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ABSTRACT

Current Spoken Language Understanding technology is based
on a simple concept annotation of word sequences, where the
interdependencies between concepts and their compositional
semantics are neglected. This prevents an effective handling
of language phenomena, with a consequential limitation on
the design of more complex dialog systems.
In this paper, we argue that shallow semantic representation as
formulated in the Berkeley FrameNet Project may be useful
to improve the capability of managing more complex dialogs.
To prove this, the first step is to show that a FrameNet parser
of sufficient accuracy can be designed for conversational
speech. We show that exploiting a small set of FrameNet-
based manual annotations, it is possible to design an effective
semantic parser. Our experiments on an Italian spoken dialog
corpus, created within the LUNA project, show that our ap-
proach is able to automatically annotate unseen dialog turns
with a high accuracy.

Index Terms— Spoken Dialog Systems, Computational
Semantics, Learning Models

1. INTRODUCTION

In recent years, commercial services based on spoken dia-
log systems have consistently increased both in number and
application scenarios. Their main limitation relates to a low
capability of handling language variability and of performing
conceptual analysis over speech transcriptions. Indeed, the
current Spoken Language Understanding (SLU) technology
is based on a simple concept annotation of word sequences,
where the interdependencies between concepts and their com-
positional semantics are not even attempted.

Although Natural Language Understanding approaches
are hardly suitable for real applications, shallow semantic
methods devised in computational linguistics research ap-
pear promising to tackle the above mentioned tasks. The
Berkeley FrameNet Project [1] proposes semantic models
and resources for open domain semantic analysis which can
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be adapted to specific dialog domains. According to this
paradigm, prototypical situations (frames) and predicates
evoking these situations (lexical units) are annotated in the
text along with their involved participants (frame elements).
For example, the sentence“I would like to buy an insurance
policy” will evoke the COMMERCE SCENARIO frame where
buy is the lexical unit (or predicate) whileI and insurance
policy are the BUYER and the GOODS frame elements, i.e.
the arguments of the predicate.

The semantic model proposed in FrameNet is well founded
at formal level [2]. In addition, nearly 800 frames and more
than 4,000 frame-dependent concepts have been already iden-
tified and described. A wide English corpus of manually
annotated examples is available as well, such that supervised
machine learning can be applied to automatize the frame an-
notation process. Since this technology is very recent, it has
not been used yet in any spoken dialog system. The first step
to make it possible is to design an automatic FrameNet-based
labeler able to work on conversational speech.

In this paper, we face the problem of automatically per-
forming the above analysis over speech transcriptions from
real-world dialogs. In particular, we present a novel approach
based on Support Vector Machines (SVMs), Tree Kernels and
Frame Semantics. Our technique is language independent and
achieves state-of-the-art results in dealing with severalthou-
sands of concepts defined within hundreds of different seman-
tic contexts (frames). Our system can be trained on any cor-
pus which just includes plain text and frame-based semantic
annotation. Although we deeply exploit syntax, it is not re-
quired in principle, since we can robustly rely on automatic
syntactic analysis made by an off-the-shelf analyzer like the
Charniak’s parser [3]. Since the proposed approach is inher-
ently supervised, we are particularly interested in testing its
portability on languages with minor availability of resources
than English. Actually, several efforts to develop annotated
FrameNet-like databases in other languages are currently in
progress, for example in German [4] and Italian [5]. In this
work, we report on successful experiments performed on Ital-
ian, on the basis of a reasonably small amount of annotated
data, which is drawn from the spoken dialog corpus being de-



veloped within the LUNA EU Project1.
The rest of the paper is organized as follows. Section 2

introduces Frame Semantics and our automatic analysis tech-
nique, Section 3 presents the dataset, and Section 4 describes
the experiment setting, the achieved results, and draws thefi-
nal conclusions.

