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Abstract

Designing models for learning textual entailment recognizers from annotated examples is not

an easy task, as it requires modeling the semantic relations and interactions involved between

two pairs of text fragments. In this paper, we approach the problem by first introducing the

class of pair feature spaces, which allow supervised machine learning algorithms to derive

first-order rewrite rules from annotated examples. In particular, we propose syntactic and

shallow semantic feature spaces, and compare them to standard ones. Extensive experiments

demonstrate that our proposed spaces learn first-order derivations, while standard ones are

not expressive enough to do so.

1 Introduction

Automatically learning models from training examples is a very attractive way

to solve many complex tasks in natural language processing (NLP). Learning

algorithms generally discover important information which could be otherwise only

manually encoded in rule-based systems. In recent work, they have shown a good

level of accuracy for most natural language tasks: part-of-speech tagging, named

entity recognition, word-sense disambiguation, and semantic role labeling.

Regarding the Recognizing Textual Entailment (RTE) challenges (Bar-Haim et al.

2006; Dagan, Glickman and Magnini 2006; Giampiccolo et al. 2007), supervised

machine learning (ML) models have proved to be particularly successful in solving

the task, despite the fact that their application to RTE is difficult, as textual

entailment is an extremely complex natural language phenomenon. Generally, NLP

tasks require a classifier to assign the correct label to a target text fragment, looking

at its context. For example, in semantic role labeling (e.g., see Gildea and Jurafsky

2002; Carreras and Màrquez 2005), the goal is to assign the correct role to a relevant

text fragment with respect to a set of possible roles (e.g., Agent, Patient). For this
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purpose, a model of the context of the fragment, at a specific level of linguistic

representation (e.g., bag-of-word models or syntactic interpretations) is typically

used. In contrast, textual entailment recognition requires processing two different

texts between which complex semantic/syntactic relations hold, and the goal is to

classify such relations as true or false entailment. Typical bag-of-word models are

not useful to capture the knowledge needed by the learning algorithms.

In this paper we propose a solution to the above problem, by introducing a new

type of feature space, the pair feature space, which allows learning algorithms to

exploit the relations between a text (T ) and a hypothesis (H).

To explain the novelty of our approach, we first analyze what type of knowledge a

general RTE model needs for solving the task and explain how learning algorithms

typically learn it (Section 2). In Section 2.1 we introduce the notion of ground rewrite

rules (rules without variables) and first-order rewrite rules (rules with variables) and

describe how they are used by rule-based systems. In Section 2.2 we show that

ML algorithms can learn some of these rules, using different types of feature

spaces. Accordingly, we propose a classification of feature spaces in four types: the

similarity, the entailment trigger, the content, and the pair content feature spaces. We

will demonstrate that none of these spaces offers the possibility to learn first-order

rewrite rules, which are those that more effectively model the relations between T

and H .

In Section 3, we will propose our solution to learn first-order rewrite rules or

first-order rewrite derivations via the pair feature space. This space is based on the

notion of placeholders, which explicitly model relations between T and hypothesis

H . Pairs enriched with placeholders help ML algorithms to extract and exploit first-

order rewrite rules from training examples and to apply them to classify new ones.

In Section 4 we describe an extension of the model, integrating shallow semantic

information. Finally, in Section 5, we experiment with our models and show that the

pair feature space helps in exploiting first-order rewriting rules implicitly defined in

training examples.

2 RTE models and supervised ML

Many approaches to RTE rely on rewrite rules to detect entailment between text

and hypothesis. Such rules are built at different linguistic levels: lexical, syntactic,

and semantic. We here aim at drawing a second important distinction, between

ground and first-order rewrite rules. The former are rules that do not allow the use

of variables, while the latter do. A ground rewrite rule can be applied to detect

implications in a very small set of cases, e.g., ‘The sun emits UVA rays ’→ ‘Tanning

can expose to health risks ’. On the contrary, a first-order rewrite rule can be applied

to many entailment examples, e.g., ‘X killed Y ’→ ‘Y died ’.

