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Abstract

In this paper we present a novel similarity
between pairs of co-indexed trees to auto-
matically learn textual entailment classi-
fiers. We defined a kernel function based
on this similarity along with a more clas-
sical intra-pair similarity. Experiments
show an improvement of 4.4 absolute per-
cent points over state-of-the-art methods.

1 Introduction

Recently, a remarkable interest has been devoted to
textual entailment recognition (Dagan et al., 2005).
The task requires to determine whether or not a text
T entails a hypothesisH. As it is a binary classifica-
tion task, it could seem simple to use machine learn-
ing algorithms to learn an entailment classifier from
training examples. Unfortunately, this is not. The
learner should capture the similarities between dif-
ferent pairs,(T ′,H ′) and(T ′′,H ′′), taking into ac-
count the relations between sentences within a pair.
For example, having these two learning pairs:

T1 ⇒ H1

T1 “At the end of the year, all solid compa-
nies pay dividends”

H1 “At the end of the year, all solid
insurancecompanies pay dividends.”

T1 ; H2

T1 “At the end of the year, all solid compa-
nies pay dividends”

H2 “At the end of the year, all solid compa-
nies pay cashdividends.”

determining whether or not the following implica-
tion holds:

T3 ⇒ H3?
T3 “All wild animals eat plants that have

scientifically proven medicinal proper-
ties.”

H3 “All wild mountainanimals eat plants
that have scientifically proven medici-
nal properties.”

requires to detect that:
1. T3 is structurally (and somehow lexically) sim-

ilar to T1 andH3 is more similar toH1 than to
H2;

2. relations between the sentences in the pairs
(T3,H3) (e.g.,T3 andH3 have the same noun
governing the subject of the main sentence) are
similar to the relations between sentences in the
pairs(T1,H1) and(T1,H2).

Given this analysis we may derive thatT3 ⇒ H3.
The example suggests that graph matching tec-

niques are not sufficient as these may only detect
the structural similarity between sentences of textual
entailment pairs. An extension is needed to consider
also if two pairs show compatible relations between
their sentences.

In this paper, we propose to observe textual entail-
ment pairs as pairs of syntactic trees with co-indexed
nodes. This shuold help to cosider both the struc-
tural similarity between syntactic tree pairs and the
similarity between relations among sentences within
a pair. Then, we use thiscross-pairsimilarity with
more traditionalintra-pair similarities (e.g., (Corley
and Mihalcea, 2005)) to define a novel kernel func-
tion. We experimented with such kernel using Sup-
port Vector Machines on the Recognizing Textual
Entailment (RTE) challenge test-beds. The compar-
ative results show that (a) we have designed an ef-
fective way to automatically learn entailment rules
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from examples and (b) our approach is highly accu-
rate and exceeds the accuracy of the current state-of-
the-art models.

In the remainder of this paper, Sec. 2 introduces
the cross-pair similarity and Sec. 3 shows the exper-
imental results.

2 Learning Textual Entailment from
examples

To carry out automatic learning from exam-
ples, we need to define a cross-pair similarity
K((T ′,H ′), (T ′′,H ′′)). This function should con-
sider pairs similar when: (1) texts and hypotheses
are structurally and lexically similar (structural sim-
ilarity ); (2) the relations between the sentences in
the pair(T ′,H ′) are compatible with the relations
in (T ′′,H ′′) (intra-pair word movement compatibil-
ity). We argue that such requirements could be met
by augmenting syntactic trees withplaceholdersthat
co-index related words within pairs. We will then
define a cross-pair similarity over these pairs of co-
indexed trees.

2.1 Training examples as pairs of co-indexed
trees

Sentence pairs selected as possible sentences in en-
tailment are naturally co-indexed. Many words (or
expressions)wh in H have a referentwt in T . These
pairs (wt, wh) are calledanchors. Possibly, it is
more important that the two words in an anchor are
related than the actual two words. The entailment
could hold even if the two words are substitued with
two other related words. To indicate this we co-
index words associatingplaceholderswith anchors.
For example, in Fig. 1,2” indicates the(compa-
nies,companies)anchor betweenT1 andH1. These
placeholders are then used to augment tree nodes. To
better take into account argument movements, place-
holders are propagated in the syntactic trees follow-
ing constituent heads (see Fig. 1).

