Jacquemin, 2001], a syntactic model of the textual phenomena is generally used. We have adopted the extended dependency-based representation formalism (XDG, [Basili et al., 2000d]).

An XDG is a graph whose nodes are constituents and whose arcs are the syntactic relations among constituents. The constituents that we consider are chunks [Abney, 1996], i.e., non-recursive kernels of noun phrases (NPK), prepositional phrases (PPK) and verbal phrases (VPK) like five patients, by non invasive methods, were evaluated. Arcs indicate the syntactic relations between chunks, i.e. the inter-chunks relations such as verb-subject, verb-object, verb-modifier, and noun-prepositional modifiers.

Fig. 4.7 shows a sample XDG: chunks⁹ are the words between square brackets (i.e. VPK, NPK and PPK) while inter-chunk dependencies are depicted as arrows, i.e.:

- SUBJ for the subject relation,
- V_PP for the verb prepositional modifier relation, and
- NP_PP for the noun-prepositional modifier relation.

\[\text{Figure 4.7: Example of an XDG}\]

The surface pattern candidates for the complex phrases can be detected by regular expressions like \(\{NPK \ PPK^+\}\) or \(\{PPK^+\}\) on the XDG node sequence. A node sequence \(N_1, ..., N_k\) that satisfies one of the regular expressions is accepted if \(\forall i : 1 \leq i < k\), the pair \(<N_i, N_{i+1}>\) is an edge of the target XDG. It is worth noticing that we do not consider all the PPK, e.g., PPKs that contain pronouns are refused.

⁹The chunk layer is build on a part-of-speech tagged text.
The relations among concepts, instead, are extracted by verb-dependencies. Verb argument pairs are relevant for describing the target class. For example,

\[(\text{buy}, (\text{dirobj}, \text{'share'}))\]
or

\[(\text{complete}, (\text{dirobj}, \text{'acquisition'}))\]
in an economic corpus suggest that the text collection refers to the changes of company assets. The same information was used in [Strzalkowski et al., 1998] to enrich the document representation for IR tasks as described in Section 1.2.

The adoption of robust syntactic parsing techniques based on processing module cascades [Basili et al., 2000d] makes possible the selection of the above surface forms on a large scale. The parser includes a tokenizer, a part-of-speech tagger, a chunker, and a shallow syntactic analyzer.

4.3.2 Explanation of categorization choices

Our aim is to provide two type of summaries as explanation of the target document categorization: one indicative and one informative. These summaries should show important concepts shared by both the document and the target category. For this purpose, we rank the features \(f\) according the scores

\[sc^d_f = w^d_f \times \vec{a}_f,\]
i.e. the product between the document and the profile weights of \(f\).

To generate the \(\vec{a}\) we chose the PRC since the feature selection interpretation in Section 2.6 has shown that:

- PRC drastically reduces noise filtering out non-relevant features.
- The \(\vec{a}_f\) weights depend on the target category and are directly used as components in the similarity estimation with the document (i.e., the scalar product).
- Simple words as well as complex linguistic features receive a weight proportional to their contribution in the classification accuracy. Note that as a parameter \(\rho\) is provided for each category, features assume different weights in different categories. This defines the best suitable set of concepts (i.e. the features with higher weights) for the target category.

The indicative summary of the document \(d\) is defined as the \(R_k(d)\) set of the \(k\) top features (\(k\)-best features) ranked by \(sc^d_f\). The document features contain both complex terms and simple words thus the summary should be more descriptive than those based on words only. We call such an explanation as the summary based on best features \((S_{bf})\).

The informative summary should contain the more meaningful paragraphs (\(m\)-best paragraphs). The paragraphs that contain at least one of the best \(k\) features are ranked according to \(w^p_d\) weight defined in the following. Given a paragraph \(p\) in a document \(d\), the set of the best \(k\) paragraph features are:

\[S_k(p, d) = \{f : f \in p, f \in R_k(d)\},\]

where \(f\) is a feature in \(p\). The paragraph weight is then defined as follows:

\[w^p_d = \sum_{f \in S_k(p, d)} sc^d_f = \sum_{f \in S_k(p, d)} w^d_f \times \vec{a}_f,\]

\[(4.6)\]
where p is a paragraph of d.

The informative summary based on the best paragraphs (S_{bp}) is obtained by picking up the top m paragraphs ranked according to Eq. 4.6. The parameter m establishes the rate of the document paragraphs shown as an explanation.

A base-line version of the proposed explanation model can be obtained by replacing the $w^d_f \times \vec{a}_f$ score with the simpler document frequency, M^c_f (i.e. the number of documents that contain f and belong to the category C). Hereafter we will refer to these simpler explanation models as the frequency summary based on features (S_{ff}) and frequency summary based on paragraphs (S_{fp}).

In next section the above explanation models are contrastively evaluated.

4.3.3 Experiments

For evaluating the performance of our category-based summaries we adopted the Ohsumed corpus. In the first experiment we used the extended representation described in Section 4.3.1 to train PRC. Column 1 of Table 4.12 shows the top 31 complex terms of Cardiovascular Disease category profile generated by PRC. The features seem to be conceptually close to the target domain. Column 2 shows the complex terms ordered by frequency inside the category. We observe that some non-relevant features as well as non specific terms, i.e., normal subject, control subject, risk factor, side effect, appo patients and so on have reached the top of ranking positions. As suggested in [Daille, 1994], frequency seems to be a good indicator of domain relevance, however cross-class techniques, as the one proposed, eliminates the unspecific and useless terms.

PRC seems, thus, suitable to select important domain features. Next section shows our summarization models based on PRC as well as preliminary experiments to test their effectiveness for the users.

Evaluation of different summaries

The aim of these experiments is to measure the effectiveness of our explanation methods. This objective can be achieved in several ways. As our purpose is to design a document filtering system based on users’ information needs we have implemented a specific experimental procedure to test the user satisfaction.

A randomly generated set of about 200 documents (UTS) has been selected from the classified test-set. The user has to evaluate if an incoming document d is correctly labeled in the category C, i.e. if d belongs to C according to his own perception of the classification scheme. Documents are presented to the users together to a category C that may or may not be the true category of the document according to the classification scheme (50% are correct). The user is asked to state its acceptance, or its rejection with respect to the shown class C. For each document $d \in UTS$, the user goes through 3 steps that make available different kinds of information:

1. The Indicative summary, made of the document title and the S_{bf} (set of best features) or S_{ff} (set of frequent features) defined in Section 4.3.2.
Table 4.12: Complex term Ohsumed Cardiovascular disease class descriptor: PRC vs. simple frequency

<table>
<thead>
<tr>
<th>PRC</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>myocardial infarction</td>
<td>myocardial infarction</td>
</tr>
<tr>
<td>coronary angioplasty</td>
<td>coronary artery</td>
</tr>
<tr>
<td>coronary artery</td>
<td>risk factor</td>
</tr>
<tr>
<td>essential hypertension</td>
<td>coronary angioplasty</td>
</tr>
<tr>
<td>acute myocardial infarction</td>
<td>congestive heart failure</td>
</tr>
<tr>
<td>congestive heart failure</td>
<td>acute myocardial infarction</td>
</tr>
<tr>
<td>myocardial ischemia</td>
<td>pulmonary hypertension</td>
</tr>
<tr>
<td>hypertensive patients</td>
<td>essential hypertension</td>
</tr>
<tr>
<td>ventricular function</td>
<td>myocardial ischemia</td>
</tr>
<tr>
<td>arterial pressure</td>
<td>ventricular tachycardia</td>
</tr>
<tr>
<td>ventricular tachycardia</td>
<td>arterial pressure</td>
</tr>
<tr>
<td>pulmonary hypertension</td>
<td>hypertensive rat</td>
</tr>
<tr>
<td>hypertensive rat</td>
<td>ventricular function</td>
</tr>
<tr>
<td>cardiovascular disease</td>
<td>hypertensive patients</td>
</tr>
<tr>
<td>coronary angiography</td>
<td>vascular resistance</td>
</tr>
<tr>
<td>cardiac catheterization</td>
<td>cardiac arrest</td>
</tr>
<tr>
<td>atrial fibrillation</td>
<td>atrial fibrillation</td>
</tr>
<tr>
<td>cardiac arrest</td>
<td>appo patients</td>
</tr>
<tr>
<td>cardiac output</td>
<td>cardiac output</td>
</tr>
<tr>
<td>thrombolytic therapy</td>
<td>control subject</td>
</tr>
<tr>
<td>mitral regurgitation</td>
<td>significant difference</td>
</tr>
<tr>
<td>hypertrophic cardiomyopathy</td>
<td>consecutive patients</td>
</tr>
<tr>
<td>vascular resistance</td>
<td>chest pain</td>
</tr>
<tr>
<td>angina pectoris</td>
<td>cardiac catheterization</td>
</tr>
<tr>
<td>antihypertensive agent</td>
<td>hypertrophic cardiomyopathy</td>
</tr>
<tr>
<td>doppler echocardiography</td>
<td>side effect</td>
</tr>
<tr>
<td>unstable angina</td>
<td>pulmonary artery</td>
</tr>
<tr>
<td>enzyme inhibitors</td>
<td>cardiovascular disease</td>
</tr>
<tr>
<td>atrial pressure</td>
<td>cardiac death</td>
</tr>
<tr>
<td>coronary disease</td>
<td>thrombolytic therapy</td>
</tr>
<tr>
<td>mitral stenosis</td>
<td>normal subject</td>
</tr>
</tbody>
</table>

Table 4.13 shows that the keywords are ranked by relevance and that a weight is also provided for the user decision.