These rules thus offer an appealing level of generalization that can be exploited

while either hand-crafting or automatically learning rules for RTE. Modeling feature

spaces that allow ML algorithms to discover first-order rewrite rules is not easy, as

we show hereafter.
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In the remainder of this section, we briefly outline typical rule-based approaches

for RTE (Section 2.1) and classify existing feature spaces according to the kind

of rules they encode (Section 2.2). We show that existing feature spaces do not

fully exploit first-order rewrite rules encoded in training examples, as this needs the

introduction of variables in the feature space. This last point is the main contribution

of our paper, and it will be described in Section 3.

2.1 Rewrite rules and rule-based systems

Ground and first-order rewrite rules are largely used to encode knowledge in RTE

systems, operating at different levels of interpretation: lexical, syntactic, or semantic.

Ground rewrite rules transform a text into a new text. The object of the trans-

formation appears in the rules as a ground atom. Thus, for any transformation a

different rule is needed. Most RTE systems apply ground rules at the lexical level

(e.g., de Salvo Braz et al. 2005a) transforming a word into a new entailed word (e.g.,

chairman→ president) or a sequence of words into a new sequence. At the syntactic

level, they typically transform syntactic structures (e.g., parse-trees portions) into

new ones (Kouylekov and Magnini 2005). At the semantic level they can transform

predicative structures. Ground rewrite rules suffer from the limitation that they

can encode only non-generalized knowledge. For example, the rule ‘Oswald killed

JFK ’→ ‘JFK died ’ models a commonly agreed non-generalized piece of knowledge.

Yet, it would be more effective to rely on the generalized knowledge that if ‘someone

kills someone else’, then ‘someone else dies ’.

First-order rewrite rules solve the previous problem, by introducing variables. In

the above example, the generalized knowledge would be captured by the rule ‘X

killed Y ’→ ‘Y died ’, where the Y on one side of the rule is unified with that on the

other side of the rule. Another example is the rule modeling the predicative reading

of an apposition:

ρ1 =

NP

NP X ,

,

NP Y ,

,

→

S

NP X VP

VBZ

is

NP Y

First-order rewrite rules are mostly exploited at the lexical level (e.g., Marsi, Krahmer

and Bosma 2007) or at the syntactic level (e.g., de Salvo Braz et al. 2005a) to represent

structured knowledge of manually built (e.g., FrameNet; Baker, Fillmore and Lowe

1998) or automatically acquired (e.g., Lin and Pantel 2001) lexical databases. These

rules thus offer an appealing level of generalization to encode knowledge for RTE.

The design of rule-based RTE systems encoding ground or first-order rules is

particularly expensive, for two main reasons: (i) The complete coverage of the

entailment phenomenon may require large sets of specific rules; (ii) rewrite rules are

written at a given language interpretation level: good rules applied at wrong levels

of sentences interpretation can lead to wrong decisions.

Typical approaches address these problems using a weighting schema. A weight is

assigned to each rule when rules are applied to transform the text into the hypothesis.
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These rule weights are used to compute a score for the overall transformation,

representing the validity of the whole process. A manually derived threshold is then

applied to the score to determine the polarity of the entailment.

2.2 ML models for RTE

ML algorithms can alleviate the rule design process described in the previous section

in two ways: (1) determining the weight of known rules and the threshold of the

overall process; (2) discovering previously unknown rules. The major issue in using

ML approaches is the definition of a representation of text and hypothesis which

allows for an effective learning of the entailment recognition rules. In other words,

we need to define features able to capture the knowledge enclosed in the typical

rewrite rules used by rule-based systems.

By carefully examining previous work, we note that most ML-based systems for

RTE perform one of the following functions: (i) apply similarity measures between

text (T ) and hypothesis (H) (Corley and Mihalcea 2005; Newman et al. 2005; Hickl

et al. 2006); (ii) extract content from the T and H pairs (Zanzotto and Moschitti

2006); (iii) define rules that strongly suggest the implications (triggers) (de Marneffe

et al. 2006; MacCartney et al. 2006); or (iv) extract more general features, e.g., word

or syntactic construction pairs, that describe all the possible rewrite rules encoded

in pairs.

According to the above classification, we define four different types of feature

spaces: similarity space, content, entailment trigger, and paired-content feature

spaces.

2.2.1 Similarity feature space

In this space, the basic hypothesis is that if two sentences are similar, then they are

likely to be in entailment. Similarity between T and H can be captured in different

ways and at different levels (lexical, syntactic, and semantic) (e.g., Inkpen, Kipp and

Nastase 2006). Each feature encodes a different similarity between T and H . Most

RTE systems use a feature space at the lexical level (hereafter called lex space).

