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ABSTRACT 
 
Spoken Language Understanding aims at mapping a natural 
language spoken sentence into a semantic representation. In 
the last decade two main approaches have been pursued: 
generative and discriminative models. The former is more 
robust to overfitting whereas the latter is more robust to 
many irrelevant features. Additionally, the way in which 
these approaches encode prior knowledge is very different 
and their relative performance changes based on the task. 
 In this paper we describe a training framework where both 
models are used: a generative model produces a list of 
ranked hypotheses whereas a discriminative model, 
depending on string kernels and Support Vector Machines, 
re-ranks such list. We tested such approach on a new corpus 
produced in the European LUNA project. The results show a 
large improvement on the state-of-the-art in concept 
segmentation and labeling. 

Index Terms — Spoken Language Understanding, 
Generative and Discriminative Models, Stochastic Language 
Models, Kernel Methods, Finite State Transducers 

1. INTRODUCTION 
In Spoken Dialog Systems, the Language Understanding 
module performs the task of translating a spoken sentence 
into its meaning representation based on semantic 
constituents. These are often referred to as concepts and are 
instantiated by sequences of words. Therefore, a Spoken 
Language Understanding (SLU) module finds the 
association between words and concepts. 

In the last decade two major approaches have been 
proposed to find this correlation: (i) generative models, 
whose parameters refer to the joint probability of concepts 
and constituents; and (ii) discriminative models, which learn 
a classification function to map words into concepts based 
on geometric and statistical properties. An example of 
simple and effective generative model is the one based on 
Finite State Transducers. It performs SLU as a translation 
process based on FST. An example of discriminative model 
used for SLU is the one based on Support Vector Machines 
(SVMs) [10], as shown in [1]. In this approach, data are 
mapped into a vector space and SLU is performed as a 

classification problem using Maximal Margin Classifiers 
[9].  

Generative models have the advantage to be more robust 
to overfitting, while discriminative models are more robust 
to irrelevant features. Both approaches, used separately, 
have shown a good performance [1], but the way these 
approaches encode prior knowledge is very different, thus 
designing models able to take into account characteristics of 
both of them are particularly promising.  

In this paper, we propose a method for SLU based on 
generative and discriminative models: the former uses FSTs 
to generate a list of SLU hypotheses, which are re-ranked by 
SVMs. These exploit all word subsequences (with gaps) of 
the spoken sentence (i.e. all n-grams) as features. Gaps 
allow for the encoding of long distance dependencies 
between words in relatively small n-grams. Given the huge 
size of this feature space, we adopted kernel methods and in 
particular sequence kernels [9] to implicitly encode n-grams 
in SVMs.  

We experimented with different approaches for training 
the discriminative models on a new corpus acquired in the 
European project LUNA1 and composed of dialogs recorded 
with a Wizard of Oz (WOZ) approach. The results show a 
great improvement with respect to both the FST-based 
model and the SVM model alone, which are the current 
state-of-the-art for concept classification on more well 
known corpora like MEDIA and ATIS [1]. The rest of the 
paper is organized as follows: sections 2 and 3 show the 
generative and discriminative models, respectively. The 
experiments and results are reported in Section 4 whereas 
the conclusions are drawn in Section 5. 

2. GENERATIVE APPROACH FOR CONCEPT 
CLASSIFICATION 

In the context of Spoken Language Understanding (SLU), 
concept classification is the task of associating the best 
sequence of concepts to a given sentence, i.e. word 
sequence. A concept represents the class of the words 
expressing the same domain semantic. In SLU, concepts are 
used as semantic units and are represented with concept 
tags. The association between words and concepts is learned 
from an annotated corpus.  
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The Generative model used in our work for concept 
classification is the same used in [1]. Given a sequence of 
words as input, a translation process is performed to output 
a sequence of concept tags. The translation process involves 
three steps: (1) the mapping of words into classes, (2) the 
mapping of classes into concepts and (3) the selection of the 
best concept sequence. 

The first step is used to improve the generalization power 
of the model. The classes at this level can be both domain-
dependent, for example Software in LUNA corpus, or 
domain-independent, e.g. numbers, dates etc. The class of a 
word not belonging to any class is the word itself.  

