
JOINT GENERATIVE AND DISCRIMINATIVE MODELS FOR SPOKEN LANGUAGE
UNDERSTANDING

Marco Dinarelli, Alessandro Moschitti, Giuseppe Riccardi

{dinarelli,moschitti,riccardi}@disi.unitn.it
DISI, Department of Engineering and Information Sciences

University of Trento, Italy

ABSTRACT

Spoken Language Understanding aims at mapping a natural
language spoken sentence into a semantic representation. In
the last decade two main approaches have been pursued:
generative and discriminative models. The former is more
robust to overfitting whereas the latter is more robust to
many irrelevant features. Additionally, the way in which
these approaches encode prior knowledge is very different
and their relative performance changes based on the task.
 In this paper we describe a training framework where both
models are used: a generative model produces a list of
ranked hypotheses whereas a discriminative model,
depending on string kernels and Support Vector Machines,
re-ranks such list. We tested such approach on a new corpus
produced in the European LUNA project. The results show a
large improvement on the state-of-the-art in concept
segmentation and labeling.

Index Terms — Spoken Language Understanding,
Generative and Discriminative Models, Stochastic Language
Models, Kernel Methods, Finite State Transducers

1. INTRODUCTION
In Spoken Dialog Systems, the Language Understanding
module performs the task of translating a spoken sentence
into its meaning representation based on semantic
constituents. These are often referred to as concepts and are
instantiated by sequences of words. Therefore, a Spoken
Language Understanding (SLU) module finds the
association between words and concepts.

In the last decade two major approaches have been
proposed to find this correlation: (i) generative models,
whose parameters refer to the joint probability of concepts
and constituents; and (ii) discriminative models, which learn
a classification function to map words into concepts based
on geometric and statistical properties. An example of
simple and effective generative model is the one based on
Finite State Transducers. It performs SLU as a translation
process based on FST. An example of discriminative model
used for SLU is the one based on Support Vector Machines
(SVMs) [10], as shown in [1]. In this approach, data are
mapped into a vector space and SLU is performed as a

classification problem using Maximal Margin Classifiers
[9].

Generative models have the advantage to be more robust
to overfitting, while discriminative models are more robust
to irrelevant features. Both approaches, used separately,
have shown a good performance [1], but the way these
approaches encode prior knowledge is very different, thus
designing models able to take into account characteristics of
both of them are particularly promising.

In this paper, we propose a method for SLU based on
generative and discriminative models: the former uses FSTs
to generate a list of SLU hypotheses, which are re-ranked by
SVMs. These exploit all word subsequences (with gaps) of
the spoken sentence (i.e. all n-grams) as features. Gaps
allow for the encoding of long distance dependencies
between words in relatively small n-grams. Given the huge
size of this feature space, we adopted kernel methods and in
particular sequence kernels [9] to implicitly encode n-grams
in SVMs.

We experimented with different approaches for training
the discriminative models on a new corpus acquired in the
European project LUNA1 and composed of dialogs recorded
with a Wizard of Oz (WOZ) approach. The results show a
great improvement with respect to both the FST-based
model and the SVM model alone, which are the current
state-of-the-art for concept classification on more well
known corpora like MEDIA and ATIS [1]. The rest of the
paper is organized as follows: sections 2 and 3 show the
generative and discriminative models, respectively. The
experiments and results are reported in Section 4 whereas
the conclusions are drawn in Section 5.

2. GENERATIVE APPROACH FOR CONCEPT
CLASSIFICATION

In the context of Spoken Language Understanding (SLU),
concept classification is the task of associating the best
sequence of concepts to a given sentence, i.e. word
sequence. A concept represents the class of the words
expressing the same domain semantic. In SLU, concepts are
used as semantic units and are represented with concept
tags. The association between words and concepts is learned
from an annotated corpus.

1 Contract n. 33549

The Generative model used in our work for concept
classification is the same used in [1]. Given a sequence of
words as input, a translation process is performed to output
a sequence of concept tags. The translation process involves
three steps: (1) the mapping of words into classes, (2) the
mapping of classes into concepts and (3) the selection of the
best concept sequence.

The first step is used to improve the generalization power
of the model. The classes at this level can be both domain-
dependent, for example Software in LUNA corpus, or
domain-independent, e.g. numbers, dates etc. The class of a
word not belonging to any class is the word itself.

In the second step, classes are mapped into concepts,
where a sequence of words may be associated with more
than one concept, i.e. more than one SLU hypothesis.