For example, a feature could count the percentage of content words of H that are

equal to words in T or that are semantically related to words in T (e.g., Corley and

Mihalcea 2005). Another feature could model the length of the longest common

subsequence (LCS) between T and H (e.g., Newman et al. 2005; Hickl et al. 2006):

the longer the LCS, the more likely it is that the meaning of H is included in the

meaning of T . At the syntactic level, a feature could represent the percentage of

dependencies that H has in common with T (as in Haghighi, Ng and Manning

2005; Pazienza, Pennacchiotti and Zanzotto 2005) or the longest common subtree

between H and T (Katrenko and Adriaans 2006). At the semantic level, a feature

could be the percentage of semantic relations of H shared with T .

In terms of rewriting rules, these feature spaces generally exploit lexical ground

rules such as those that connect semantically related words and, basically, only one

first-order rule, i.e., the identity rule that transforms X→X.
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Limits. The similarity feature space produces effective entailment classifiers but

is not sufficient to model RTE: the fact that two texts are similar does not always

imply that they are in entailment. For example, at the lexical level, if fragments

differ only by the presence of a negation, they are not in entailment, even if their

lexical similarity is very high. Similarly, at the syntactic level, two very dissimilar

fragments can be still in entailment when a syntactic alternation takes place (e.g.,

active/passive, paraphrases) or when downward and upward monotonicity is involved,

as in the following example:

T2 ⇒ H2

T2 ‘At the end of the year, all solid companies pay dividends ’

H2 ‘At the end of the year, all solid insurance companies pay dividends.’

T3 � H3

T3 ‘At the end of the year, all solid companies pay dividends ’

H3 ‘At the end of the year, all solid companies pay cash dividends.’

In the example, T2 entails H2 but it does not entail H3: in a lexical similarity feature

space, these two examples would have the same vector.

2.2.2 The content feature space

Similarity feature spaces constrain the description of entailment phenomena to

simple similarity. These spaces are then unable to describe properties which are

contained in T or H . The content feature space (hereafter cont) aims at solving

this drawback by modeling the content of T and H . This can include lexical,

syntactic, or semantic features of the two fragments. Specifically, T and H are

separately represented by two distinct and independent sets of features. The ma-

jor advantage of this space is that rewrite rules can be automatically learned

from a training set and successively applied to determine the polarity of a test

pair.

For example, consider the space of syntactic subtrees F. The features are the set

of all subtrees h ∈ F of H and the set of all subtrees t ∈ F of T . Such space is

useful for solving complex cases that cannot be processed in other ones, like the

examples (T2, H2) and (T3, H3) reported in Section 2.2.1. Let us assume that the T
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and the H of the two examples are represented as syntactic trees, as follows:

T4 ⇒ H4

S

NP

DT

All

JJ

solid

NNS

companies

VP

VBP

pay

NP

NNS

dividends

S

NP

DT

All

JJ

solid

NN

insurance

NNS

companies

VP

VBP

pay

NP

NNS

dividends

T5 � H5

S

NP

DT

All

JJ

solid

NNS

companies

VP

VBP

pay

NP

NNS

dividends

S

NP

DT

All

JJ

solid

NNS

companies

VP

VBP

pay

NP

JJ

cash

NNS

dividends

While in the similarity feature space (T4, H4) and (T5, H5) are identical, here they are

represented by two different feature vectors, since H4 and H5 have different syntactic

structures (‘all solid insurance companies ’ is different from ‘all solid companies ’ and

‘dividends ’ is different from ‘cash dividends ’). If we then want to classify the example

T6 ⇒ H6

S

PP

IN

In

NP

NN

automn

,

,

NP

DT

all

JJ

brown

NNS

leaves

VP

VBP

fall

S

PP

IN

In

NP

NN

automn

,

,

NP

DT

all

JJ

brown

NN

maple

NNS

leaves

VP

VBP

fall

T and H structures are globally more similar (i.e., in terms of number of common

tree fragments) to (T4, H4) than to (T5, H5).

These feature spaces model independently the right-hand side and the left-hand

side of ground rewrite rules. ML algorithms can learn both new ground rules or

ground rule fragments and their associated weights.