In the second step, classes are mapped into concepts, 
where a sequence of words may be associated with more 
than one concept, i.e. more than one SLU hypothesis. 

 In the third step, the best or the m-best hypotheses are 
selected among those produced in the previous step. They 
are chosen according to the maximum probability evaluated 
by the Conceptual Language Model, described in the next 
section. 
2.1 Stochastic Conceptual Language Model (SCLM) 
An SCLM is an n-gram language model built on semantic 
tags. Using the same notation proposed in [3] and [1], our 
SCLM trains joint probability P(W,C) of word and concept 
sequences from an annotated corpus: 

 
Since, we use a 3-gram conceptual language model, the 
history hi is {wi-1 ci-1, wi-2 ci-2}. 

All the steps of the translation process described here and 
above are implemented as Finite State Transducers (FST) 
using the AT&T FSM/GRM tools [4] and the SRILM [6] 
tools. In particular the SCLM is trained using SRILM tools 
and then converted in an FST using scripts provided with 
SRILM toolkit. By representing the combination of all the 
translation steps as a transducer λSLU [1] in terms of FST 
operations: 

, 
where λW is the transducer representation of input sentence, 
λW2C is the transducer mapping words to classes and λSLM is 
the Semantic Language Model (SLM) described above, the 
best SLU hypothesis is given by 

€ 

C
∧

= projectC bestpath λSLU( )( )  
where bestpath performs a viterbi search on the FST and 
project performs a projection of the FST on the output 
labels, in this case the concepts. 
2.2. Generation of m-best concept labeling 
Using the FSTs described above, we can generate m best 
hypotheses ranked by the joint probability of the SCLM. 
After an analysis of the m-best hypotheses of our SLU 
model, we noticed that many times the first hypothesis is not 

the closest to the correct concept sequence, i.e. its error rate 
is not the lowest among the m hypotheses. This means that 
re-ranking the m-best hypotheses in a convenient way could 
improve the SLU performance. The best choice in this case 
is a discriminative model, since it allows for the use of 
informative features, which, in turn, can model easily 
feature dependencies (also if they are infrequent in the 
training set). 

3. DISCRIMINATIVE RE-RANKING 
Our discriminative re-ranking is based on SVMs trained 
with pairs of conceptually annotated sentences. The 
classifiers learn to select which annotation has an error rate 
lower than the others so that the -best annotations can be 
sorted based on their correctness. 

3.1 SVMs and Kernel Methods 
Kernel Methods refer to a large class of learning algorithms 
based on inner product vector spaces, among which Support 
Vector Machines (SVMs) are one of the most well-known 
algorithm. SVMs learn a hyperplane , 
where  is the feature vector representation of a classifying 
object ,  (a vector space) and  are parameters 
[10]. The classifying object  is mapped in  by a feature 
function . The kernel trick allows us to rewrite the decision 
hyperplane as

€ 

yiα iφ oi( ) ⋅ φ o( ) + b = 0
i=1..l∑ , where  is 

equal to 1 for positive and -1 for negative examples, 
,   are the training instances and the 

product  is the kernel function 
associated with the mapping . Note that, we do not need to 
apply the mapping , we can use  directly [9]. For 
example, next section shows a kernel function that counts 
the number of word sequences in common between two 
sentences, in the space of -grams (for any ).  
3.2 String Kernels 
The string kernels (SK) that we consider count the number 
of word sequences shared by two input sequences, 
considering also gaps, i.e. some of the words of the original 
sentence are skipped. In our case the sequences are pair of 
annotated sentences, i.e. the hypotheses generated by the 
FST-based model. Let  be a word vocabulary, a word 
sequence  is described by ,  selects 
the subsequence  from the -th to the -th 
word. A subsequence  of  is associated with a sequence of 
indexes , with , such 
that  or  for short.  is the distance 
between the first and last word of the subsequence  in , i.e. 

