
Automatic Text Categorization

from Information Retrieval to Support Vector Learning

A text book for courses in

Computer Science and Computational Linguistics

by

Roberto Basili and Alessandro Moschitti

October 30, 2005

University of Rome

Tor Vergata

Preface

In the Summer of 2001, at the International Joint Conference on Artificial In-

telligence held in Seattle, we presented a text categorization system based on

an extension of the empirical approach known as ”Rocchio” classifier, fully

inspired by the Information Retrieval literature. At that time, Rocchio seemed

to represent the best choice for our research projects (categorization of doc-

uments from major news agencies, e.g. Reuters and Ansa) given its computa-

tional advantages, i.e. very fast learning and classification run time and its

reasonable accuracy.

The Rocchio text classifier derives category profiles (e.g. foreign politics

or sports) from a representation of the data in a metric space. Such profile

building is the actual Rocchio training and relates to the extraction of statisti-

cal properties from a vast number of examples of already classified documents.

Once profiles are derived, the classification of an incoming news item d is re-

duced to the process of computing the ”similarity” of the vector representing

d and the vector expressing the profile of a target class: when these vectors

are enough ”close” each other the system will accept d as a correct member

of the class, otherwise d is judged to not belong to such class. In principle, the

larger the set of the ”training” examples is, the more accurate the categoriza-

tion results are.

The major problem of the Rocchio approach is its weakness in producing

accurate profiles. The two most important reasons are the following. First,

there is no principled way to decide which examples are more important (and

how) for the induction of the classification function (i.e. to determine the

”closeness” property). Second, no method is available to determine how many

examples are needed to reach a given (and possibly required) categorization

accuracy. The area in which the two above problems are studied is the Sta-

tistical Learning Theory which aims to characterize example-driven learning

tasks by determining their feasibility, inherent complexity, convergence criteria

and expected error rate. When faced with realistic problems (e.g. automatic

categorization systems for news agencies, digital libraries or other Web appli-

cations) the above pieces of information are relevant as they critically impact

on the engineering choices of the system.

Such theory is also critical for the design of modern Natural Language and

Text Processing applications as it provides analytical techniques that are es-

sential to study problems related to coverage, accuracy, robustness and porta-

bility of automatic systems. Activities like data collection, manual annotation

and induction of linguistic resources have become essential in the design of

any Natural Language application since late ’80. Nevertheless, the character-

ization of such learning tasks is still problematic. Questions like ”How many

examples do I need to train my system?”, ”Which features are important for

my learning task?”, ”How do I have to annotate my data?” receive different,

competing and often diverging answers in the scientific literature. Moreover,

the extremely interdisciplinary nature of the area does not help: linguists are

usually not able to figure out how to make use of (or to give computational

sense to) their insights on data whereas engineers may collect huge data sets

but have not enough insights to make the best use of them.

Any scholar in Artificial Intelligence, Natural Language Processing, In-

formation Retrieval, Computational Linguistics as well as Computer Science,

in general, has an inherent interest into the theoretical and methodological

results in Statistical Classification. Indeed, such results can be exploited to

effectively design a quite large number of different applications ranging from

Document Categorization, Spam Filtering to Part-Of-Speech Tagging, Word

Sense Disambiguation, Question Answering, Syntactic Parsing and Semantic

Role Labeling. This book tries to provide the basic notions of the statistical

learning theory and its application to Text Categorization with a specific em-

phasis on engineering perspectives and principles of best practice valid for

real scenario applications.

We think that Automatic Text Categorization is a prototypical problem for

several other NLP tasks, thus we hope that the collection of ideas and the

empirical evidence discussed in this book (originated by several years of re-

search) will be a useful guide to heterogeneous student communities (e.g. com-

puter science as well as computational linguistics). Although most of the ques-

tions on learnability of linguistic phenomena will still remain unanswered after

reading this book, some of the results discussed here (i.e. successes and de-

feats) are strongly connected to many general natural language applications.

Hence this book may serve as a guide for the problem solutions of innovative

and complex natural language systems.