 In the third step, the best or the m-best hypotheses are
selected among those produced in the previous step. They
are chosen according to the maximum probability evaluated
by the Conceptual Language Model, described in the next
section.
2.1 Stochastic Conceptual Language Model (SCLM)
An SCLM is an n-gram language model built on semantic
tags. Using the same notation proposed in [3] and [1], our
SCLM trains joint probability P(W,C) of word and concept
sequences from an annotated corpus:

Since, we use a 3-gram conceptual language model, the
history hi is {wi-1 ci-1, wi-2 ci-2}.

All the steps of the translation process described here and
above are implemented as Finite State Transducers (FST)
using the AT&T FSM/GRM tools [4] and the SRILM [6]
tools. In particular the SCLM is trained using SRILM tools
and then converted in an FST using scripts provided with
SRILM toolkit. By representing the combination of all the
translation steps as a transducer λSLU [1] in terms of FST
operations:

,
where λW is the transducer representation of input sentence,
λW2C is the transducer mapping words to classes and λSLM is
the Semantic Language Model (SLM) described above, the
best SLU hypothesis is given by

€

C
∧

= projectC bestpath λSLU()()
where bestpath performs a viterbi search on the FST and
project performs a projection of the FST on the output
labels, in this case the concepts.
2.2. Generation of m-best concept labeling
Using the FSTs described above, we can generate m best
hypotheses ranked by the joint probability of the SCLM.
After an analysis of the m-best hypotheses of our SLU
model, we noticed that many times the first hypothesis is not

the closest to the correct concept sequence, i.e. its error rate
is not the lowest among the m hypotheses. This means that
re-ranking the m-best hypotheses in a convenient way could
improve the SLU performance. The best choice in this case
is a discriminative model, since it allows for the use of
informative features, which, in turn, can model easily
feature dependencies (also if they are infrequent in the
training set).

3. DISCRIMINATIVE RE-RANKING
Our discriminative re-ranking is based on SVMs trained
with pairs of conceptually annotated sentences. The
classifiers learn to select which annotation has an error rate
lower than the others so that the -best annotations can be
sorted based on their correctness.

3.1 SVMs and Kernel Methods
Kernel Methods refer to a large class of learning algorithms
based on inner product vector spaces, among which Support
Vector Machines (SVMs) are one of the most well-known
algorithm. SVMs learn a hyperplane ,
where is the feature vector representation of a classifying
object , (a vector space) and are parameters
[10]. The classifying object is mapped in by a feature
function . The kernel trick allows us to rewrite the decision
hyperplane as

€

yiα iφ oi() ⋅ φ o() + b = 0
i=1..l∑ , where is

equal to 1 for positive and -1 for negative examples,
, are the training instances and the

product is the kernel function
associated with the mapping . Note that, we do not need to
apply the mapping , we can use directly [9]. For
example, next section shows a kernel function that counts
the number of word sequences in common between two
sentences, in the space of -grams (for any).
3.2 String Kernels
The string kernels (SK) that we consider count the number
of word sequences shared by two input sequences,
considering also gaps, i.e. some of the words of the original
sentence are skipped. In our case the sequences are pair of
annotated sentences, i.e. the hypotheses generated by the
FST-based model. Let be a word vocabulary, a word
sequence is described by , selects
the subsequence from the -th to the -th
word. A subsequence of is associated with a sequence of
indexes , with , such
that or for short. is the distance
between the first and last word of the subsequence in , i.e.

 = . A sequence kernel is defined as:

€

SK(s1,s2) = φ(s1) ⋅ φ(s2)
u∈V *
∑ = λd (I1

→
)

I1
→
:u= s1 [I1

→
]

∑
u∈V *
∑

λd (I 2
→
)

I 2
→
:u= s2 [I 2

→
]

∑ =

I1
→
:u= s1 [I1

→
]

∑ λd (I1
→
)+d (I1

→
)

I 2
→
:u= s2 [I 2

→
]

∑
u∈V *
∑

Train set Test set Corpus LUNA
words concepts words concepts

Dialogs Woz 183 67
Dialogs HH 180 -
Turns Woz 1,019 373
Turns HH 6,999 -
Tokens Woz 8,512 2,887 2,888 984
Tokens HH 62,639 17,423 - -
Vocabul. Woz 1,172 34 - -
Vocabul. HH 4,692 49 - -
OOV rate - - 3.2% 0.1%

Table 1 Statistics on the LUNA corpus

where for some counts
the number of occurrences of in the sequence and
assigns them the sequence weight proportional to its
length. Hence, the above equation returns the sum of all
common subsequences weighted according to their
frequency of occurrences and lengths . It is worth to note
that: (a) longer subsequences receive lower weights. (b) Any
word subsequence of the original sentence is valid (some
words can be omitted, i.e. gaps). (c) Gaps determine a
weight since is the number of words and gaps between
the first and last word. For example, given the sentence How
may I help you ?, sample substrings extracted by the
Sequence Kernel (SK) are: How help you ?, How help ?,
help you, may help you ?, etc.