 = . A sequence kernel is defined as: 
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Train set Test set Corpus LUNA 
words concepts words concepts 

Dialogs Woz 183 67 
Dialogs HH 180 - 
Turns Woz 1,019 373 
Turns HH 6,999 - 
Tokens Woz 8,512 2,887 2,888 984 
Tokens HH 62,639 17,423 - - 
Vocabul. Woz 1,172 34 - - 
Vocabul. HH 4,692 49 - - 
OOV rate - - 3.2% 0.1% 

Table 1 Statistics on the LUNA corpus 

where  for some counts 
the number of occurrences of  in the sequence  and 
assigns them the sequence weight  proportional to its 
length. Hence, the above equation returns the sum of all 
common subsequences weighted according to their 
frequency of occurrences and lengths . It is worth to note 
that: (a) longer subsequences receive lower weights. (b) Any 
word subsequence of the original sentence is valid (some 
words can be omitted, i.e. gaps). (c) Gaps determine a 
weight since  is the number of words and gaps between 
the first and last word. For example, given the sentence How 
may I help you ?, sample substrings extracted by the 
Sequence Kernel (SK) are: How help you ?, How help ?, 
help you, may help you ?, etc. 

3.3  Re-Ranking Model 
The FST generates the  most likely concept annotations. 
These are used to build annotation pairs, , which are 

positive instances if si has a lower word error rate than sj, 
with respect to the manual annotation in the corpus and are 
negative instances otherwise. Thus, a binary classifier 
trained on such examples can decide if si is more accurate 
that s

j.  
  A candidate annotation si is described by a word sequence 
where each word is followed by its concept annotation. For 
example, given the sentence:  
ho (I have) un (a) problema (problem) con (with) la (the) 
scheda di rete (network card) ora (now),  
a pair of annotations  could be: 

si
: ho NULL un NULL problema PROBLEM-B con NULL la NULL 

scheda-HW-B di HW-I rete HW-I ora RELATIVETIME-B  
sj

: ho NULL un NULL problema ACTION-B con NULL la NULL 
scheda-HW-B di HW-B rete HW-B ora RELATIVETIME-B  
where NULL, ACTION, RELATIVETIME, and HW are the 
assigned concepts. 
Additionally, we can encode the word-chunking information 
in the sequence by means of the tags B and I, i.e. the usual 
begin and internal tags for concept subparts.  
Note that, the second annotation is less accurate than the 
first since, in it, problema is incorrectly annotated as an 

action and “scheda di rete” is incorrectly split in three 
different concepts. 

Given the above representation, the sequence kernel can 
be used to evaluate the number of common n-grams2 (with 
gaps) between si and sj. More specifically, let  be the pair 

, where s1 and s2 are two annotated sentences. We 
used the following re-ranking kernel:   

 
This schema consisting in summing four different kernels 
has been already applied in [2] for syntactic parsing re-
ranking, where the basic kernel was a tree kernel instead of 
SK. 

4. EXPERIMENTS 
In this section, we describe the corpora, parameters, models 
and the results of our experiments. Our baseline relates to 
FST and SVM error rate. The re-ranking model is based on 
the FST output. Different ways of producing training data 
determine different results. 
4.1. Corpora 
In order to test our model we used a new corpus: 

The corpus LUNA acquired in the related European 
project LUNA is the first Italian corpus of spontaneous 
speech: it reports the help-desk conversation in the domain 
of software/hardware repairing [5]. The data are organized 
in transcriptions and annotations of speech based on a new 
multi-level protocol. Data acquisition is still in progress. 
Currently, 250 dialogs acquired with a WOZ approach and 
of 180 Human-Human (HH) dialogs are available. Statistics 
on LUNA corpus are reported in Table 1. We report 
statistics on the entire corpus for completeness, but we run 
our experiments using only the WOZ dialogs.  
4.2. Experimental Setup 
We split the LUNA corpus in training and test set. Given the 
small size of LUNA corpus, we did not carried out 
parameterization on a development set but we used default 
or a priori parameters.  