Roberto Basili and Alessandro Moschitti

Roma. October, 30th 2005

Contents

1 Introduction 1

1.1 Designing a Text Classifier 4

1.2 Machine Learning Approaches to Text Categorization 7

1.3 Book Outline . 10

2 Statistical Machine Learning 13

2.1 What is Machine Learning? 13

2.1.1 Decision Trees . 15

2.1.2 Naive Bayes . 17

2.2 PAC Learning . 20

2.2.1 Formal PAC definition 21

2.2.2 An Example of PAC Learnable Functions 22

2.2.3 The VC-dimension 25

2.3 The Support Vector Machines 30

2.3.1 Perceptrons . 31

2.3.2 Maximal Margin Classifier 37

2.3.3 Soft Margin Support Vector Machines 45

2.4 Kernel Methods . 49

2.4.1 The Kernel Trick . 51

2.4.2 Polynomial Kernel 53

2.4.3 String Kernel . 55

2.4.4 Lexical Kernel . 58

2.5 Tree Kernel Spaces . 59

2.5.1 SubTree, SubSet Tree and Partial Tree Kernels 61

2.5.2 The Kernel Functions 62

2.5.3 A Fast Tree Kernel Computation 65

2.6 Conclusions . 66

7

3 Automated Text Categorization 67

3.1 Document Preprocessing . 68

3.1.1 Corpora . 68

3.1.2 Tokenization, Stoplist and Stemming 71

3.1.3 Feature Selection . 72

3.2 Weighting Schemes . 74

3.2.1 Document Weighting 75

3.2.2 Profile Weighting . 77

3.3 Modeling Similarity in Profile-based Text Classification 78

3.3.1 Similarity based on Logistic Regression 79

3.3.2 Similarity over differences: Relative Difference Scores 80

3.4 Inference Policy and Accuracy Measures 81

3.4.1 Inference Policy . 82

3.4.2 Accuracy Measurements 83

3.5 The Parameterized Rocchio Classifier 85

3.5.1 Search Space of Rocchio Parameters 86

3.5.2 Procedure for Parameter Estimation 89

3.6 Performance Evaluations: PRC, Rocchio and SV Ms 90

3.6.1 Relationship between Accuracy and ρ Values 92

3.6.2 Performance Evaluation on the Reuters fixed Test Set . 94

3.6.3 Cross Evaluation and the n-fold Approach 95

3.6.4 PRC Complexity 100

3.7 Conclusions . 102

4 Advanced Topics in Text Categorization 103

4.1 Advanced Document Representations 104

4.1.1 Results of Advanced Representations for Document

Retrieval . 105

4.1.2 Natural Language Processing for Text Categorization . 107

4.1.3 Results in Text Categorization 109

4.2 Some Advanced Applications of Text Categorization 114

4.2.1 Information Extraction 115

4.2.2 Question/Answering 117

4.2.3 Text Summarization 118

4.3 Conclusions . 120

Appendix

A Notation I

B Basic Geometry and Algebraic Concepts III

B.1 Vector Spaces . III

B.2 Matrixes . VI

References VII

List of Figures

2.1 Polynomial interpolation of as set of points <xi, yi>. 14

2.2 Decision tree generated for the classification task of two em-

ployee levels. 16

2.3 The medium-built person concept on a Cartesian chart. 23

2.4 Probabilities of bad and good hypotheses. 24

2.5 VC dimension of lines in a bidimensionale space. 27

2.6 VC dimension of (axis aligned) rectangles. 28

2.7 An animal neuron. 32

2.8 An artificial neuron. 32

2.9 Separating hyperplane and geometric margin. 33

2.10 Perceptron algorithm process. 35

2.11 Geometric margins of two points (part A) and margin of the

hyperplane (part B). 38

2.12 Margins of two hyperplanes. 39

2.13 Margins of two hyperplanes. 39

2.14 Soft Margin Hyperplane. 46

2.15 Soft Margin vs. Hard Margin hyperplanes. 47

2.16 A mapping φ which makes separable the initial data points. . . 49

2.17 A syntactic parse tree. 60

2.18 A syntactic parse tree with its SubTrees (STs). 60

2.19 A tree with some of its SubSet Trees (SSTs). 61

2.20 A tree with some of its Partial Trees (PTs). 61

3.1 BEP of the Rocchio classifier according to different ρ values

for Acq, Earn and Grain classes of the Reuters Corpus. 92

3.2 BEP of the Rocchio classifier according to different ρ values

for Trade, Interest, and Money Supply classes of the Reuters

Corpus. 93

11

3.3 BEP of the Rocchio classifier according to different ρ values

for Reserves, Rubber and Dlr classes of the Reuters Corpus. . 93

List of Tables

1.1 Breakeven points of widely known classifiers on Reuters corpus 10

2.1 Probability distribution of sneeze, cough and fever features

inside the Allergy, Cold and Well categories. 19

2.2 Rosenblatts perceptron algorithm. 34

2.3 Dual perceptron algorithm. 37

2.4 Pseudo-code for Fast Tree Kernel (FTK) evaluation. 65

3.1 Description of some Reuters categories 70

3.2 Description of some Ohsumed categories 70

3.3 Scores for a simple Classification Inference case 81

3.4 Rocchio parameter estimation. 89

3.5 Mean, Standard Deviation and Median of ρ values estimated