2. The Informative summary, including the \(S_{bp} \) (set of the best paragraphs) or \(S_{fp} \) (set of the frequent paragraphs) is shown as described by the Table 4.14.

3. The Full document where the entire document is shown for the final decision (see Table 4.15).

The example of Table 4.13 shows that the features chosen by \(S_{bf} \) model appears to be very related to the Nervous System Diseases category. The complex nominals make more meaningful the indicative summary, e.g., cerebral palsy is more understandable than single term palsy. It is worth noting that our com-
Periventricular hyperintensity detected by magnetic resonance imaging in infancy.

Keywords

- brain (weight: 0.024370685722)
- meningitis (weight: 0.011201831273)
- intracranial (weight: 0.010948837855)
- cerebral_palsy (weight: 0.01080907534)
- magnetic (weight: 0.010098027662)
- frontal (weight: 0.009724019459)
- resonance (weight: 0.00893888026)
- bacterial_meningitis (weight: 0.00645032071)
- periventricular (weight: 0.005859534725)
- spastic (weight: 0.004452016709)
- lateral (weight: 0.003823484388)
- quadriplegia (weight: 0.003561293779)
- diplegia (weight: 0.002432972968)
- hyperintensity (weight: 0.002430102542)
- lateral_ventricles (weight: 0.002124774555)
- cerebral_injury (weight: 0.002051387893)

Do you agree that this document is related to the 'Nervous System Diseases' Category?

0) yes, 1) weakly, 2) probably not, 3) not at all

Table 4.13: Phase 1 of user understandability testing. Only the title and the relevant keywords are provided to decide if the document is relevant or not for the target category.

Periventricular hyperintensity detected by magnetic resonance imaging in infancy.

No PVH pattern I infants had cerebral palsy; only 1 such infant had mild developmental delay.
Our study suggests that the extent of PVH reflects the severity of brain damage in neonates with cerebral injuries.
Ten infants had experienced neonatal asphyxia, 6 intracranial hemorrhage, 2 bacterial meningitis, and 3 apnea.

Do you agree that this document is related to the 'Nervous System Diseases' Category?

0) yes, 1) weakly, 2) probably not, 3) not at all

Table 4.14: Phase 2 of user understandability testing. The title and the summary is shown to the user to decide if the document is relevant or not for the target category.
4.3. CATEGORY-BASED TEXT SUMMARIZATION

Title
Periventricular hyperintensity detected by magnetic resonance imaging in infancy.

Abstract
Twenty-one infants younger than 12 months of age were diagnosed as having periventricular hyperintensity (PVH) on T2-weighted magnetic resonance imaging. Ten infants had experienced neonatal asphyxia, 6 intracranial hemorrhage, 2 bacterial meningitis, and 3 apnea.

PVH was classified according to its extent. Round foci of PVH surrounding the frontal and occipital horns of the lateral ventricles were observed in 4 infants (PVH pattern I). Continuous PVH was observed in 17 infants (PVH patterns II and III). Fourteen infants with continuous PVH had spastic diplegia or quadriplegia.

Developmental delay was demonstrated in 15 infants with continuous PVH. No PVH pattern I infants had cerebral palsy; only 1 such infant had mild developmental delay. Our study suggests that the extent of PVH reflects the severity of brain damage in neonates with cerebral injuries.

Do you agree that this document is related to the 'Nervous System Diseases' Category?

0) yes, 1) weakly, 2) probably not, 3) not at all

Table 4.15: Phase 3 of user understandability testing. The entire document is shown to the user that can finally give his perception of the document category
plex nominal extractor does not cover every phenomena yet. For instance the
term *spastic diplegia or quadriplegia* is not recognized. The lack of *diplegia* and
quadriplegia words in our lexicon increased the error probability of the POS-
tagger and consequently of the terminology extractor. In any case as the single
words alone were judged important for the domain and displayed to the user.

We note that the example do not show any verbal phrases as indicative
keywords. These were also rare in the indicative summaries of other doc-
ments/categories. The explanations could be: (a) the linguistic content of
Ohsumed documents, i.e., there are few meaningful verbal phrases, and (b) to
the higher complexity of clustering verbal phrases, especially when they are not
frequencies.

It is worth noticing that the S_{bp} is displayed after the user has been exposed
to the S_{bf} while S_{fp} is shown after S_{ff}. This means that it was not possible to
measure the S_{bp} and S_{fp} independently from the related indicative summaries.

When a wrong category is proposed (with respect to the test information in
Ohsumed), the system always provides its best explanation. The user has thus
no information about the correctness of the proposed class, so that he relies
only on explanations.

The first user group (1,2,3, and 4) tested the Rocchio-based explanation
models (i.e. S_{bf} and S_{bp}); the other users tested the k-frequent explanation
models (i.e. S_{ff} and S_{fp}). We define the explanation score as the user coherence
with its own final decision. This can be measured for both phase 1 (indicative
summaries) and phase 2 (informative summaries). We define the user coherence
as:

\[\text{the number of matches between the decisions taken for the target phase} \]
\[\text{and the last phase, when the entire document is displayed.} \]

It is worth noticing that that we collect for each document 4 types of answers:
yes, *weakly*, *probably not*, *not at all*. In these preliminary experiments we group
together the first two as affirmative and the last two as negative answers. Other
more refined way of evaluating the user perception can be further implemented
by using grading matches rather than binary ones.

In Table 4.16 the performances of 7 users are reported. Users have been
divided in two groups. In columns *Ind. Summary* and *Inf. Summary*, the scores
of the explanation models based on indicative and informative summaries are
respectively reported. In *Classifier* column is reported the user satisfaction with
respect to the category assigned by the classifier. In the *avg.* rows, the average
of the corresponding user group is shown.

Two main trends can be observed. First, the category assigned by the clas-
sifier seems to be the least satisfying, i.e. its agreement score (with the final
user opinion) is the lowest. If the S_{bf} are added for explaining the category
label the average score increases of about 13% (79.13% vs. 66.08%). As the
explanation model becomes richer, i.e. the S_{bp} are also provided, the users bet-
ter appreciate the final document content. This reflects in a further increase of
about 8% with respect to the feature based model. The overall improvement of
Table 4.16: Evaluation of the class explanation model

<table>
<thead>
<tr>
<th>User</th>
<th>Classifier</th>
<th>Ind. Summary</th>
<th>Inf. Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.7450</td>
<td>0.8431</td>
<td>0.9019</td>
</tr>
<tr>
<td>2</td>
<td>0.5890</td>
<td>0.7945</td>
<td>0.8493</td>
</tr>
<tr>
<td>3</td>
<td>0.6557</td>
<td>0.7950</td>
<td>0.8852</td>
</tr>
<tr>
<td>4</td>
<td>0.6534</td>
<td>0.7326</td>
<td>0.8712</td>
</tr>
<tr>
<td>avg.</td>
<td>0.6608</td>
<td>0.7913</td>
<td>0.8769</td>
</tr>
<tr>
<td>5</td>
<td>0.7647</td>
<td>0.8921</td>
<td>0.9705</td>
</tr>
<tr>
<td>6</td>
<td>0.5791</td>
<td>0.6582</td>
<td>0.7861</td>
</tr>
<tr>
<td>7</td>
<td>0.7523</td>
<td>0.8012</td>
<td>0.8802</td>
</tr>
<tr>
<td>avg.</td>
<td>0.6987</td>
<td>0.7838</td>
<td>0.8789</td>
</tr>
</tbody>
</table>

The user satisfaction of the combined explanation model is around 21% (87.69% vs. 66.08%).