2. AUTOMATIC ANNOTATION
OF FRAME SEMANTICS

Frame Semantics [2] allows real-world knowledge to be cap-
tured by semantic frames, script-like conceptual structures
that describe particular types of situations, objects, or events
along with their participating elements. For example, hereis
a short definition of a sample frame:

COMMERCE SCENARIO

Core Elements:BUYER, GOODS, MONEY, SELLER

non-Core Elements:MANNER, MEANS, PURPOSE, RATE

Subframes:COMMERCIAL TRANSACTION

where the core frame elements are participant entities which
are supposed to be always present, whereas non-core are
just optional, more generic participants. Frame-to-framere-
lations are also defined, like theSubframerelation which
states here a hierarchical dependency of the COMMER-
CIAL TRANSACTION frame. The Berkeley FrameNet Project
currently includes the definitions of nearly 800 frames,
4,000 frame elements, and 135,000 annotated English sen-
tences. An example of sentence annotation for the COM-
MERCE SCENARIO is reported hereafter:

Ralemberg said[he]SELLER already had a[buyer]BUYER

[for the wine]GOODS

where the underlined wordbuyer is the target word (orlex-
ical unit, or predicate) which plays the role ofevoker for
this particular frame. To automatically parse this information
from plain text, we need to (a) represent the relation between
the target word and the words compounding an argument in
terms of feature vectors, and (b) learn classification models
able to process such vectors.

2.1. Classification Steps

To implement a FrameNet-based parsing system we adopt a
multi-stage classification scheme over natural language. Pre-
vious studies in this direction apply Semantic Role Labeling
(SRL) approaches [6]. We extended the same strategy devel-
oped in [7, 8], which now includes: (1)Target Word Detec-
tion, i.e. the semantically relevant words bringing predicative
information are detected; (2)Frame Disambiguation, i.e. the
correct frame for any target word is chosen; (3)Boundary
Detection (BD), i.e. the sequences of words constituting the
frame elements (arguments) are detected; and (4)Role Clas-
sification (RC), which assigns semantic labels to the frame
elements detected in the previous stage.

1http://www.ist-luna.eu

The first two stages can be carried out in several ways (de-
pending on the application), which include heuristics based
on FrameNet lexical units found in the text, or traditional su-
pervised multi-classification approaches. BD is typicallycar-
ried out as a binary classification problem, where the classi-
fication instances are the nodes of the syntactic parse tree of
the considered sentence (or dialog turn). Indeed, predicate ar-
guments, according to some linguistic theories, are univocally
associated with syntactic constituents, i.e. internal theparse
tree nodes. At training time, the positive examples are the
nodes corresponding to arguments, whereas all the remain-
ing nodes are negative examples. RC is a multi-classification
problem over the set of the possible labels for an argument
(with respect to the chosen frame). Even in this case, role la-
bels are strictly associated with internal tree nodes as selected
in the previous stage.

In this work we focus on the two last steps of the system
since they are the most interesting. The representation of
the nodes in a learning algorithm is traditionally carried out
by exploiting syntactic information, since syntax is strongly
linked to semantics. Many features for representing the
nodes have been provided [6], which form the vectors to train
SVMs. We further exploit the potential of SVMs by using
kernel methods: we use Tree Kernels to encode the subtree
which includes a target word and one of its arguments into
the learning algorithm, as shown in [7]. The next sections
briefly summarize SVMs, kernel methods and Tree Kernels.

2.2. SVMs and the Kernel Trick

Kernel Methods refer to a large class of learning algorithms
based on inner product vector spaces, among which Support
Vector Machines (SVMs) are one of the most well-known.
SVMs learn a hyperplaneH(~x) = ~w · ~x + b = 0, where~x

is the feature vector representation of a classifying object o,
~w ∈ ℜn (a vector space) andb ∈ ℜ are parameters [9]. The
classifying objecto is mapped in~x by a feature functionφ.

The kernel trick allows us to rewrite the decision hy-
perplane as

∑
i=1..l yiαiφ(oi) · φ(o) + b, whereyi is equal

to 1 for positive and -1 for negative examples,αi ∈ ℜ+ ,
oi ∀i ∈ {1, .., l} are the training instances, and the product
K(oi, o) = 〈φ(oi) · φ(o)〉 is the kernel function associated
with the mappingφ. Note that we do not need to explicitly
apply the mappingφ, since we can directly use the kernel
functionK(oi, o).

A traditional example is given by the polynomial kernel:
PK(o1, o2) = (c+~x1 ·~x2)

d, wherec is a constant andd is the
degree of the polynomial. Given the features used to map ob-
jects inℜn, this kernel generates the space of all conjunctions
of feature groups, up tod elements.