from samples. 96

3.6 The Rocchio f1 and µf1 performance on the Reuters corpus.

RTS is the Reuters fixed test set while TSj indicates the eval-

uation over 20 random samples. 98

3.7 f1 and µf1 of PRC and SV Ms on the Reuters corpus. RTS
is the Reuters fixed test set while TSj indicates the evaluation

over 20 random samples. 99

3.8 Performance Comparisons among Rocchio, SV Ms and PRC
on Ohsumed corpus. 99

3.9 Performance comparisons between Rocchio and PRC on ANSA

corpus . 100

4.1 Example of an Information Extraction template applied to Reuters

news from the Acquisition category. 116

13

Chapter 1

Introduction

The success of modern Information Technologies and Web-based services crit-

ically relates to the access, selection and managing of large amounts of infor-

mation usually expressed as textual data. Among the others the Information

Retrieval (IR) research has studied and modeled methodology to organize and

retrieve targeted data from large collection of unstructured documents.

Mainly, IR provides two facilities for the access to the target information:

query based and category browsing. The former has originated search engines

like Google or Altavista whereas an example of the latter, can be observed

in the category hierarchy of Yahoo, e.g., Arts, Business, Computers, Culture,

Education, Entertainment, Health, News, Science and so on. Users can more

easily browse the set of documents of their own interests by firstly selecting the

category of interest. Additionally, users can specify their information needs by

means of a selection of basic categories so that sophisticated IR models can

automatically author to them the pertinent documents, i.e. documents which

belong to such categories.

The large amount of documents involved in the above processes requires

the design of systems that automatically assign category labels to the docu-

ments. In the last years, a large variety of models and approaches have been

proposed for such task. As a consequence a subarea of IR called automated

Text Categorization (TC) has emerged. Usually, TC is based on Machine

Learning and statistical techniques inherited from the IR studies. Such meth-

ods are applied to a set of documents, manually assigned to the target cate-

gories (training set), to automatically learn the target classification function.

Learning algorithms attempt to derive statistical properties from the doc-

1

2 Chapter 1. Introduction

uments of a target category that are not held by the documents of the other

categories. Such properties are then used at classification time to decide the

document class. To allow the learning algorithm to successfully carry out such

task, we need to provide it with document representations from which inter-

esting properties can be extracted. For example, if we represent documents

with the number of vowel types which are present in them, most likely, the

algorithm will not extract properties able to distinguish between Sport and

Medicine. On the contrary, the set of document words seems to be sufficient to

achieve accurate representations.

Such representation is very common in IR and it is often referred to as bag-

of-words as documents are encoded as simple multisets of words neglecting

important linguistic aspect of natural language like morphological, syntactic

and semantic structures. Nevertheless, this approach has shown high accu-

racy in automated classification, usually provided by the percentage of correct

assignments within a set of documents not used for training, i.e. the test set.

Correctly measuring the accuracy of a classification system has become a

crucial issue as some specific sectors, ranging from changes in management

positions to business intelligence or information about terrorist acts, strongly

relate on precise selection of the targeted data. Such necessity has produced

more and more accurate TC learning models by studying two strategies: (a)

improving categorization algorithms by using several theoretical learning mod-

els (e.g., [Joachims, 1998; Yang, 1999; Tzeras and Artman, 1993; Cohen and

Singer, 1999; Salton and Buckley, 1988; Ng et al., 1997; Moulinier et al., 1996;

Apté et al., 1994; Quinlan, 1986; Hull, 1994; Schütze et al., 1995; Wiener et

al., 1995; Dagan et al., 1997; Lewis et al., 1996; Ittner et al., 1995]) and (b)

designing document representations more sophisticated than bag-of-words.