In line with many other researches (e.g., (Cor-
ley and Mihalcea, 2005)), we determine these an-
chors using different similarity or relatedness dec-
tors: the exact matching between tokens or lemmas,
a similarity between tokens based on their edit dis-
tance, the derivationally related form relation and
the verb entailment relation in WordNet, and, fi-

nally, a WordNet-based similarity (Jiang and Con-
rath, 1997). Each of these detectors gives a different
weight to the anchor: the actual computed similarity
for the last and 1 for all the others. These weights
will be used in the final kernel.

2.2 Similarity between pairs of co-indexed
trees

Pairs of syntactic trees where nodes are co-indexed
with placeholders allow the design a cross-pair simi-
larity that considers both the structural similarity and
the intra-pair word movement compatibility.

Syntactic trees of texts and hypotheses permit to
verify the structural similarity between pairs of sen-
tences. Texts should have similar structures as well
as hypotheses. In Fig. 1, the overlapping subtrees
are in bold. For example,T1 andT3 share the sub-
tree starting withS → NP VP. Although the lexicals
in T3 andH3 are quite different from thoseT1 and
H1, their bold subtrees are more similar to those of
T1 andH1 than toT1 andH2, respectively.H1 and
H3 share the productionNP → DT JJ NN NNS while
H2 andH3 do not. To decide on the entailment for
(T3,H3), we can use the value of(T1,H1).

Anchors and placeholders are useful to verify if
two pairs can be aligned as showing compatible
intra-pair word movement. For example,(T1,H1)
and (T3,H3) show compatible constituent move-
ments given that the dashed lines connecting place-
holders of the two pairs indicates structurally equiv-
alent nodes both in the texts and the hypotheses. The
dashed line between3 and b links the main verbs
both in the textsT1 andT3 and in the hypothesesH1

andH3. After substituting3 to b and 2 to a, T1

andT3 share the subtreeS → NP 2 VP 3 . The same
subtree is shared betweenH1 andH3. This implies
that words in the pair(T1,H1) are correlated like
words in(T3,H3). Any different mapping between
the two anchor sets would not have this property.

Using the structural similarity, the placeholders,
and the connection between placeholders, the over-
all similarity is then defined as follows. LetA′ and
A′′ be the placeholders of(T ′,H ′) and (T ′′,H ′′),
respectively. The similarity between two co-indexed
syntactic tree pairsKs((T

′,H ′), (T ′′,H ′′)) is de-
fined using a classical similarity between two trees
KT (t1, t2) when the best alignment between theA′

and A′′ is given. LetC be the set of all bijective
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Figure 1: Relations between(T1,H1), (T1,H2), and(T3,H3).

mappings froma′ ⊆ A′ : |a′| = |A′′| to A′′, an
elementc ∈ C is a substitution function. The co-
indexed tree pair similarity is then defined as:
Ks((T

′, H ′), (T ′′, H ′′)) =
maxc∈C(KT (t(H ′, c), t(H ′′, i)) + KT (t(T ′, c), t(T ′′, i))

where (1)t(S, c) returns the syntactic tree of the
hypothesis (text)S with placeholders replaced by
means of the substitutionc, (2) i is the identity sub-
stitution and (3)KT (t1, t2) is a function that mea-
sures the similarity between the two treest1 andt2.

2.3 Enhancing cross-pair syntactic similarity

As the computation cost of the similarity measure
depends on the number of the possible sets of corre-
spondencesC and this depends on the size of the
anchor sets, we reduce the number ofplacehold-
ersused to represent the anchors. Placeholders will

have the same name if these are in the samechunk
both in the text and the hypothesis, e.g., the place-
holders2’ and 2” are collapsed to2.