2.3. Tree Kernels

Tree kernels are scalar products that evaluate the number of
common subtrees. For example, Figure 1 shows a tree along
with some of its tree fragments. These are matched against
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Fig. 1. A tree for the sentence“I am a user” along with some of its
tree fragments.

those from another tree. More formally, given two treesT1

andT2, let {f1, f2, ..} = F be the set of substructures (frag-
ments) andIi(n) be equal to 1 iffi is rooted at noden, 0
otherwise. The Collins and Duffy’s kernel is defined as

TK(T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2), (1)

whereNT1
andNT2

are the sets of nodes inT1 andT2 re-
spectively, and∆(n1, n2) =

∑|F|
i=1 Ii(n1)Ii(n2). The latter

is equal to the number of common fragments rooted in nodes
n1 andn2. ∆ can be computed as follows:
(1) if the productions (i.e. the nodes with their direct children)
atn1 andn2 are different then∆(n1, n2) = 0;
(2) if the productions atn1 andn2 are the same, andn1 and
n2 only have leaf children (i.e. they are pre-terminal symbols)
then∆(n1, n2) = 1;
(3) if the productions atn1 andn2 are the same, andn1 and
n2 are not pre-terminals, then∆(n1, n2) =

∏nc(n1)
j=1 (1 +

∆(cj
n1

, cj
n2

)), wherenc(n1) is the number of children ofn1

andcj
n is thej-th child ofn.

Such tree kernel can be normalized, and aλ factor can be
added to reduce the weight of large structures (refer to [10]
for a complete description). Most important, we can take ad-
vantage of the joint space between the tree and the polynomial
kernel by simply summing them, i.e.Ksum = TK + PK.

3. THE LUNA SPOKEN DIALOG CORPUS

The LUNA European Project addresses the problem of real-
time understanding of spontaneous speech in the context of
advanced telecom services, and it applies to Italian, French
and Polish. As a first step, the project has made available a
benchmark collection of Italian dialogs. The corpus currently
includes 50 human-human (HH) and 50 human-machine
(HM) dialogs, recorded in the call center of the help-desk fa-
cility of the Italian Consortium for Information Systems. The
HH dialogs are spontaneous conversations between a caller
and an operator about software and hardware problems. The
HM dialogs are a set of “wizard of oz” dialogs where the user
explains a problem and the wizard reacts according to one of
ten possible predefined scenarios.

The corpus was first annotated with part of speech
and morphosyntactic features at word level using an au-
tomatic tagger, and then syntactically parsed with Bikel’s
constituency-based parser trained for Italian [11]. Next,a

manual correction was carried out to make sure that the nodes
potentially carrying semantic information have correct con-
stituent boundaries. Frame information was then annotated
on top of the parse trees, attaching target labels to their related
words, and frame element labels to internal tree nodes. Where
possible, we applied the frame and frame element definitions
as in the English FrameNet. Nonetheless, in case of gaps
in the original model (with respect to ourvery specific do-
main), we introduced new frames and related frame elements.
In particular, we identified 154 already existing frames and
introduced 20 new frames, mainly concerning data process-
ing such as NAVIGATION , DISPLAY DATA , LOSE DATA ,
CREATE DATA . The most frequent frames are related to the
information exchange that is typical of a help-desk facility, for
example TELLING, GREETING, CONTACTING, STATEMENT,
RECORDING, COMMUNICATION . Another important group
includes frames describing software/hardware functional-
ity such as BEING IN OPERATION, BEING OPERATIONAL,
CHANGE OPERATIONAL STATE, OPERATIONAL TESTING.
TELLING and GREETING are the most frequent frames, with
277 and 270 frame instances respectively (also see [12] for
a complete analysis). Overall, we annotated 662 turns of
HM dialogs with 923 frame instances, and 1,997 turns of HH
dialogs with 1,951 frame instances. In general, HH dialogs
show a higher frame variability than HM dialogs because
spontaneous conversations can concern minor less related
topics as well, whereas HM dialogs are more task-oriented.
Every HM turn has 1.39 annotated instances on average,
whereas the HH turns show a lower semantic density with
0.98 annotated instances per turn. This can be explained by
the fact that in human turns there are speech disfluencies such
as interruptions and ungrammatical sentences.