Unfortunately, complex learning algorithms often show a high time com-

plexity for both training and classification. This makes difficult the adoption

of such algorithms for operational scenarios, where the number of instances

is very large. For instance, web applications require effective data organiza-

tion and efficient retrieval as for huge and growing amount of documents. To

govern such complexity, the current trend is the design of efficient TC ap-

proaches [Lewis and Sebastiani, 2001]. A careful analysis of the literature re-

veals that linear classifiers are the most (computationally) efficient models [Se-

bastiani, 2002]. These are based on a vector representation of both documents

and categories by means of feature weights derived via different approaches

[Hull, 1994; Schütze et al., 1995; Wiener et al., 1995; Dagan et al., 1997;

3

Lewis et al., 1996; Cohen and Singer, 1999]. The decision if a document be-

longs or not to a category is then made measuring the similarity between the

target vector pair (i.e., document and category).

Among others there are two linear classifiers which are the most represen-

tative of text categorization literature: Rocchio’s text classifier [Rocchio, 1971]

and Support Vector Machines (SV Ms) [Joachims, 1999]. The former has ori-

gins in the IR literature, is one of the most computationally efficient classifier

in both training and classification phases, is based on a heuristic derived from

the experience in document retrieval and has been using since the early age

of IR to take into account of the user feedback in search engine queries. The

latter embodies the latest results in statistical learning theory [Vapnik, 1995],

is considered one of the most accurate classifier and shows several important

properties such (1) the ability to work in very high dimensional spaces and (2)

the possibility via kernel functions to learn non-linear models.

With the same aim of improving accuracy of text classifier several re-

searches on the use of a richer document representation have been carried out.

Linguistic structures [Voorhees, 1993; Strzalkowski and Jones, 1996] could

embed more information than the simple words which helps TC systems to

learn the differences among different categories. Typical structures experi-

mented in IR are complex nominals, subject-verb-object relations and word

senses. This latter, is particularly useful in representing the document content

unambiguously. For example the slide as transparency for projectors and the

slide as sloping chute for children are the same words whereas the meaning

is completely different. Such richer representations, are usually extracted by

applying some automatic Natural Language Processing (NLP) techniques, but,

at the moment they have failed to improve TC.

Although we are not able to design richer linguistic structures to improve

TC systems. The current machine learning models based on bag-of-words

are enough accurate and efficient to be applied to real scenario applications.

Among other, Information Extraction (IE), Question/Answering (Q/A) and

Text Summarization (TS) are useful applications that can be improved by the

use of TC. TC can help in locating specific documents within a huge search

space (localization) while IE or Q/A support the focusing on specific informa-

tion within a document (extraction or explanation). Text classifiers provide for

each document a set of categories that indicate what the main subjects of the

documents are. For instance, text classifiers can assign categories to small texts

also, e.g., paragraphs or passages. This knowledge can be exploited by IE, Q/A

4 Chapter 1. Introduction

and TS systems to respectively extract the events of a certain type, choose the

answers related to the target subject or select the important passages related to

a specific domain.

The many potential application fields for which TC may be successfully

applied have aroused the interest in defining a methodology for TC system

design. Indeed, there are a set of commonly recognized steps that should be

applied to obtain an accurate TC system. The next section introduces such

techniques.

1.1 Designing a Text Classifier

The design of generic text classifiers includes a set of steps universally rec-

ognized by the research community. We will briefly summarize them in the

following by postponing to Chapter 3 their in depth discussion:

• Features design, where the following pre-processing steps are carried

out:

– Corpus processing: filtering and formatting of all the corpus doc-

uments.

– Extraction of relevant information: a stop list is applied to elimi-

nate function words (that exhibit similar frequencies over all classes)

and the interesting linguistic information is extracted. The usual

approaches use words as basic units of information but more com-

plex features may be built, e.g. structured patterns like syntagmatic

expressions or word senses.

– Normalization: word stemming, carried out by removing com-

mon suffixes from words (words after stemming are usually called

stems.). This is a classical method to approximate a conceptual

representation, e.g. the acquire concept can also be expressed as

acquisition and acquires. When more complex features are de-

rived via linguistic analysis (i.e. words and/or complex nominals),

normalization usually refers to the lemmatization process (i.e. de-

tection of the base form of rich morphological categories such as

nouns or verbs1)

1Notice that this is very important for languages with a rich generative morphology where

even hundreds of different forms can be derived from the same root.