Limits. Since the feature spaces of T and H are independent, rules that exploit the

relations between some properties of T and some properties of H cannot be derived;

i.e., most of the properties should be matched to trigger the selection of the best

representative training example. For example, the pair ‘Oswald killed JFK ’→ ‘JFK

died ’ cannot be used to determine the polarity of ‘Oswald killed JFK by shooting

him several gun bullets ’, ‘JFK died ’, since there is too much difference in terms of

syntactic/semantic content in the fragments.
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2.2.3 The entailment trigger feature space

A limit of the previous space is that it does not extract joint features from a

(T ,H) pair. The entailment trigger feature space (hereafter trig) overcomes such a

limitation (along with those of the similarity feature space) by modeling complex

relations between T and H . The underlying hypothesis is that entailment holds (or

does not) if specific rewrite rules (i.e., triggers) stand between T and H . Triggers

can be either positive or negative, if they respectively suggest entailment or don’t.

Each feature of the space represents a specific trigger; i.e., its value can be 0 or 1

whether the trigger is present or not in the given (T ,H) pair. This approach has

been successfully explored in de Marneffe et al. (2006) and MacCartney et al. (2006)

by means of the following triggers:

• Polarity features. Presence/absence of negative polarity contexts (not, no or

few, without), as in ‘Oil price surged ’ � ‘Oil prices didn’t grow ’.

• Antonym features. Presence/absence of antonymous words in T and H. These

features capture cases such as ‘Oil price is surging ’ � ‘Oil prices is falling

down ’.

• Adjunct features. Dropping/addition of syntactic adjunct when moving from

T to H, as in ‘all solid companies pay cash dividends ’→ ‘all solid companies

pay dividends ’.

• Passive features. Presence/absence of a transformation from active to passive,

moving from T to H or vice versa.

These feature spaces model specific ground or first-order rewrite rules. ML

algorithms learn the weights of the rules and the final threshold to apply.

Limits. The trigger feature space has two limitations: (1) rules should be all

known and hand-coded in advance; (2) rule composition cannot be explicitly stated,

since features are flat and independent entities—i.e., the feature space can only

model that two triggers are true, but cannot directly express the fact that one trigger

must be applied before another in order to predict a true or false entailment.

2.2.4 The paired-content feature space

Similarly to the cont space, the underlying hypothesis of the paired-content feature

space (hereafter p cont) is that evidence of entailment (rules and distances) should

emerge directly from the explicit content of T and H , instead of being manually

coded a priori. Yet, here T and H are not represented by two independent feature

sets. Instead, in this space a (T ,H) pair is represented by pairs of features from T

and H so that the learner can acquire ground rewrite rules (i.e., relational properties

between the two texts). The paired content can be either a lexical, a syntactic, or a

semantic representation of the two fragments.

As an example, consider the space of syntactic subtrees F introduced in the

previous section; p cont is the set of subtree pairs 〈t, h〉 ∈ F ×F, where t and h

are two subtrees of T and H respectively. Some meaningful pairs may suggest the
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syntactic properties, e.g., triggers, which T and H must have to be in an entailment

relation. This allows to overcome the limits of the cont space, since only the properties

of H and T that model a useful trigger are matched. For example, suppose that H5

contains an irrelevant part (e.g., ‘All solid companies pay cash dividends, but other

companies do not ’). In cont, H6 would now result more similar to H4 than to H5

because it shares a higher percentage of subtrees with H4. The entailment prediction

of the system would then be incorrect. Instead in the p cont space, the model for

(T4, H4) contains the feature (fragment pair)

ρ7 =

S

NP

DT

all

JJ NNS

VP

VBP

→

S

NP

DT

all

JJ NN NNS

VP

VBP

which does not depend on any additional content. This feature is also present in

the feature space of (T6, H6), but not in (T5, H5), suggesting that (T6, H6) is correctly

more similar to (T4, H4). In this case, the above feature can be then considered as a

ground rewrite rule.

The p cont space models ground rewrite rules. According to the learning examples,

ML algorithms select interesting rules, learn the associated weights, and determine

the final threshold to apply.