4. EXPERIMENTS

We carried out several experiments on the spoken dialog cor-
pus described above to test the effectiveness of our FrameNet
parser. We present the results of the second and third stage of
the system described in Section 2.1, that is BD and BD+RC.
Therefore, we assume the target word (i.e. the predicate for
which the arguments must be identified) along with its correct
frame as given. We only used the HH corpus portion, since
HM dialogs are less interesting with respect to language vari-
ability. For each dialog, the set of its turns was considered,
creating a dataset of 1,677 target words over 162 different
frames. Such dataset was further split in a 90% for training
(1,521 target words) and a 10% for testing (156 target words).

Given the above dataset, different learning strategies were
carried out. For both BD and RC, we can split the data re-
lated to all the frames in several ways. For BD, five mod-
els are trained across all the frames according to the part of
speech of the target words2 (POSwise splitting). For RC, the

2Frame Semantics allowsverbal, nominal, adjectival, adverbial and
prepositionalpredicates.



multi-classification models are naturally split accordingto the
different frames. In addition, POSwise splitting can either be
applied or not. This leads to two different RC settings: “by-
POSandFrame” and “byFrame”.

Eval Setting P R F1 P R F1

byPOSandFrame RC learning configuration

PK
BD - - - .900 .869 .884
BD+RC - - - .679 .655 .667

TK PK+TK
BD .887 .856 .871 .905 .873 .889
BD+RC .674 .651 .662 .688 .664 .676

byFrame RC learning configuration

PK
BD - - - .900 .869 .884
BD+RC - - - .769 .742 .756

TK PK+TK
BD .887 .856 .871 .905 .873 .889
BD+RC .765 .738 .751 .774 .747 .760

Table 1. Results for different learning schemes and kernels.

We tested several learning models over the standard fea-
tures described in [6] and the structured features [7], de-
scribed in Section 2.3. In particular, we experimented with
the Polynomial Kernel (PK), the Tree Kernel (TK) and their
combination (PK+TK).

4.1. Results and Discussion

The results are reported in Table 1. Each table block shows
Precision, Recall and F1 for either PK, TK, or PK+TK.
Also, the table distinguishes between the byPOSandFrame
and byFrame splitting schemes. The rows marked as BD
show the results for the task of marking the exact constituent
boundaries of every frame element (argument) found. The
rows marked as BD+RC show the results for the two-stage
pipeline ofbothmarking the exact constituent boundaries and
also assigning the correct semantic label. Based on results,
several observations hold.

First, in both splitting configurations, the highest F1

has been achieved using PK+TK. In particular, “byFrame”
PK+TK performs best and reachesP=0.905, R=0.873,
F1=0.889 for BD, andP=0.774, R=0.747, F1=0.760 for
the whole task (BD+RC). The lower F1 reached by the se-
mantic labeler using byPOSandFrame method is due to the
higher data sparseness caused by such split. In fact, while just
167 multi-classifiers are learned in byFrame configuration,
they increase to 221 in byPOSandFrame split.

Second, the F1 of PK is surprisingly high, since it exploits
a set of standard SRL standard features [6] developed for En-
glish and left unmodified for Italian. Nonetheless, PKs are
comparable to TKs, and when combined produce an improve-
ment. Concerning the structured features exploited by TKs,
they work as well without any language-specific tuning.

Third, the best F1 achieved is extremely good. Our

corresponding result on the FrameNet corpus isP=0.784,
R=0.571, F1=0.661 (with byPOSandFrame setting), where
the corpus contains much more data, its sentences come from
a standard written text (no disfluencies are present), and itis
in English language which is morphologically simpler than
Italian. On the other hand, the LUNA corpus includes optimal
syntactic annotation which exactly fits Frame Semantics, and
the number of frames is far lower than in FrameNet.

Finally, the good performance achieved for Italian shows
that this FrameNet parsing approach can be used to label con-
versational speech in any language using small training data.
Moreover, the approach works well for specific domains (ours
is averyspecific one). Nonetheless, additional tests on auto-
matic transcriptions are needed since at the moment our ex-
periments have been only carried out on manual transcrip-
tions. However, our findings are important since they show
that future research on complex spoken dialog systems can
successfully exploit automatically generated Frame Seman-
tics.
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