The second aspect is that even the explanation models based on the simple frequency are helpful. In this case, the S_{ff} and S_{fp} improve the baseline of about, respectively, 9% and 18%. As expected, adding explanatory information about the document category is always effective. However, the PRC approach to feature selection seems more promising as it better improve (+21%) the baseline explanation (i.e. category and title only) than the document frequency heuristic (+18%).

A further advantage of the S_{bf} over S_{ff} is that the first actually selects and presents to the user only 4 features, on average, with respect to 8 shown by the second. In the PRC based summary approach the reader is exposed to less than half number of features when he has to take his decision. The compression of relevant information is mainly due to the selection technique of PRC.

It is worth noting that the proposed test does not compare directly the two explanation systems (PRC and frequency based). Thus the results could be affect by the high variability of users own behavior in the revision process. A feasible solution to limit this problem could be testing the target users with both two explanation systems.
4.4 Conclusions

In this chapter we have presented the use of TC for three most important NLP systems: Information Extraction, Question/Answering and Document Summarization.

First, we have developed a new learning method for automatically acquiring information extraction rules for new domains. In our experiments, the rules obtained performed extraction with high precision, thus enabling the coverage of any new extraction domain when they are further bootstrapped with additional relevant textual information. This two-pass semantic labeling technique we have developed performs with both human-like precision and recall for a large number of semantic frames. In our experiments we have employed the first release of FrameNet.

Second, we have presented five methods of categorizing questions and two methods of categorizing the answers produced by a Q/A system. Evaluation indicate that even with a question categorization method that does not perform as well as the answer categorization, the accuracy of Q/A can be improved in two ways: (1) by re-ranking the answers and by eliminating incorrect answers.

Finally, an explanation/summarization system based on TC has been presented. This includes two types of summaries that aim to improve the user satisfaction with respect to the delivered documents. The user, by simply reading the proposed summaries, can decide if the document meets his own interests. Both indicative and informative summaries are obtained by using a TC approach \(\text{PRC} \) together with a robust parser to select the concepts and paragraphs related to the target category. A preliminary evaluation of our explanation model has been carried out by testing the users’ satisfaction. The summary-based explanation seems to be a promising solution for giving an explanation of the automatic categorization.

Chapter 3 has shown the useless of NLP for TC. In contrast, in this chapter preliminary studies on three main NLP applications have shown that TC can help to improve NLP effectiveness.
Chapter 5

Conclusions and Future Work

In this thesis the complex interaction between Natural Language Processing and Text Categorization has been studied. A specific attention has been devoted to the use of efficient NLP algorithms and efficient TC models, as their usefulness depends on their applicability in operational scenarios.

First, a study on improving the performance of very efficient profile-based classifiers (e.g., Rocchio) has been carried out. Original weighting schemes, score adjustment techniques and parameterization techniques have been proposed. In particular, the parameterization method designed for the Rocchio classifier, \textit{PRC}, allows the Rocchio model to improve (at least 5\% points) with respect to the best literature parameterization on every corpus. The results on \textit{Reuters-21578} have shown that \textit{PRC} is the second\footnote{\textit{KNN} measured on \textit{Reuters-21578} in our studies as well as in other researches, e.g., [Joachims, 1998; Lam and Lai, 2001; Raskutti et al., 2001; Toutanova et al., 2001] has performance ranging between 80\% and 82\%.} best figure classifier after \textit{SVM} in term of f_1 measure among the simple models (those not considered are classifier committees, boosting techniques and combined classifiers [Lam and Ho, 1998]). Moreover, the time complexity of \textit{PRC} is equal to the Rocchio’s, i.e., the lowest among the not trivial classifiers [Sebastiani, 2002].

Second, the impact of syntactic and semantic document representations on TC accuracy has been studied. Syntactic features such as POS-tags as well as syntactic relations among words have been used to engineer complex linguistic features (i.e., phrases). The phrases experimented were proper nouns and complex nominals detected by NLP techniques. The results have shown that TC is not very much affected by this type of information. The main reasons that we have found are: (a) the words with ambiguous POS-tag are a small percentage, especially if features like numbers and special strings are included in the target feature set, and (b) in common natural language documents the sequences of words have the same indexing power of the single words. Phrases, in our as well
as other researches seem slightly improve weak TC models. Our feeling is that
the most of the improvements derive from a better suited parameterization when
phrases are used (perhaps caused by these latter). In fact, SVM, that does not
need estimation of parameters, is not improved by syntactic information. Se-
matic representation, when an accurate WSD is used, slightly improves the
SVM accuracies. However, its performances are not clearly related to the accu-
arcy of the WSD algorithm. Further investigation is thus needed to determine
the impact of WSD algorithms in TC.

Finally, preliminary experiments on the use of TC for three important tasks
of NLP, Information Extraction, Question/Answering and Text Summarization
have been carried out. The original idea of classifying sentences in FrameNet
frames enables the possibility to model Open Domain Information Extraction
systems whereas the question categorization seems viable to reduce the number
of incorrect answers output by the Q/A systems. The powerful learning algo-
rithms of TC allow to effectively model indicative and informative summaries
related to a particular category.

Future research could be addressed to find a more effective algorithm that
better exploits the feature selection interpretation of the Rocchio formula, given
in this thesis. On the contrary, in our opinion there is small room for using
complex representations for TC, derived by the current NLP techniques. Some
literature work report positive results on the use of NLP for TC. We have shown
that the quality of the outcomes are not statistically sufficient to assess the su-
periority of the NLP-driven models. Our feeling is that such results come more
from the desire to govern the cold statistical models by means of (more under-
standable) symbolic approaches than from an evaluation sustained by empirical
experimental data. The last chapter of this thesis, instead, has illustrated again
that the statistical learning can be positively used to drive natural language
processes as the non-so-recent NLP history has repeatedly shown. Thus, the
use of Text Categorization for Natural Language Processing applications as ei-
ther proposed in this thesis or in other original ways is a promising and exciting
future research.
Appendix A

Notation

\(C \) a category
\(C_i \) the category \(i \)
\(C \) collection of categories
\(|C| \) number of categories
\(f \) a feature
\(f_i \) the \(i \)th feature of the corpus
\(W_{f_i} \) the weight of \(f \) in \(C \)
\(\vec{C} \) vector representation of \(C \), \(\vec{C} = < W_{f_1}, ..., W_{f_N} > \)
\(\vec{a} = \vec{C} \)
\(d \) a document
\(P \) set of positive documents for \(C \)
\(P_i \) set of positive documents for \(C_i \)
\(\bar{P} \) set of negative documents for \(C \)
\(\bar{P}_i \) set of negative documents for \(C_i \)
\(w_{f_d} \) the weight of \(f \) in \(d \)
\(\vec{d} \) vector representation of \(d \), \(\vec{d} = < w_{f_1}^d, ..., w_{f_N}^d > \)
\(\phi \) the classification binary function \(\phi : D \to 2^C \)
\(s_{d_i} \) scalar product between document \(d \) and category \(i \)
\(\sigma \) threshold over \(s_{d_i} \) (similarity)
\(b \) threshold over \(s_{d_i} \) (in the hyperplane equation)
\(M \) total number of corpus documents
\(M_f \) total number of corpus documents that contains \(f \)
\(N \) total number of corpus features
\(m \) maximum number of features in a document
\(O \) total occurrences of features
\(O_f \) total occurrences of feature \(f \)
\(o_{f_d} \) occurrences of feature \(f \) in \(d \)
APPENDIX A. NOTATION

<table>
<thead>
<tr>
<th>IDENTITY</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDF</td>
<td>Inverse Document Frequency</td>
</tr>
<tr>
<td>IWF</td>
<td>Inverse Word Frequency</td>
</tr>
<tr>
<td>Precision</td>
<td>Precision</td>
</tr>
<tr>
<td>Recall</td>
<td>Recall</td>
</tr>
<tr>
<td>BEP</td>
<td>Breakeven point</td>
</tr>
<tr>
<td>f_1</td>
<td>f_1 measure</td>
</tr>
<tr>
<td>μPrecision</td>
<td>Microaverage Precision</td>
</tr>
<tr>
<td>μRecall</td>
<td>Microaverage Recall</td>
</tr>
<tr>
<td>μBEP</td>
<td>Microaverage Breakeven point</td>
</tr>
<tr>
<td>μf_1</td>
<td>Microaverage f_1 measure</td>
</tr>
</tbody>
</table>
Appendix B