1.1. Designing a Text Classifier 5

– Feature selection, which is an attempt to remove non-informative

features from documents to improve categorization accuracy and

reduce computational complexity. Typical selection criteria are

based on statistical quantities like Chi Square, Mutual Information

or document frequency.

• Feature Weighting: features usually assume different roles in differ-

ent documents, i.e. they can be more or less representative. Different

weights are associated with features via different and possibly diverging

models.

• Similarity estimation which is modeled via operations in feature spaces.

This can be carried out between pairs of documents or between two more

complex feature groups (e.g. profiles which are the combination of fea-

tures coming from different representative documents). Such estimation

is typically adopted with quantitative models.

• Application of a machine learning model: once the similarity estimation

has been defined in most of the cases the target machine learning algo-

rithm can be applied. In this phase, a set of training documents whose

correct classifications are known is needed. The output of the learning

phase is a model of one or more categories.

• Inference: the similarity (or the membership function) between docu-

ments and category models is used to make classification decisions. The

assignment of an incoming document to a target class is based on a de-

cision function over the similarity scores. Different criteria (i.e. purely

heuristics or probability-driven rules) are used in this task.

• Testing: the accuracy of the classifier is evaluated by using a set of pre-

labeled documents (i.e. test set) which are not used in the learning phase

(training set). The labels produced by the target classifier are compared

to those from the gold standard. The result of this phase is usually one or

more numerical values which provide a measure of the distance between

the human classifications (i.e. the Gold Standard classifications) and the

target automatic classifier.

It should be pointed out that there are two types of classifiers: those that

can make decisions over a set of categories (multiclassifiers) by outputting a set

of category labels and those that can only decide if a document belongs or not

6 Chapter 1. Introduction

to a target category (binary classifiers). By training a binary classifier for each

category, we can design a multiclassifier. A binary classifier can be trained by

separating the corpus documents in two different sets: (1) the positive docu-

ments that are categorized in the target class and (2) the negative documents

that are not categorized in it. To classify a new document, it is enough to apply

the pool of binary classifiers and collect their decisions.

Such approach is usually applied to profile-based classifiers since they in-

herently express binary decisions. They describe each target class (Ci) in terms

of a profile, i.e. a vector of weighted features. Such vector is extracted from

documents previously categorized under Ci (training set). The classification

phase is accomplished by evaluating the similarity between an incoming doc-

ument d and the different profiles (one for each class).

More in detail, to design Profile-based classifiers, we apply phases which

are slightly different from the previous design steps:

• Features Weighting for documents and profiles:

– A representation vector ~d of a document d is derived by extracting

its features f and assigning the weights ~df to them.

– A representation vector ~Ci of a class Ci is evaluated by considering
~d belonging to Ci (i.e. d ∈ Ci) as positive examples and the vector
~d /∈ Ci as negative examples.

• Application of a machine learning model: the output of the learning

of profile-based classifiers is the vector ~Ci. In this sense the machine

learning algorithm can be seen as a weighing model for the category

profile vector.

• Similarity estimation which is always carried out between unknown (i.e.

not classified) documents and the profiles. The similarity is usually de-

rived within the space determined by the features, i.e. between ~d and
~Ci.

• Inference: A decision function is applied over the similarity scores. The

most widely used inference methods are: probability, fixed and propor-

tional thresholds. These are respectively called in [Yang, 1999]: Scut (a

threshold for each class is applied and is used to decide whether or not

a document belongs to it), Rcut (the best k-ranked classes are assigned

to each document) and Pcut (the test set documents are assigned to the

classes proportionally to their size).

1.2. Machine Learning Approaches to Text Categorization 7

It should be noted that the choices made at each step determine a differ-

ent classification model which may be more appropriate for an application

domain rather than another. For example, it is well known that there is no opti-

mal weighting scheme as its performance strongly depends on the application

corpora.

The above rationale does not exactly apply for the choice of the machine

learning algorithms as often there are a few models that are more accurate than

all the others. In the next section, we briefly report the most famous machine

learning approaches used for TC to give a flavor of this prolific research field.