3 Experimental investigation

The aim of the experiments is twofold: we show that
(a) entailments can be learned from examples and
(b) our kernel function over syntactic structures is
effective to derive syntactic properties. The above
goals can be achieved by comparing our cross-pair
similarity kernel against (and in combination with)
other methods.

3.1 Experimented kernels

We compared three different kernels: (1) the ker-
nel Kl((T

′,H ′), (T ′′,H ′′)) based on the intra-pair
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Datasets Kl Kl + Kt Kl + Ks

Train:D1 Test:T1 0.5888 0.6213 0.6300
Train:T1 Test:D1 0.5644 0.5732 0.5838
Train:D2(50%)′ Test:D2(50%)′′ 0.6083 0.6156 0.6350
Train:D2(50%)′′ Test:D2(50%)′ 0.6272 0.5861 0.6607
Train:D2 Test:T2 0.6038 0.6238 0.6388
Mean 0.5985 0.6040 0.6297

(± 0.0235 ) (± 0.0229 ) (± 0.0282 )

Table 1: Experimental results

lexical similarity siml(T,H) as defined in (Cor-
ley and Mihalcea, 2005). This kernel is de-
fined asKl((T

′,H ′), (T ′′,H ′′)) = siml(T
′,H ′) ×

siml(T
′′,H ′′). (2) the kernelKl+Ks that combines

our kernel with the lexical-similarity-based kernel;
(3) the kernelKl + Kt that combines the lexical-
similarity-based kernel with a basic tree kernel.
This latter is defined asKt((T

′,H ′), (T ′′,H ′′)) =
KT (T ′, T ′′)+ KT (H ′,H ′′). We implemented these
kernels within SVM-light (Joachims, 1999).

3.2 Experimental settings

For the experiments, we used the Recognizing Tex-
tual Entailment (RTE) Challenge data sets, which
we name asD1, T1 andD2, T2, are the develop-
ment and the test sets of the first and second RTE
challenges, respectively.D1 contains 567 examples
whereasT1, D2 andT2 have all the same size, i.e.
800 instances. The positive examples are the 50%
of the data. We produced also a random split ofD2.
The two folds areD2(50%)′ andD2(50%)′′.

We also used the following resources: the Char-
niak parser (Charniak, 2000) to carry out the syntac-
tic analysis; thewn::similarity package (Ped-
ersen et al., 2004) to compute the Jiang&Conrath
(J&C) distance (Jiang and Conrath, 1997) needed to
implement the lexical similaritysiml(T,H) as de-
fined in (Corley and Mihalcea, 2005); SVM-light-
TK (Moschitti, 2004) to encode the basic tree kernel
function,KT , in SVM-light (Joachims, 1999).

3.3 Results and analysis

Table 1 reports the accuracy of different similar-
ity kernels on the different training and test split de-
scribed in the previous section. The table shows
some important result.

First, as observed in (Corley and Mihalcea, 2005)
the lexical-based distance kernelKl shows an accu-
racy significantly higher than the random baseline,
i.e. 50%. This accuracy (second line) is comparable

with the best systems in the first RTE challenge (Da-
gan et al., 2005). The accuracy reported for the best
systems, i.e. 58.6% (Glickman et al., 2005; Bayer
et al., 2005), is not significantly far from the result
obtained withKl, i.e. 58.88%.

Second, our approach (last column) is signifi-
cantly better than all the other methods as it pro-
vides the best result for each combination of train-
ing and test sets. On the “Train:D1-Test:T1” test-
bed, it exceeds the accuracy of the current state-of-
the-art models (Glickman et al., 2005; Bayer et al.,
2005) by about 4.4 absolute percent points (63% vs.
58.6%) and 4% over our best lexical similarity mea-
sure. By comparing the average on all datasets, our
system improves on all the methods by at least 3 ab-
solute percent points.

Finally, the accuracy produced by our kernel
based on co-indexed treesKl + Ks is higher than
the one obtained with the plain syntactic tree ker-
nel Kl + Kt. Thus, the use of placeholders and co-
indexing is fundamental to automatically learn en-
tailments from examples.
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