A sample of Reuters-21578 Terminology

abal_khail after_tax
abdel_jabbar after_write
abdel_rahim afternoon_session
abdul_shakour ag_brown
abul_aziz again_montagu
abdul_hadi agfa_gevaert
abdul_karim agip_petroll
abdul_rahim ago_usda
abitibi_price agreed_upon
about_face agricultural_products
above_average agricultural_stabilization
above_mentioned agriculture_committee
above_normal agriculture_department
above_target agriculture_minister
abu_dhabi agriculture_ministry
academy_of_sciences agriculture_secretary
accord_dealers agriculture_secretary_richard_lyng
accord_miyazawa agro_economist
account_deficit agro_food
accounting_method agro_industrial
accu_weather aids_related
acme_cleveland air_atlanta
acreage_reduction air_canada
acreage_reductions air_force
across_the air_moving
ad_hoc airbus_industrie
adams_russell akzo_dupont
added_value al_aam
addis_ababa al_abdulla
adm_ al_ahmed
administration_officials al_anba
advanced_micro_devices al_anbaa
advvo_system al_asadi
aegean_sea al_awsat
afl_cio al_azzawi
african_countries al_bader
after_effect al_bukhoosh
APPENDIX B. A SAMPLE OF REUTERS-21578 TERMINOLOGY