3.3 Re-Ranking Model
The FST generates the most likely concept annotations.
These are used to build annotation pairs, , which are

positive instances if si has a lower word error rate than sj,
with respect to the manual annotation in the corpus and are
negative instances otherwise. Thus, a binary classifier
trained on such examples can decide if si is more accurate
that s

j.
 A candidate annotation si is described by a word sequence
where each word is followed by its concept annotation. For
example, given the sentence:
ho (I have) un (a) problema (problem) con (with) la (the)
scheda di rete (network card) ora (now),
a pair of annotations could be:

si
: ho NULL un NULL problema PROBLEM-B con NULL la NULL

scheda-HW-B di HW-I rete HW-I ora RELATIVETIME-B
sj

: ho NULL un NULL problema ACTION-B con NULL la NULL
scheda-HW-B di HW-B rete HW-B ora RELATIVETIME-B
where NULL, ACTION, RELATIVETIME, and HW are the
assigned concepts.
Additionally, we can encode the word-chunking information
in the sequence by means of the tags B and I, i.e. the usual
begin and internal tags for concept subparts.
Note that, the second annotation is less accurate than the
first since, in it, problema is incorrectly annotated as an

action and “scheda di rete” is incorrectly split in three
different concepts.

Given the above representation, the sequence kernel can
be used to evaluate the number of common n-grams2 (with
gaps) between si and sj. More specifically, let be the pair

, where s1 and s2 are two annotated sentences. We
used the following re-ranking kernel:

This schema consisting in summing four different kernels
has been already applied in [2] for syntactic parsing re-
ranking, where the basic kernel was a tree kernel instead of
SK.

4. EXPERIMENTS
In this section, we describe the corpora, parameters, models
and the results of our experiments. Our baseline relates to
FST and SVM error rate. The re-ranking model is based on
the FST output. Different ways of producing training data
determine different results.
4.1. Corpora
In order to test our model we used a new corpus:

The corpus LUNA acquired in the related European
project LUNA is the first Italian corpus of spontaneous
speech: it reports the help-desk conversation in the domain
of software/hardware repairing [5]. The data are organized
in transcriptions and annotations of speech based on a new
multi-level protocol. Data acquisition is still in progress.
Currently, 250 dialogs acquired with a WOZ approach and
of 180 Human-Human (HH) dialogs are available. Statistics
on LUNA corpus are reported in Table 1. We report
statistics on the entire corpus for completeness, but we run
our experiments using only the WOZ dialogs.
4.2. Experimental Setup
We split the LUNA corpus in training and test set. Given the
small size of LUNA corpus, we did not carried out
parameterization on a development set but we used default
or a priori parameters.

We trained all the SCLMs used in our experiments with
the SRILM toolkit [6] and we used an interpolated model
for probability estimation with the Kneser-Ney discount [7].
We then converted the model in an FST as described in
Section 2.1. The model used to obtain the SVM baseline for
concept classification was trained using YamCHA [8]. For
the re-ranking model using string kernel we used the SVM-
Light-TK toolkit [12] (available at dit.unitn.it/moschitti).
For λ (see Section 3.2), cost-factor and trade-off parameters,
we used, 0.4, 1 and 1, respectively.
4.3. Training approaches

The FST model generates the m-best annotations, i.e. the
data used to train the re-ranker based on SVMs and SK.
Different training approaches can be carried out according

2 In our experiments n is from 1 up to 3 but higher values
can be used.

WOZ Corpus
Approach MT ST
FST 23.2% 23.2%
SVM 26.7% 26.7%
RR - A 19.1% 16.1%
RR - B 19.0% 19.0%
RR - C 19.1% 16.6%

Table 2 Results of experiments (CER) using FST and SVM on the
LUNA WOZ corpus

to the use of the corpus and the method to generate the m-
best. We apply two different methods for training:
Monolithic Training and Split Training.

In the former, FSTs are learned with the whole training
set. The m-best hypotheses generated by such models are
then used to train the re-ranker classifier.

In Split Training, the training data are divided in two parts
to avoid bias in the FST generation step. More in detail, we
train FSTs on part 1 and generate the m-best hypotheses
using part 2.