We trained all the SCLMs used in our experiments with 
the SRILM toolkit [6] and we used an interpolated model 
for probability estimation with the Kneser-Ney discount [7]. 
We then converted the model in an FST as described in 
Section 2.1. The model used to obtain the SVM baseline for 
concept classification was trained using YamCHA [8]. For 
the re-ranking model using string kernel we used the SVM-
Light-TK toolkit [12] (available at dit.unitn.it/moschitti). 
For λ (see Section 3.2), cost-factor and trade-off parameters, 
we used, 0.4, 1 and 1, respectively. 
4.3. Training approaches 

The FST model generates the m-best annotations, i.e. the 
data used to train the re-ranker based on SVMs and SK. 
Different training approaches can be carried out according  
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WOZ                  Corpus 
Approach MT ST 
FST 23.2% 23.2% 
SVM 26.7% 26.7% 
RR - A 19.1% 16.1% 
RR - B 19.0% 19.0% 
RR - C 19.1% 16.6% 

Table 2 Results of experiments (CER) using FST and SVM on the 
LUNA WOZ corpus 

to the use of the corpus and the method to generate the m-
best. We apply two different methods for training: 
Monolithic Training and Split Training.  

In the former, FSTs are learned with the whole training 
set. The m-best hypotheses generated by such models are 
then used to train the re-ranker classifier. 

In Split Training, the training data are divided in two parts 
to avoid bias in the FST generation step. More in detail, we 
train FSTs on part 1 and generate the m-best hypotheses 
using part 2. 

Then, we re-apply these procedures inverting part 1 with 
part 2. Finally, we train the re-ranker on the merged m-best 
data. At the classification time, we generate the m-best of 
the test set using the FST trained on all training data. 

Regarding the generation of the training instances , 
we set m to 10 and we choose one of the 10-best hypotheses 
as the second element of the pair, sj, thus generating 10 
different pairs. The first element instead can be selected 
according to three different approaches: (A): si is the manual 
annotation taken from the corpus; (B) si is the most accurate 
annotation, in terms of the edit distance from the manual 
annotation, among the 10-best hypotheses of the FST 
model; and (C) as for (B) but si is selected among the 100-
best hypotheses. The pairs are also inverted to generate 
negative examples 
4.4. Results 
All the results of our experiments, expressed in terms of 
concept error rate (CER), are reported in Table 2. In the 
header are reported the corpus and the training approach 
used, i.e. Monolithic Training (MT) and Split Training (ST). 
Column 1 shows the concept classification model used, i.e. 
the baselines FST and SVM, and the re-ranking models 
(RR) applied to FST. A, B and C refer to the three 
approaches for generating training instances described 
above. 
We note that: first, using our corpus of WOZ dialogs, the 
baseline CER of FST and SVMs models are 23.2% and 
26.7%, respectively.   

Second, the re-ranking models using different training 
approaches, A, B and C, produce a remarkable improvement 
on LUNA WOZ, e.g. form 23.2% to 16.1% using split 
training and A method for data generation. This corresponds 
to an enhancement of roughly 30% of the baseline.  

Finally, since our corpus is new no previous result is 
available for comparison with other approaches. However, 
we computed our baseline with the SVM and FST models, 

which have been shown to reach state-of-the-art results 
[1][11]. 

5. CONCLUSIONS 
In this paper, we propose discriminative re-ranking of 
concept annotation to capitalize from the benefits of 
generative and discriminative approaches. Our generative 
model (FST) is the state-of-the-art in concept classification 
as shown in [1]. We show that, using our re-ranking model, 
it can be improved by 7 points (until 30% of relative 
improvement). 

It should be noted that the design of our re-ranker is only 
based on a sequence kernel. Kernel Methods have shown 
that combinations of feature vectors, sequence kernels and 
other structured kernels, e.g. on shallow or deep syntactic 
parse trees, provide much more accurate model. Thus the 
design of more complex kernels appears to be a promising 
research line. Also, the experimentation with automatic 
speech transcriptions is interesting since it can show if our 
approach is robust to transcription errors. 

Finally, as future work, we would like to apply our model 
on well-known corpora such as MEDIA and ATIS to 
provide results directly comparable with other models, in 
particular with the methods used in [11]. 
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