al_chalabi american_flagged
al_chalaby american_home_products
al_ittihad american_ied
al_juaimah american_made
al_khalifa american_medical
al_khatib american_motors
al_nahayan american_owned
al_otaibi american_petroleum_institute
al_oteiba american_pork_congress
al_qassem american_realty
al_rai american_soybean
al_rashid american_soybean_association
al_riyadh american_stock_exchange
al_sabah american_telephone_and_telegraph
al_salim american_transport
al_shaheen amsterdam_rotterdam
al_sharq an_investor
al_thani anchor_glass_container
al_wattani andres_soriano
al_zubedi angeles_based
al_zubeidi anglo_dutch
ala_. anheuser_busch
alcan_aluminum animal_borne
alcan_australia annual_capacity
alex_.brown annual_div
all_cash annual_meeting
all_destination annual_report
all_embracing annual_revenues
all_new antar_belzberg
all_of anti_aircraft
all_out anti_alcohol
all_party anti_alcohol
all_saudi anti_apartheid
all_star anti_communist
all_suite anti_competitive
all_time anti_crisis
all_year anti_dumping
allan_hawkins anti_ec
allan_leslie antigovernment
allan_saunderson anti_inflective
allegheny_ludlum anti_inflammatory
allen_brady anti_inflation
allen_wallis anti_japanese
allied_lyons anti_peptic
allied_signal anti_protectionism
allied_stores anti_ship
allis_chalmers anti_shipping
already_fragile anti_takeover
amerada_hess anti_trust
american_brands anti_u
american_can anti_viral
american_caught antimicrobial_resistant
american_cyanamid antwerp_hamburg
american_express api_says_distillate
american_flag
<table>
<thead>
<tr>
<th>Term</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>beverly_hills</td>
<td>british_aerospace</td>
</tr>
<tr>
<td>bidding_war</td>
<td>british_based</td>
</tr>
<tr>
<td>big_ticket</td>
<td>british_broadcasting_corporation</td>
</tr>
<tr>
<td>billion_bushels</td>
<td>british_chancellor</td>
</tr>
<tr>
<td>billion_cubic_feet</td>
<td>british_columbia</td>
</tr>
<tr>
<td>billion_deposits</td>
<td>british_designed</td>
</tr>
<tr>
<td>billion_dinars</td>
<td>british_listed</td>
</tr>
<tr>
<td>billion_dir</td>
<td>british_made</td>
</tr>
<tr>
<td>billion_dir_customer_repurhase</td>
<td>british_operated</td>
</tr>
<tr>
<td>billion_dirls</td>
<td>british_petroleum</td>
</tr>
<tr>
<td>billion_francs</td>
<td>british_steel</td>
</tr>
<tr>
<td>billion_guilders</td>
<td>british_sugar</td>
</tr>
<tr>
<td>billion_lire</td>
<td>british_telecom</td>
</tr>
<tr>
<td>billion_marks</td>
<td>british_virgin_islands</td>
</tr>
<tr>
<td>billion_pesos</td>
<td>broad_based</td>
</tr>
<tr>
<td>billion_rand</td>
<td>broad_scale</td>
</tr>
<tr>
<td>billion_riyals</td>
<td>broadly_based</td>
</tr>
<tr>
<td>billion_yen</td>
<td>broadly_defined</td>
</tr>
<tr>
<td>bio_chem</td>
<td>broker_dealer</td>
</tr>
<tr>
<td>bio_synthetic</td>
<td>brokerage_firm</td>
</tr>
<tr>
<td>bio_vascular</td>
<td>brown_afg</td>
</tr>
<tr>
<td>bird_by</td>
<td>brown_forman</td>
</tr>
<tr>
<td>bisphenol_a</td>
<td>browning_ferris</td>
</tr>
<tr>
<td>black_ruled</td>
<td>brucellosis_free</td>
</tr>
<tr>
<td>blue_print</td>
<td>brussels_based</td>
</tr>
<tr>
<td>bluebell_altamont</td>
<td>btr_nylex</td>
</tr>
<tr>
<td>board_chairman</td>
<td>bu_sorghum</td>
</tr>
<tr>
<td>board_member</td>
<td>buchanan_smith</td>
</tr>
<tr>
<td>boart_maa</td>
<td>budget_cutting</td>
</tr>
<tr>
<td>body_gatt</td>
<td>budget_deficit</td>
</tr>
<tr>
<td>boise_cascade</td>
<td>budget_deficits</td>
</tr>
<tr>
<td>boliden_ab</td>
<td>budget_saving</td>
</tr>
<tr>
<td>bon_yong</td>
<td>budget_savings</td>
</tr>
<tr>
<td>bond Equivalent</td>
<td>buenos_aires</td>
</tr>
<tr>
<td>bond_futures</td>
<td>buffer_stock</td>
</tr>
<tr>
<td>bond_market</td>
<td>build_up</td>
</tr>
<tr>
<td>bonn_based</td>
<td>building_materials</td>
</tr>
<tr>
<td>bonus_issue</td>
<td>building_products</td>
</tr>
<tr>
<td>bonus_wheat</td>
<td>building_societies</td>
</tr>
<tr>
<td>book_squaring</td>
<td>building_society</td>
</tr>
<tr>
<td>book_value</td>
<td>built_in</td>
</tr>
<tr>
<td>borg_warner</td>
<td>bulk_carrier</td>
</tr>
<tr>
<td>borrowing_facilities</td>
<td>bullion_coin</td>
</tr>
<tr>
<td>borrowing_facility</td>
<td>buoy_loading</td>
</tr>
<tr>
<td>borrowing_target</td>
<td>burger_king</td>
</tr>
<tr>
<td>boston_based</td>
<td>burns_fry</td>
</tr>
<tr>
<td>boston_globe</td>
<td>burr_brown</td>
</tr>
<tr>
<td>brand_name</td>
<td>business_backed</td>
</tr>
<tr>
<td>brazilian_coffee_institute</td>
<td>business_combination</td>
</tr>
<tr>
<td>brazilian_loans</td>
<td>business_editor</td>
</tr>
<tr>
<td>bread_making</td>
<td>business_loan</td>
</tr>
<tr>
<td>break_even</td>
<td>business_loans_fall</td>
</tr>
<tr>
<td>break_free</td>
<td>bust_up</td>
</tr>
<tr>
<td>brent_grade</td>
<td>buy_backs</td>
</tr>
<tr>
<td>brierley_investments</td>
<td>buy_out</td>
</tr>
<tr>
<td>bristol_meyers</td>
<td>buy_outs</td>
</tr>
<tr>
<td>bristol_myers</td>
<td>buying_tender</td>
</tr>
</tbody>
</table>
buys_dollars buys_stake by_means_of by_product by_products c_itoh cabinet_level cable_and_wireless cable_news_network cable_systems cable_television caesars_world cajamarquilla_spokesman cal_mankowski calendar_1987 calgary_based california_based calorie_conscious canada_dome canada_u canadian_banks canadian_dlr canadian_led canadian_money_supply canadian_rapeseed canadian_tire canadian_u canary_islands cane_growing capital_account capital_expenditure capital_expenditures capital_flows capital_goods caracas_based carbon_chloride cargo_handling cargo_preference carl_icahn carry_in carrying_value carsey_werner carter_hawley carter_wallace case_by cash_balance cash_certificate cash_distribution cash_flow cash_portion cash_settled casualty_property cathay_pacific cathay_pacific_airways cathay_pacific_airways_ltd cattle_ranching cattle_slaughter cattle_slaughter_guesstimates cayman_islands cc_bank ccc_stocks cd_rome cdu_led cebeco_handelsraad cedar_rapids cell_research central_bank central_bank_sets_lira central_banks centrale_credit centrally_planned centrally_run centre_right centre_west cereals_management_committee certain_circumstances certain_conditions certain_liabilities certificate_case chairman_david chairman_designate chairman_elect chairman_paul chamber_of_commerce chamber_of_commerce_and_industry champlin_petroleum chancellor_of_the_exchequer chao_ming chapter_11 chapter_11_bankruptcy charge_offs charter_crellin chase_amp chase_manhattan checking_account chemical_business chemical_industry chesebrough_pond chesebrough_ponds chi_cheng chicago_based chicago_board_of_trade chicago_mercantile_exchange chicago_milwaukee chief_economist chief_executive chief_executive_officer chien_hsien chien_kuo chien_ming chienshien china_based china_daily china_national china
<table>
<thead>
<tr>
<th>Term</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>chinese_built</td>
<td>coconut_planters</td>
</tr>
<tr>
<td>chinese_made</td>
<td>code_named</td>
</tr>
<tr>
<td>chip_makers</td>
<td>coffee_growing</td>
</tr>
<tr>
<td>chloramphenicol_resistant</td>
<td>coffee-producing</td>
</tr>
<tr>
<td>chou_wiest</td>
<td>coin_operated</td>
</tr>
<tr>
<td>chris_craft</td>
<td>cold_rolled</td>
</tr>
<tr>
<td>chrysler_amc</td>
<td>cold_weather</td>
</tr>
<tr>
<td>chung_jung</td>
<td>colgate_palmoilive</td>
</tr>
<tr>
<td>cia_dia</td>
<td>colo_.</td>
</tr>
<tr>
<td>ciba_geigy</td>
<td>colombian_pipeline</td>
</tr>
<tr>
<td>cie_generale</td>
<td>colorado_springs</td>
</tr>
<tr>
<td>cincinnati_based</td>
<td>columbus_based</td>
</tr>
<tr>
<td>circuit_court_of_appeals</td>
<td>comdata_network</td>
</tr>
<tr>
<td>citgo_petroleum</td>
<td>come_back</td>
</tr>
<tr>
<td>citicorp_capital_investors</td>
<td>comment_on</td>
</tr>
<tr>
<td>city_resources</td>
<td>commerce_chemical</td>
</tr>
<tr>
<td>cjmf_fm</td>
<td>commerce_clearing_house</td>
</tr>
<tr>
<td>clark_equipment</td>
<td>commerce_commission</td>
</tr>
<tr>
<td>class_action</td>
<td>commerce_department</td>
</tr>
<tr>
<td>clayton_yeutter</td>
<td>commerce_secretary</td>
</tr>
<tr>
<td>clean_up</td>
<td>commerce_secretary_malcolm</td>
</tr>
<tr>
<td>cleveland_cliffs</td>
<td>commercial_bank</td>
</tr>
<tr>
<td>close_cooperation</td>
<td>commercial_banks</td>
</tr>
<tr>
<td>closely_held</td>
<td>commercial_workers</td>
</tr>
<tr>
<td>closely_knit</td>
<td>commerzbank_ag</td>
</tr>
<tr>
<td>closely_watched</td>
<td>commission_house_representatives</td>
</tr>
<tr>
<td>cms_energy</td>
<td>commission_president_jacques</td>
</tr>
<tr>
<td>cnt_per</td>
<td>commodity_chemical</td>
</tr>
<tr>
<td>co_backed</td>
<td>commodity_credit_corp</td>
</tr>
<tr>
<td>co_chairman</td>
<td>commodity_credit_corporation</td>
</tr>
<tr>
<td>co_development</td>
<td>commodity_exchange</td>
</tr>
<tr>
<td>co_financing</td>
<td>commodity_pact</td>
</tr>
<tr>
<td>co_inc</td>
<td>commodity_pacts</td>
</tr>
<tr>
<td>co_international</td>
<td>commodity_prices</td>
</tr>
<tr>
<td>co_led</td>
<td>common_equivalent</td>
</tr>
<tr>
<td>co_ltd</td>
<td>common_stock</td>
</tr>
<tr>
<td>co_op</td>
<td>community_wide</td>
</tr>
<tr>
<td>co_operate</td>
<td>compact_disc</td>
</tr>
<tr>
<td>co_operation</td>
<td>compagnie_francaise_des_petroles</td>
</tr>
<tr>
<td>co_operative</td>
<td>company_controlled</td>
</tr>
<tr>
<td>co_ops</td>
<td>company_owned</td>
</tr>
<tr>
<td>coordinate</td>
<td>company_petrobras</td>
</tr>
<tr>
<td>co_ordinating</td>
<td>company_petroleos</td>
</tr>
<tr>
<td>co_ordination</td>
<td>compaq_computer</td>
</tr>
<tr>
<td>co_owned</td>
<td>comparative_figures</td>
</tr>
<tr>
<td>co_partners</td>
<td>competitively_priced</td>
</tr>
<tr>
<td>co_responsibility</td>
<td>completes_acquisition</td>
</tr>
<tr>
<td>co_sponsor</td>
<td>completes_merger</td>
</tr>
<tr>
<td>co_sponsored</td>
<td>completes_purchase</td>
</tr>
<tr>
<td>co_steel</td>
<td>compounding_ratio</td>
</tr>
<tr>
<td>co_subsidiary</td>
<td>computer_aided</td>
</tr>
<tr>
<td>co_underwriters</td>
<td>computer_associates</td>
</tr>
<tr>
<td>coal_fired</td>
<td>computer_based</td>
</tr>
<tr>
<td>coarse_grain</td>
<td>computer_chip</td>
</tr>
<tr>
<td>coast_guard</td>
<td>computer_memories</td>
</tr>
<tr>
<td>coca_cola</td>
<td>computer_software</td>
</tr>
<tr>
<td>cocoa_exchange</td>
<td>computer_systems</td>
</tr>
</tbody>
</table>
APPENDIX B. A SAMPLE OF REUTERS-21578 TERMINOLOGY

B.1 Acquisition Terminology Ranked by PRC

- share
- said_it
- acquisition
- stake
- company
- offer
- merger
- acquire
- common
- corp
- group
- unit
- sell
- stock
- shareholder
- acquired
- buy
- outstanding
- transaction
- subsidiary
- mln_dlr
- cash
- common_stock
- complete
- bid
- tender_offer
- exchange_commission
- agree
- undisclosed
- purchase
- takeover
- investor
- sale
- subject
- asset
- disclose
- securities
- term
- management
- control
- agreement
- firm
- approval
- investment
- completes
- tender
- hold
- board
- filing
- cyclops
- division
- plc
- commission
- systems
- letter
- receive
- seek
- merge
- definitive
- gencorp
- companies
- intent
- usair
- buyout
- propose
- approve
- principle
- holdings
- sells
- signed
- industries
- business
- definitive_agreement
- deal
- buys
- financial
- twa
- proposal
- dixons
- affiliate
- director
- terminate
- chrysler
- partnership
- holding
- make
- announce
- financing
- merger_agreement
- purolator
- acquires
- court
- borg-warner
- plans
- international
- rights
- says_it
- allegheny
- air
- previously
B.2 Acquisition complex terms Ranked by \textit{PRC}