Then, we re-apply these procedures inverting part 1 with
part 2. Finally, we train the re-ranker on the merged m-best
data. At the classification time, we generate the m-best of
the test set using the FST trained on all training data.

Regarding the generation of the training instances ,
we set m to 10 and we choose one of the 10-best hypotheses
as the second element of the pair, sj, thus generating 10
different pairs. The first element instead can be selected
according to three different approaches: (A): si is the manual
annotation taken from the corpus; (B) si is the most accurate
annotation, in terms of the edit distance from the manual
annotation, among the 10-best hypotheses of the FST
model; and (C) as for (B) but si is selected among the 100-
best hypotheses. The pairs are also inverted to generate
negative examples
4.4. Results
All the results of our experiments, expressed in terms of
concept error rate (CER), are reported in Table 2. In the
header are reported the corpus and the training approach
used, i.e. Monolithic Training (MT) and Split Training (ST).
Column 1 shows the concept classification model used, i.e.
the baselines FST and SVM, and the re-ranking models
(RR) applied to FST. A, B and C refer to the three
approaches for generating training instances described
above.
We note that: first, using our corpus of WOZ dialogs, the
baseline CER of FST and SVMs models are 23.2% and
26.7%, respectively.

Second, the re-ranking models using different training
approaches, A, B and C, produce a remarkable improvement
on LUNA WOZ, e.g. form 23.2% to 16.1% using split
training and A method for data generation. This corresponds
to an enhancement of roughly 30% of the baseline.

Finally, since our corpus is new no previous result is
available for comparison with other approaches. However,
we computed our baseline with the SVM and FST models,

which have been shown to reach state-of-the-art results
[1][11].

5. CONCLUSIONS
In this paper, we propose discriminative re-ranking of
concept annotation to capitalize from the benefits of
generative and discriminative approaches. Our generative
model (FST) is the state-of-the-art in concept classification
as shown in [1]. We show that, using our re-ranking model,
it can be improved by 7 points (until 30% of relative
improvement).

It should be noted that the design of our re-ranker is only
based on a sequence kernel. Kernel Methods have shown
that combinations of feature vectors, sequence kernels and
other structured kernels, e.g. on shallow or deep syntactic
parse trees, provide much more accurate model. Thus the
design of more complex kernels appears to be a promising
research line. Also, the experimentation with automatic
speech transcriptions is interesting since it can show if our
approach is robust to transcription errors.

Finally, as future work, we would like to apply our model
on well-known corpora such as MEDIA and ATIS to
provide results directly comparable with other models, in
particular with the methods used in [11].

REFERENCES
[1] C. Raymond, and G. Riccardi, “Generative and Discriminative
Algorithms for Spoken Language Understanding”, Interspeech,
Antwerp, 2007.
[2] M. Collins and N. Duffy, “New ranking algorithms for parsing
and tagging: Kernels over discrete structures, and the voted
perceptron,” in ACL’02, 2002.
[3] A. Moschitti, G. Riccardi, and C. Raymond, “Spoken Language
Understanding with Kernenls for Syntactic/Semantic Structures”,
ASRU, Kyoto, 2007.
[4] M. Mohri, F. Pereira, M. Riley, “Weighted finite-state
transducers in speech recognition”, Computer, Speech and
Language, 2002.
[5] C. Raymond, G. Riccardi, K. J. Rodrigez, and J. Wisniewska,
“The LUNA Corpus: an Annotation Scheme for a Multi-domain
Multi-lingual Dialogue Corpus”, Decalog, Trento, 2007.
[6] A. Stolcke, “SRILM: an Extensible Language Modeling
Toolkit”, in Proc. Intl. Conf. SLP, Denver, 2002.
[7] S. F. Chen, and J. Goodman, “An Empirical Study of
Smoothing Techniques for Language Modeling”, Tech. Report
Computer Science Group, Harvard, 1998.
[8] T. Kudo, and Y. Matsumoto, “Chunking with Support Vector
Machines”, NAACL, Pittsburg, 2001.
[9] J. Shawe-Taylor and N. Cristianini, “Kernel Methods for
Pattern Analysis”, Cambridge University Press, 2004.
[10] V. Vapnik, “The Nature of Statistical Learning Theory”,
Springer, 1995.
[11] S. Hahn, P. Lehnen, C. Raymond, H. Ney, „A Comparison of
Various M Methods for Concept Tagging for Spoken Language
Understanding“, LREC, Marrakech, 2008.
[12] Alessandro Moschitti, Efficient Convolution Kernels for
Dependency and Constituent Syntactic Trees. In Proceedings of the
17th European Conference on Machine Learning, Berlin,
Germany, 2006.