Limits. The paired-content feature space allows learning only ground rewrite

rules. To learn first-order rewrite rules we need to introduce variables in the text

representation, i.e., by making explicit the relations between elements in the texts

and elements in the hypotheses. As it is, p cont can induce incomplete or erroneous

rewrite rules. For example, consider the following entailment pair:

T8 ⇒ H8

T8 ‘Yahoo bought Overture’

H8 ‘Yahoo owns Overture’

When p cont is built on syntactic structures, it contains (among the others) the

structure pair

ρ9 =

S

NP

NNP

VP

VBP

bought

NP

→

S

NP

NNP

VP

VBP

owns

NP
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This may be an important entailment trigger. The problem is that this trigger is

contained in both the following entailment cases:

T10 ⇒ H10

T10 ‘Wanadoo bought KStones ’

H10 ‘Wanadoo owns KStones ’

T11 � H11

T11 ‘Wanadoo bought KStones ’

H11 ‘KStones owns Wanadoo’

where T10 entails H10 whereas T11 does not entail H11.

This suggests that ground feature pairs (rules) are not powerful enough to

generalize different examples. In contrast, with the use of variables, first-order

rewrite rules solve the problem; e.g., the rule

ρ12 =

S

NP

NNP X

VP

VBP

bought

NP

NNP Y

→

S

NP

NNP X

VP

VBP

owns

NP

NNP Y

applies (belong) to only the first example.

3 Learning first-order rules in a syntactic paired-content feature space

In the previous section we presented four different feature spaces along with their

limits and properties. It is interesting to notice that in terms of expressiveness, the

similarity and the content feature spaces (lex and cont) are orthogonal and can

be both included in the trigger feature space. With the latter, we mean a space in

which features/rules are manually selected at the underlying representation layer,

e.g., syntactic parse trees or shallow semantic structures, of (T ,H).

Moreover, the p cont space learns (i.e., generates) ground rules in terms of feature

pairs. In order to allow it to model first-order rules, we need to introduce variables

in the representation layer. To do so, we use kernel methods and support vector

machines (SVMs). In this framework, we define a space and the related kernel

function which allows to extract and exploit first-order rewrite rules from annotated

examples.

The remainder of this section is organized as follows: first, we introduce the idea

of learning first-order rewrite rules (Section 3.1); second, we describe how a pair

feature space including variables can be obtain from examples (Section 3.2); third,

we discuss how to obtain these feature spaces by using kernel functions (Section 3.3).
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3.1 Learning first-order rewrite rules

Our proposal for learning first-order rewrite rules stems from the observation that

the trig and the p cont spaces are strictly related. Indeed, if we restrict trig to model

only ground rewrite rules, then it represents a subset of p cont. For example, the

trig

ρ13 =

NP

NP ,

,

NP ,

,

→

S

NP VP

VBZ

is

NP

is included in the syntactic content feature space (defined in Section 2.2.4), as it

models the corresponding feature:

〈
NP

NP ,

,

NP ,

,

,

S

NP VP

VBZ

is

NP

〉

As shown in the previous sections, typical handcraft rules contain variables. Thus,

to obtain the same expressiveness of the entailment trigger feature space with the

paired-content feature space, we need to find a way to include variables as content.

This allows ML algorithms to learn first-order rules implicitly described in training

examples. In such space a pair 〈T ,H〉 is represented as follows:

P = {〈ft, fh〉 : ft ∈ G(T ), fh ∈ G(H)} (1)

where G(T ) and G(H) are the sets of features derivable from a structured represent-

ation of T and H . If in G(T ) and G(H) variables are somehow defined, each pair

〈ft, fh〉 represents in general a first-order derivation described in the (T ,H) example.

3.2 Three syntactic pair feature spaces

We have shown that the p cont space is the most promising to encode effective

knowledge for Textual Entailment (TE). However, as different linguistic levels can

be adopted to represent T and H (lexical, syntactic, semantic), we here need to

choose the most relevant, in order to better focus our study.

For this purpose, we note that a large part of the entailment cases depend on the

syntactic structure of T and H (Vanderwende and Dolan 2006). More specifically,

grammar rules are most useful, as they can reduce data sparseness by generalizing

word sequences expressed with the same syntax. In our case, the set P in (1) can

be generalized by using syntactic derivations (i.e., the sequence of production rules)

that in turn generate word sequences in the training examples.