- said_it
- mln_drs
- common_stock
- tender_offer
- exchange_commission
- definitive_agreement
- merger_agreement
- says_it
- new_york
- be_acquired
- make_acquisition
- takeover_bid
- seek_control
- completes_acquisition
- investment_purposes
- loan_association
- first_boston
- merger_with
- general_partners
- talks_with
- usair_group
- merge_with
- dixons_group
- it_has
- los_angeles
- purolator_courier
- merger_talks
- june_29
- chief_executive_officer
- waste_management
- june_1
- caesars_world
- american_motors
- industrial_equity
- co_inc
- an_investor
- has_no
- regulatory_approvals
- mark_iv
- comment_on
- american_express
- wall_street
- crazy_eddie
- talks_on
- joint_venture
- june_19
- says_it_is
- rights_plan
- trans_world_airlines
- taft_broadcasting
- cable_television
- further_details
- supermarkets_general
- limited_partnership
- dome_petroleum
- first_federal
- makes_acquisition
- co_ltd
- department_of_transportation
- takes_over
- harcourt_brace_jovanovich
- life_insurance
- first_union
- nippon_life
- book_value
- newspaper_advertisement
- may_seek
- dirs_per
- piedmont Aviation
- shareholder_approval
- san_diego
- waiting_period
- due_diligence
- hanson_trust
- withdrawal_rights
- annual_meeting
- buys_stake
- chief_executive
- senior_management
- first_national
- dayton_hudson
- dart_group
- allied_stores
- brokerage_firm
- mts_acquisition
- san_miguel
- real_estate
- bond_corp
- co_subsidiary
- hong_kong
- open_market
- an_investor_group
- justice_department
- becor_western
- working_capital
- annual_revenues
- computer_memories
- merrill_lynch
- federal_court
- great_western
- dominion_textile
- voting_power
- new_york_stock_exchange
- comdata_network
- standard_oil
- boliden_ab
- june_30
<table>
<thead>
<tr>
<th>british_printing</th>
<th>fort_lauderdale</th>
</tr>
</thead>
<tbody>
<tr>
<td>voting_trust</td>
<td>financial_security</td>
</tr>
<tr>
<td>sells_unit</td>
<td>computer_associates</td>
</tr>
<tr>
<td>pc_acquisition</td>
<td>harcourt_brace</td>
</tr>
<tr>
<td>venture_capital</td>
<td>centrale_credit</td>
</tr>
<tr>
<td>cable_and_wireless</td>
<td>federal_trade_commission</td>
</tr>
<tr>
<td>hughes_tool</td>
<td>video_affiliates</td>
</tr>
<tr>
<td>federal_savings</td>
<td>national_distillers</td>
</tr>
<tr>
<td>completes_purchase</td>
<td>san_francisco</td>
</tr>
<tr>
<td>earlier_today</td>
<td>transcanada_pipelines</td>
</tr>
<tr>
<td>eastman_kodak</td>
<td>security_pacific</td>
</tr>
<tr>
<td>financial_services</td>
<td>consumer_products</td>
</tr>
<tr>
<td>irwin_jacobs</td>
<td>expiration_date</td>
</tr>
<tr>
<td>brierley_investments</td>
<td>renouf_corp</td>
</tr>
<tr>
<td>donald_trump</td>
<td>gabelli_group</td>
</tr>
<tr>
<td>shareholders_approve</td>
<td>firm_ups</td>
</tr>
<tr>
<td>row_publishers</td>
<td>edelman_group</td>
</tr>
<tr>
<td>shearson_lehman_brothers</td>
<td>systems_division</td>
</tr>
<tr>
<td>business_combination</td>
<td>approve_merge</td>
</tr>
<tr>
<td>investor_group</td>
<td>salt_lake_city</td>
</tr>
<tr>
<td>revlon_group</td>
<td>reed_international</td>
</tr>
<tr>
<td>nova_corp</td>
<td>ic_industries</td>
</tr>
<tr>
<td>risk_arbitrage</td>
<td>investor_asher_edelman</td>
</tr>
<tr>
<td>baker_international</td>
<td>registration_statement</td>
</tr>
<tr>
<td>entertainment_marketing</td>
<td>mario_gabelli</td>
</tr>
<tr>
<td>general_acquisition</td>
<td>financial_details</td>
</tr>
<tr>
<td>transportation_department</td>
<td>proxy_materials</td>
</tr>
<tr>
<td>minimum_number</td>
<td>communication_corp</td>
</tr>
<tr>
<td>hostile_tender</td>
<td>minority_stake</td>
</tr>
<tr>
<td>best_interests</td>
<td>american_security</td>
</tr>
<tr>
<td>national_bank</td>
<td>hanson_industries</td>
</tr>
<tr>
<td>lucky_stores</td>
<td>financial_group</td>
</tr>
<tr>
<td>ic_gas</td>
<td>union_pacific</td>
</tr>
<tr>
<td>majority_interest</td>
<td>year Ended</td>
</tr>
<tr>
<td>new_jersey</td>
<td>british_petroleum</td>
</tr>
<tr>
<td>standstill_agreement</td>
<td>texas_air</td>
</tr>
<tr>
<td>federal_home_loan_bank_board</td>
<td>drexel_burnham_lambert</td>
</tr>
<tr>
<td>consent_decree</td>
<td>poison_pill</td>
</tr>
<tr>
<td>certain_conditions</td>
<td>corporate_purposes</td>
</tr>
<tr>
<td>unit_sells</td>
<td>new_hampshire</td>
</tr>
<tr>
<td>industrial_products</td>
<td>patti_domm</td>
</tr>
<tr>
<td>same_price</td>
<td>certain_circumstances</td>
</tr>
<tr>
<td>merger_with_baker</td>
<td>march_30</td>
</tr>
<tr>
<td>electrospace_systems</td>
<td>fort_worth</td>
</tr>
<tr>
<td>preference_shares</td>
<td>shopping_centers</td>
</tr>
<tr>
<td>news_corp</td>
<td>exercise_price</td>
</tr>
<tr>
<td>williams_holdings</td>
<td>60_days</td>
</tr>
<tr>
<td>national_amusements</td>
<td>july_31</td>
</tr>
<tr>
<td>santa_fe</td>
<td>product_line</td>
</tr>
<tr>
<td>independent_directors</td>
<td>emery_air_freight</td>
</tr>
<tr>
<td>gates_learjet</td>
<td>corp_offers</td>
</tr>
<tr>
<td>general_electric</td>
<td>carl_icahn</td>
</tr>
<tr>
<td>private_placement</td>
<td>scandinavia_fund</td>
</tr>
<tr>
<td>martin_sosnoff</td>
<td>fairchild_semiconductor</td>
</tr>
<tr>
<td>june_2</td>
<td></td>
</tr>
<tr>
<td>financial_advisers</td>
<td></td>
</tr>
<tr>
<td>department_of_justice</td>
<td></td>
</tr>
</tbody>
</table>
Appendix C

A sample of Ohsumed Terminology

abnormal_blood
abnormal_blood_pressure
abnormal_findings
abnormal_gag_reflex
abnormal_groups
abnormal_heart
abnormal_heart_rate
abnormal_outcomes
abnormal_pulmonary_function
abnormal_regulation
absolute_incidence
absorption_process
acceptable_alternative
access_port
accurate_diagnosis
acid_administration
acid_antagonist
acid_aspiration
acid_composition
acid_concentrations
acid_load
acid_output
acid_sequence
acid_stone
acid_stones
action_potential_duration
acute_abdomen
acute_astrohma
acute_chest
acute_chest_pain
acute_effect
acute_ethanol
acute_ethanol_administration
acute_ethanol_exposure
acute_ethanol_intoxication
acute_gastroenteritis
acute_graft
acute_hepatitis
acute_illness
acute_illnesses
acute_intervention
acute_lung_injury
acute_phase
acute_rejection
acute_stage
acute_stroke
acute_water_intoxication
ad_hoc
addictive_disorder
additional_cases
additional_group
additional_information
additional_therapy
adequate_therapy
admission_test
adult_height
adverse_consequences
adverse_effect
adverse_effects
adverse_event
adverse_events
adverse_outcome
adverse_outcomes
adverse_reactions
adverse_side_effects
after_adjustment
age_35_years
age_55
age_60_years
age_65
age_65_years
age_children
age_group
age_groups