1.2 Machine Learning Approaches to Text Categoriza-

tion

In the literature several TC models based on different machine learning ap-

proaches have been developed. Whatever technology is adopted, the TC sys-

tem suffers from the trade off between accuracy in retrieval and time complex-

ity of the training/testing phases. Such complexity is critical in operational

scenarios since it may prevent the processing of all required data. In the fol-

lowing, we briefly revisit the best known approaches as well as more recent

ones. Particular carefulness to operational aspects will be devoted.

Support Vector Machines (SV Ms), recently proposed in [Joachims, 1999],

are applied to the vector space model described in Chapter 3 to find a category

profile which produces the lowest probability error2 on document classifica-

tion. Such properties allow the SV Ms to achieve one of the highest accuracy

(about 86%) on a well known TC benchmark called Reuters corpus.

The main SV M problems are their application to operational scenarios

where the number of training documents is thousands times higher than the

number of documents contained in benchmarks. The disadvantage of SV Ms

is the training time which is quadratic in the numbers of training examples. The

classification phase also can be very slow for nonlinear SV Ms [Vapnik, 1995]

since it is proportional to the number of support vectors which, in turn, increase

proportionally with the number of training documents. This means that, to

classify each single document, thousands of support vectors could be involved.

As each support vector requires a scalar product with the input documents the

time is usually very high.

2The exact meaning of lowest probability error will be explained in Section 2.

8 Chapter 1. Introduction

KNN is an example-based classifier [Yang, 1994] which makes use of

document to document similarity estimation. It selects a class for a document

through a k-Near Neighbor heuristic. For this the algorithm requires the cal-

culation of all the scalar products between an incoming document and those

available in the training set. The optimization proposed by the EXP-NET al-

gorithm [Yang, 1994] reduces the computational complexity to O(N · log(N)
time, where N is the maximum among the number of training documents, the

number of categories and the number of features. The KNN time complexity

is thus rather high.

Rocchio [Ittner et al., 1995; Cohen and Singer, 1999] often refers to TC

systems based on the Rocchio’s formula for profile estimation (described in

Section 3.2.2). An extension of the algorithm was proposed in [Schapire et

al., 1998] and [Lam and Ho, 1998] but both approaches relevantly increase the

complexity of the basic model.

PRC [Moschitti, 2003c] is the parameterized version of the Rocchio clas-

sifier. It will be presented in Section 3.5 to give an example of the positive

impact of a correct parameterization.

RIPPER [Cohen and Singer, 1999] uses an extended profile notion based

on co-occurrences and multiwords. A machine learning algorithm allows the

contexts (e.g. a windows of n words) of a word w to decide how (or whether)

the presence/absence of w contribute actually to the target document classifi-

cation. As it is based on profiles, it can be very fast in on line classification

task, but it has a noticeable learning time. Moreover, given the complexity to

derive the suitable multiwords, it is not clear if it can be applied to millions of

documents.

CLASSI is a system that uses a neural network-based approach to text

categorization [Ng et al., 1997]. The basic units of the network are the per-

ceptrons. Given the amount of data involved in typical operational scenarios

the size of the target network makes the training and classification complexity

prohibitive.

Dtree [Quinlan, 1986] is a system based on a well-known machine learning

method (i.e. decision trees) applied to training data for the automatic deriva-

tion of a classification tree. The Dtree model selects the relevant words (i.e.

features) via an information gain criterion and predicts the target document’s

categories according to word combinations (see Section 2.1.1 for more details).

It efficiently supports on line classification as the category assignment time is

proportional to the time required to visit the decision tree.

1.2. Machine Learning Approaches to Text Categorization 9

CHARADE [Moulinier et al., 1996] and SWAP1 [Apté et al., 1994] use

machine learning algorithms to inductively extract Disjunctive Normal Form

rules from the training documents. Sleeping Experts (EXPERTS) [Cohen and

Singer, 1999] are learning algorithms that work on-line. They reduce the com-

putation complexity of the training phase for large applications by updating

incrementally the weights of n-gram phrases. The reduced complexity makes

them appealing for a real application but their accuracy is far away from the

state-of-the-art.