XIII
APPENDIX C. A SAMPLE OF OHSUMED TERMINOLOGY

age_range
aged_12
aged_35
aged_35_years
aged_40
aged_40_years
aged_50
aged_50_years
aged_65_years
aged_70_years
aged_75
ages_ranged
ages_ranging
aggressive_therapy
agricultural_trauma
air_leaks
air_space_volume
air_spaces
alcohol_abuse
alcohol_consumption
alcohol_dependence
alcohol_intake
alcohol_use
alcohol_withdrawal
alcoholic_beverage
alcoholic_hepatitis
alien_hand
alone_group
alpha_chain
alternative_methods
ambulance_staff
animal_model
animal_models
annual_incidence
annual_mortality_rate
anticoagulant_group
appropriate_methods
appropriate_therapy
appropriate_treatment
appropriate_use
arch_obstruction
artery_flow
artery_obstruction
artificial_heart
as_part
as_well_as
asbestos_bodies
aspirin_325
assist_device
asthma_attacks
asthma_severity
asthma_symptoms
attack_rates
attending_physicians
atypical_transformation_zone
average_age
average_annual_incidence
average_duration
average_time
back_pain
balloon_catheter
balloon_inflation
barrel_field
base_pairs
base_station
base_station_physician
basic_drive
basic_forms
basic_protein
bearing_mice
behavior_problems
beige_mice
beneficial_effect
beneficial_effects
benign_breast
benign_condition
benign_course
benign_diseases
benign_structures
beta_cell
beta_cells
beta_chain
beta_degrees
beta_gene_expression
beta_production
better_control
better_delivery
better_predictor
better_prognosis
better_understanding
bicycle_exercise
bilateral_disease
bilateral_total_knee
bilateral_vocal_cord_paralysis
binding_domain
binding_properties
binding_protein
binding_proteins
binding_sites
birth_weight
black_women
bladder_cancer
bladder_capacity
bladder_compliance
bladder_function
bladder_neck
bladder_outflow
bladder_outlet
bladder_tumor
bladder_wall
bleeding_complications
bleeding_episodes
bleeding_risk
bleeding_tendency
bleeding_time
blind_design
blind_fashion
blind_trial
blocking_agents
blocking_effect
blocking_factor
blood_alcohol
blood_alcohol_concentration
blood_cell
blood_cell_count
blood_cells
blood_conservation
blood_culture
blood_culture_bottle
blood_culture_bottles
blood_cultures
blood_donation
blood_donors
blood_flow
blood_gas
blood_gas_analysis
blood_gases
blood_loss
blood_pressure
blood_pressure_readings
blood_products
blood_requirement
blood_sample
blood_samples
blood_sampling
blood_stages
blood_supply
blood_tests
blood_transfusion
blood_urea
blood_urea_nitrogen
blood_vessel
blood_vessels
blood_volume
blot_analysis
blunt_chest-trauma
blunt_trauma
body_fat_distribution
body_mass
body_mass_index
body_size
body_surface
body_surface_areas
body_surfaces
body_temperature
body_weight
bone_abnormalities
bone_defects
bone_density
bone_formation
bone_gap
bone_growth
bone_loss
bone_mass
bone_mineral
bone_mineral_content
bone_mineral_density
bone_mineral_status
bone_screws
border_zone
brain_areas
brainBarrier
brain_damage
brain_excitability
brain_stem
brain_tissue
brain_water
brain_water_content
breast_cancer
breast_conservation_surgery
breast_infection
breast_milk
breast_preservation
breast_tissue
breath_hydrogen
breath_test
breathing_contROLS
breathing_pattern
broad_spectrum
brown_product
burn_wound
burst_suppression
by_means_of
bypass_procedures
bypass_surgery
calcium_absorption
calcium_antagonist
calcium_antagonists
calcium_channel
calcium_channel_blockade
calcium_deposition
calcium_entry
calcium_flux_responses
calcium_handling
calcium_intake
calcium_release
calcium_salt
calcium_transport
cancer_cell_lines
cancer_fear
cancer_mortality
cancer_pain
carbon_dioxide
carbon_dioxide_laser
carbon_dioxide_pressure
carbon_dioxide_tension
cardiac_chamber
cardiac_complications
C.1 Cardiovascular disease complex terms ranked by PRC

blood_pressure
coronary_artery_disease
heart_failure
coronary_artery
heart_rate
coronary_heart_disease
coronary_arteries
converting_enzyme
wall_motion
chronic_heart_failure
cardiac_index
heart_disease
calcium_agonists
cardiac_output
cycle_length
segment_depression
wall_motion_abnormalities
calcium_channel
outflow_tract
total_cholesterol
coronary_artery_bypass
blood_flow
sudden_death
cardiac_cycle
pulmonary_artery
stroke_work
cardiac_events
peak_exercise
resistance_vessels
cardiac_performance
assist_device
balloon_inflation
peripheral_resistance
low_sodium
rate_pressure_product
density_cholesterol
regional_wall_motion
severe_coronary_artery
smooth_muscle_cells
defect_size
sudden_cardiac_death
bicycle_exercise
continuity_equation
chronic_coronary_artery_disease
balloon_catheter
cardiac_function
sympathetic_activity
standard_balloon
coronary_circulation
exercise_capacity
three_vessel
201_imaging
chest_dogs
pulmonary_congestion
switch_operation
salt_diet
oxygen_demand
bypass_surgery
border_zone
collateral_circulation
pulmonary_artery_wedge
pulmonary_artery_pressure
exercise_tolerance
end_points
sympathetic_nerve_activity
sodium_diet
calcium_channel_blockade
potential_importance
blood_pressure_readings
regional_wall_motion_abnormalities
energy_phosphate
human_arteries
work_load
deep_vein
severe_heart
late_death
life_support
standard_error
great_vessels
coronary_flow_reserve
flow_properties
primary_prevention
conventional_balloon
cardiac_rehabilitation
positive_exercise_test
calcium_handling
calcium_entry
quantitative_analysis
heart_attack
elective_coronary_artery_bypass
primary_success
wall_shear
low_density_cholesterol
regional_segments
age_55
dynamic_exercise
lowering_effect
basic_drive
calcium_agonist
adverse_side_effects
risk_profile
sudden_deaths
driving_pressure
temporal_artery
mechanical_properties
Appendix D

A sample of ANSA Terminology

abolizione_di_reato
accertamento_da_parte_di_carabiniere
accoglienza_la_badessa
accordio_di_pace
accordo_polo
acqua_di_pacifico
acquaviva_delle_fonti
acquisto_di_massimiliano_cappioli
ad_eccezione_di
ad_esempio
ad_uso
aeroporto_militare
affare_costituzionale
affare_crespo
affermaazione_di_centro
affetto_da_malattia
affollamento_di_carcere
agenzte_di_questura
agenzia_dpa
agevolazione_concesso_supero
aggiunto_amato
agip_petrol
agricoltura_alfonso_pecoraro
ai_sensi_di
aiuto_ammissibile_in_zona
al_centro_di
al_dettaglio
al_minuto
al_momento_di
alba_adriatica
albano_laziale
albissola_marina
albissola_superiore
all_estero
all_ingresso
all_portata_di
alla_stregua_di
allargamento_di_unione
allarme_terroismo
alleanza_con_bossi
alleanza_nazionale
alleato_bossi
aloisi_de_larderel
altezza_di_localita
altilla_di_santa_severina
altipiani_di_arcinazzo
amarezza_di_papa
ambasciatore_marco
america_del_nord
america_del_sud
american_cyanamid
american_express
american_home_products
ammesso_che
amministratore_delegato
amministratore_locale
amministratore_regionale
amministrazione_clinton
amministrazione_comunale
ammonito_clinton
ammortamento_di_titolo_di_stato
ampliamento_di_impianto
analista_finanziaria
anche_quando
anche_se
ancor_piu
annunci_da_zurigo
annullamento_di_visita_di_khatami
andamento_di_economia
anno_cinquant
anno_consecutivo
apparecchiatura_elettronico
apertura_di_inchiiesta
XVII
APPENDIX D. A SAMPLE OF ANSA TERMINOLOGY