Naive Bayes [Tzeras and Artman, 1993] is a probabilistic classifier which

uses joint probabilities of words and categories to estimate the conditional

probabilities of categories given a document. The naive approach refers to the

assumption of word independence. Such assumption makes the computation

of the Naive Bayes classifier much more efficient than the exponential com-

plexity of a pure Bayesian approach (i.e. where predictors are made of word

combinations). In this case the only problem is its low classification accuracy

on every corpus.

In order to establish which classification model is more accurate several

referring TC benchmarks have been developed. The most famous one is the

Reuters corpus. In particular, previous work has shown (e.g. [Yang, 1999])

that five Reuters versions exist and TC systems perform differently on them.

In particular, Table 1.1 reports the performance of the above TC systems on

Reuters 22173 or Reuters 21578. Both of these versions provide two splits

between training and testing: Apté and Lewis modalities [Sebastiani, 2002].

It is worth noting that the same classifier can achieve different accuracy on

different Reuters versions/splits. Thus, Table 1.1 provides only an indicative

accuracy3 comparisons of TC models4.

Table 1.1 shows that the best figure on the Reuters corpus is obtained by the

example-driven KNN classifier (82.3/85%) and by SV Ms (86%). Unfortu-

nately, they have a heavier training and classification complexity, which makes

their use more difficult within real operational domains thus PRC seems more

suitable. Other classifiers having a fast on line classification (e.g. RIPPER,

SWAP-1) are based on complex learning whereas the others show lower accu-

racy.

3More precisely, the accuracy measurements used are the microaverage BEP and the mi-

croaverage f-measure, which will be defined in Section 3.4.2.
4Moreover, the same model is subject to several implementations or enhancements. For

example, Yang reports two Naive Bayes BEP s: 71% [Yang, 1999] vs. 79.56% [Yang and Liu,

1999].

10 Chapter 1. Introduction

Table 1.1: Breakeven points of widely known classifiers on Reuters corpus

SV M KNN PRC RIPPER CLASSI Naive Bayes

86% 85/82.3 % 82.83% 81/82% 80.2% 71/79.56%

SWAP1 CHARADE EXPERT Rocchio Dtree

79/80.5% 73.8/78.3% 75.2/82.7% 74.8/78.1% 79.4%

1.3 Book Outline

This book aims to provide the reader with the technology suitable to design and

implement moderns automated TC systems. In particular, such technology is

based on the statistical learning theory which proposes the automatic design

of classification function from examples. Other machine learning models have

been developed but the proposed theory represents the current state-of-the-art

on TC. Moreover, practical procedures often applied in the TC design are thor-

oughly described. These include the TC tuning phase and accuracy evaluation.

Finally, some advanced topics in TC such as the use of complex document

representations and interesting applications are illustrated.

More in detail, the book is organized as follows:

• Chapter 2 provides the basic notions of machine learning along with lat-

est theoretical models developed in recent years. Traditional and simple

algorithms based on probability theory such as the Naive Bayes and the

decision tree classifiers are described. Then, the PAC learning theory is

introduced as a general framework of the modern statistical learning the-

ory. This along with the simple perceptron learning algorithm allows the

reader to understand the basic ideas of Support Vector Machines, which,

together with kernel methods, are the ultimate contribution of statistical

learning theory.

• Chapter 3 describes the typical steps for designing a text classifier. In

particular, several weighting schemes and the design of profile-based

classifiers are shown in detail. Additionally, the learning and classifi-

cation algorithms for Rocchio and Support Vector Machines have been

comparatively analyzed. The important contributions of this chapter re-

lates to the definition of the Parameterized Rocchio text Classifier (PRC)

1.3. Book Outline 11

and the performance evaluation over different corpora as they show to

the reader practical procedures that should be followed in the design of

text classifiers.

• Chapter 4 reports advanced TC topics by presenting some studies on

the use of Natural Language Processing to extract advanced linguis-

tic features for document representation. These may be divided in two

main types: (a) those that use syntactic information, e.g., POS-tags and

phrases and (b) those based on semantic information, i.e. word senses.

Additionally, proposals on the advanced use of TC for interesting natural

language applications, i.e., Information Extraction, Question Answering

and Text Summarization are described.

The technical content of the different chapters require a lengthy use of ba-

sic notions of linear algebra and geometry with specific formalisms. The final

appendixes offer a reference dictionary and a short mathematical compendium

to help the reader.

12 Chapter 1. Introduction