appello_di_papa
appiano_gentile
applicazione_di_riforma
appuntamento_sportivo
archivio_di_tradizione_oriale
arcinazzo_roman
arco_alpino
area_christian
area_continuo
area_generale
arena_deieme_in_bo
argentino_ral_gimnez
arma_automatico
arma_da_fuoco
arrivo_di_nona_prova
artigiano_pubblico
artista_contemporaneo
ascoli_piceno
asian_development_bank
aspetto_umano
asse_francia
assegnazione_di_mondiali
assemblea_di_socio
assessorato_regionale
assessorare_andrea
assicurazione_di_`
responsabilita'_civile
assistenza_sanitario
associazione_marco
assunzione_di_nuovo_personale
astensione_di_neozelandese
at_&_t
atollo_kwajalein
attaccante_brasiliano
attacco_sinistro
attorraggio_morbido_di_crescita
attesa_di_analista
attesa_di_grudizio
attivita'_culturale
atto_a
audizione_ministro
audizione_su_dpef
aula_consiliare
aumento_di_prezzo
aumento_di_tasso
auto_contenuto_in_pacchetto
autonoma'antitrust
autoveicolo_volkswagen
avanzo_per oggetto
avventura_di_superman
avventura_europeo
avversario_politico
avvio_di_procedura
avvocato_defensore
azienda_americana
azienda_di_scarpa_sportivo
azione_ordinario
azione_usa
azione_stabile
azzano_decimo
baco_di_millennio
bagni_di_tivoli
banca_agraicola
banca_antoniana
banca_centrale
banca_commerciale
banca_d'affle
banca_nazionale
banca_popolare
banco_santander
barile_di_greggio
basco_di_ita
base_aereo_di_vandenberg
baselga_di_pine'
bastia_umbra
battuto_in_finale
belga_frank
bella_cosa_di_mondo
bella_jordan
bene_culturale
bene_immobile
bene_mobile
beverly_hills
bianca_d'_epoca
bilancio_agricolo_europeo
bilancio_di_vittima
bill_clinton
bisogno_di_sicurezza
blocco_di_tariffa_rc
bolognese_alfre_gigli
bordo_di_auto
borgo_valguarna
borsa_di_hong_kong
bosco_bruciato
bottiglia_di_birra
bozza_di_protocollo
braccio_destro
brasiliano_alex
brindisi_di_montagna
british_airways
british_petroleum
brokeraggio_assiprogetti
buenos_aires
busetto_palizzolo
busto_arrazio
c.._r..
cable_and_wireless
cagnano_varano
calcio_marco
calo_di_prezzo_di_greggio
cambio_a_favore_di_destra
cambio_di_autorizzazione
camera_alto
camera_di_commercio
APPENDIX D. A SAMPLE OF ANSA TERMINOLOGY

colore_di_medioevo
colosso_francaese
colpo_d’arma_da_fuoco
comandante_di_forza
comando_provinoicale
come_se
comitato_irvin
comercializzazione_di_
prodotto_assicurativo
commercio_estero_pascal
commesso_reato_in_italia
commissario_schreyer
commissione_affari_costituzionali
compagnia_aereo
compagnia_assicurativo
compagnio_di_squadra
compag_computer
compensazione_di_imposta
competenza_politica
compito_di_indirizzo_politico
complesso_di_intervento
compleanno_di_giancarlo_menotti
complezzo_di_materiale
componente_di_esecutivo_di_fifa
comunicato_di_ufficio_stampa
con_esclusione_di
con_riferimento_a
concerto_di_gruppo
concessionario_d’auto
concessione_di_credito
concessione_umts
conclusione_di_giornata_di
_contrattazione
concorrenza_mario_monti
concorso_di_bellezza
condanna_di_volkswagen_da
_parte_di_corte
condizione_atmosferico
condizione_generale
conferenza_james
conferimento_di_laurea
conflitto_di_interesse
conforme_a
confronto_fra_roma
congelamento_di_tariffa_di_con-
tratto
congresso_nazionale
coniughe_lo_monaco
connesso_con
conquista_roma
conseguenza_di_premessa
conserve_italia
considerato_che
Appendix E

Questions on the Reuters-21578 corpus

What did the Champion Products Inc approve related to the shares?
What produces the swing in operating results?
What a large trade deficit with the U.S. can determine?
What did the SEC decide on future charges?
Which strategy aimed activities on core businesses?
What was a weakening Dollar responsible for?
How is the benefit of using the bank’s international operations?
How does the continued growth in consumed lending affect the market?
What would impact the cost sharing for the research and development on the market?
What revenues does the records conversion work produce?
How does the higher earnings from the bank’s own account contribute to record profits?
What do the analysts think about the repurchase program?
How do oil prices and the weak dollar affect the stock prices?
How could the transpacific telephone cable between the U.S. and Japan contribute to forming a join venture?
What solutions are available for the institutional debt?
What is the impact of West German competitors on the car market?
What has the Federal Communications Commission ordered about phone tariff?
What will be the Commerce Bank behavior with respect to market uncertainties?
How do the severe weather conditions impact on costs?
Which recapitalization plan included asset sales and equity offering parts?
What does the lowering of refining and sales profit margin determine?
What are the claims generated from personal auto insurance and the volatile commercial liability coverages?
Who required changes on the long-distance market laws?
What was the most significant factor for the lack of the distribution of the asset?
How do analysts think about public companies?
Which are the European companies interested in buying in the U.S.?
Why American Express remained silent?
What would happen if American Express reduced its exposure to the brokerage?
What is Shearson studying to access capital?
What is Ropak considering in order to acquire Buckhorn?
What do Japan Fund Inc and Sterling Grace Capital Management want to buy?
What economical advantages do the gold mining companies in Brazil provide?
Which companies have extended the deadline for accepting shares?
Who wanted to avoid any attack on the heart of its business empire?
What rumors circulated on Wall Street?
Why is the acquisition of a pharmaceutical too expensive?
How does an independent public company reflect on shareholders?
How is south Africa situation impacting on local companies?
Who was causing harm to the companies?
Who is planning to testify at the Senate hearing against raiders?
What industry is an attractive investment opportunity for Japanese corporations?
Why all risks have to be registered in a commission?
Where does American Nutrition operate?
Which company is subject to the boards of First Southern and Victor and regulatory agencies?
What is Kuwait known for?
What are European companies interested in buying in the U.S.?
Where do European companies acquire energy?
What is Washington considering for energy export?
What did the Director General say about the energy floating production plants?
What February production did energy commission indicate?
Why did the Reagan administration consider the export of oil to the Soviet Union?
How much oil was produced during the test in SOUTH AFRICA?
Why did Turkish Prime Minister intimate the stop of Greece drilling activities?
Where is Petro-Canada proposing a development for a drilling plant?
What is the opinion of Pickens about domestic energy?
Why are the major drilling companies exploring overseas?
Where is Ecuador Deputy Minister looking for energy help?
How much do buyers of U.S. pay for oil acquisition?
What do buyers say about oil location?
What did Grisanti approve in the assembly?
What are the recorded expected earning of USX?
What supply does Venezuela give to another oil producer?
How many Japanese companies will acquire Iranian oil?
What did Silas say about the development of oil and gas company of Phillips?
What did Brazil’s seafarers want?
Why was the port of Philadelphia closed?
What ship will be built for the Canadian coast guard?
How many vessels will the United States Lines provide?
Why do certain exporters fear that China may renounce its contract?
How is Kenya establishing a shipping line?
Why is Taiwan planning a joint production agreement with Japan?
What is needed for reaching a Soviet Baltic port?
What conditions halted shipping?
When did the strikes start in the ship sector?
What causes the limited shipping restrictions for the rivers?
Why is the shipping moving in the narrow Bosphorus?
Who attacked the Saudi Arabian supertanker in the United Arab Emirates sea?
Why is the entire Seaway already free of ice?
What was reported about movements in Harbour port?
Why did men in port’s grain sector stop work?
How much will the Port of Singapore Authority spend?
What will the Asia Port project offer?
What was the position of the Reagan administration related to the Soviet Union?
Which anti-inflation plan made worsened the economical situation after one year?
What is the government planning to prevent the current account surplus from rising quickly?
How did the trade surplus and the reserves weaken Taiwan’s position?
Why did Canadian negotiators open talks last summer?
What did Canadians learn about their domestic market?
What is the economic status of French Market?
Why is the French economy not well-adapted to demand?
What will happen to the Trading houses without a MITI export license?
Why is it important that the U.S. Market reduce the Chinese restrictions?
What is the Reagan Administration doing to obtain Japanese cooperation?
Which trade measure is the U.S. Senate Agriculture Committee considering?
What are Spain’s plans for reaching European Community export level?
Why could China impact potential export markets and generate potential competition for U.S. industries?
What the Paris agreements called?
What is the cause for the Japanese surplus reduction?
What is necessary for resolving the subsidy problem?
Why could the benefits of the U.S. be smaller than those of Canada?
What did the South Korea’s do to reduce its debit with the United States?
What were the reasons for the U.S. deficit?
Bibliography