We here present three feature spaces (which are subsets of the more general

paired-content feature space) that capture the above intuition: a ground syntactic

rule feature space and two first-order syntactic rule feature spaces. The first space is

used as the basis space to define the other two.
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3.2.1 A ground syntactic rule feature space

The syntactic paired-content feature space (synt) models entailment pairs using the

set of tree fragment pairs (for an example of different fragment types see Moschitti

2006a), similar to the syntactic content feature space. A pair 〈T ,H〉 is represented as

follows:

P τ = {〈τt, τh〉 : τt ∈ F(T ), τh ∈ F(H)} (2)

where F(·) indicates the set of fragments of the sentence parse tree given as

argument. For instance, given T4 and H4 of the example in Section 2.2.4, we have

the following relational description:

P τ = { 〈

S

NP

NNP

VP

VBP

bought

NP

NNP

,

S

NP

NNP

VP

VBP

owns

NP

NNP

〉 , 〈 S

NP VP

,
S

NP VP

〉 , 〈

S

NP VP

VBP

bought

NP

NNP

,

S

NP VP

VBP

owns

NP

NNP

〉 , . . . }

This clearly models ground rewrite derivations between T and H; e.g., the pair

〈[VP [VBP bought] [NP]], [VP [VBP own] [NP]]〉 models the ground rewrite rule [VP [VBP bought]

[NP]]→ [VP [VBP own] [NP]].

3.2.2 Two first-order syntactic rule feature spaces

In this section, we have proposed two first-order syntactic rule feature spaces: the

syntactic pair feature space with placeholders in the preterminal nodes (plac basic)

and the syntactic pair feature space with propagated placeholders (plac all).

plac basic. This space introduces variables in the pairs, by applying an anchoring

algorithm, which works as follows.

Before deriving the tree fragments we augment the syntactic tree with place-

holders. A placeholder is a label assigned to an anchor. Anchors are nodes

from τt and τh dominating the same (or similar) information. As many other

approaches (e.g., Corley and Mihalcea 2005; Glickman, Dagan and Koppel 2005),

our anchoring model is based on a similarity measure between words simw(wt, wh).

Specifically, we anchor the content words (verbs, nouns, adjectives, and adverbs)

in the hypothesis WH to words in the text WT , by using a two-step greedy

algorithm.

In the first step, each word wh in WH is connected to all words wt in WT that

have the maximum similarity simw(wt, wh) with it. (More than one wt can have the

maximum similarity with wh.) As result, we have a set of anchors A ⊂ WT ×WH ;

simw(wt, wh) is computed by means of three techniques:

(1) Two words are maximally similar if they have the same surface form, wt = wh.

(2) Otherwise, WordNet (Miller 1995) similarities (as in Corley and Mihalcea 2005)

and different relation between words such as verb entailment and derivational

morphology are applied.
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(3) The edit distance measure is finally used to capture the similarity between

words that are missed by the previous analysis (for misspelling errors or for

the lack of derivational forms in WordNet).

In the second step, we select the final anchor set A′ ⊆ A, such that ∀wt (or wh)

∃!〈wt, wh〉 ∈ A′. The selection is based on a simple greedy algorithm. Given two pairs

〈wt, wh〉 and 〈w′t, wh〉 to be selected and a pair 〈st, sh〉 already selected, the algorithm

considers word proximity (in terms of number of words) between wt and st and

between w′t and st, and it chooses the nearest word.

Once the set A′ is found, anchors are encoded in the syntactic trees with

placeholders. Placeholders are put on the preterminal nodes of the anchored words.

For example, the pair (T10, H10) can be augmented with placeholders as follows:

T14 ⇒ H14

S

NP

NNP X

Wanadoo

VP

VBP

bought

NP

NNP Y

KStones

S

NP

NNP X

Wanadoo

VP

VBP

owns

NP

NNP Y

KStones

We then obtain the following richer representation based on fragment pairs:

P τp ={ 〈

S

NP

NNP X

VP

VBP

bought

NP

NNP Y

,

S

NP

NNP X

VP

VBP

owns

NP

NNP Y

〉 , 〈 S

NP VP

,
S

NP VP

〉 ,

〈

S

NP VP

VBP

bought

NP

NNP Y

,

S

NP VP

VBP

owns

NP

NNP Y

〉 ,. . . }

Placeholders (or variables) X and Y specify that the NNPs labeled by the same

variables dominate similar or identical words. The first pair of the set Pτp describes

a first-order rewriting derivation between T and H . Therefore a similar but negative

entailment example

T15 � H15

S

NP

NNP X

Wanadoo

VP

VBP

bought

NP

NNP Y

KStones

S

NP

NNP Y

KStones

VP

VBP

owns

NP

NNP X

Wanadoo
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will have a different P τp representation:

{ 〈

S

NP

NNP X

VP

VBP

bought

NP

NNP Y

,

S

NP

NNP Y

VP

VBP

owns

NP

NNP X

〉 , 〈 S

NP VP

,
S

NP VP

〉 ,

〈

S

NP VP

VBP

bought

NP

NNP Y

,

S

NP VP

VBP

owns

NP

NNP X

〉 ,. . . }

Placeholders are inverted, as the subject of T15 is identical to the object of H15 and

not vice versa. Although some of the components of such pairs can still be matched

with those from T14 and H14, a large part of the pairs (the actual features) are

not matched. This suggests that the learning algorithm uses very different features

representing different first-order rewrite rules.

It should be noted that the pair 〈[S [NP VP]], [S [NP VP]]〉 still belongs to both examples.

This depends on the fact that placeholders are only located on preterminal symbols,

whereas NP and VP are more internal.

plac all. In order to further differentiate relational features, in plac all placeholders

are allowed to climb toward the root, according to the following policy: The

constituent nodes in the syntactic trees take the placeholder of their semantic heads,

so that any subtree will contain relational information. For example, in the more

complex entailment pairs

T16 ⇒ H16

S

NP 1

NP 1

DT

the

NN 1

president

PP 2

IN

of

NP 2

NNP 2

Miramax

VP

VBP

bought

NP 3

DT

a

NN 3

castle

S

NP 1

NP 1

DT

the

NN 1

president

PP 2

IN

of

NP 2

NNP 2

Miramax

VP

VBZ

owns

NP 3

DT

a

NN 3

castle

placeholders are propagated toward the root, and when there is a collision between

the placeholder of a constituent, e.g., the NP containing the head, and the placeholder

of another constituent, e.g., PP, the former is preferred.

Relational information between important concepts of text and hypothesis is

described by plac basic and plac all. However, there are two computational problems

that need to be solved:

• The number of relational fragment pairs is exponential, since also the number

of fragments is exponential in the number of words in T and H . Similar

problems are usually tackled by extracting only a small subset of relevant

features. Unfortunately, in our case the phenomenon to be modeled is too

complex to allow the identification of such a subset. We then apply a novel
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Fig. 1. A syntactic parse tree.

approach, using kernel methods to implicitly generate such huge spaces. In

the next section, we present syntactic tree kernels (e.g., Collins and Duffy

2002), which allows the generation of all possible fragments of texts and

hypothesis.

• Placeholders used to describe a (T ,H) pair may not be comparable with

placeholders used in a second pair; e.g., a pair may have more placeholders

than the other. Thus, when comparing the fragment pairs from one instance,

we need to find the optimal correspondences with the sets of placeholders

of the second instance. Section 3.3.3 shows our approach embedded in tree

kernel functions.

3.3 Kernels for the syntactic paired-content feature spaces

The size of the above feature spaces is exponential. Kernel functions offer the

possibility to define implicitly these spaces. In this section we propose a kernel

function to define the ground and first-order spaces. We first introduce the tree

kernel functions in Section 3.3.1. Then, we describe how we use this function to

define kernels for synt (Section 3.3.2) and for plac basic and plac all (Section 3.3.3).

3.3.1 Tree kernel functions

Tree kernels represent trees in terms of their substructures (fragments) which are

mapped into feature vector spaces, e.g., n. A kernel function measures the similarity

between two trees by counting the number of their common fragments. For example,

Figure 1 shows some substructures for the parse tree of the sentence ‘book a flight’.

The main advantage of tree kernels is that to compute the substructures shared by

two trees τ1 and τ2, the whole fragment space is not used. In the following, we report

the formal definition presented in Collins and Duffy (2002).

Given the set of fragments {f1, f2, . . .} = F, the indicator function Ii(n) is equal

to 1 if the target fi is rooted at node n and 0 otherwise. A tree kernel is then defined
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as

TK(τ1, τ2) =
∑

n1∈Nτ1

∑

n2∈Nτ2

Δ(n1, n2) (3)

where Nτ1
and Nτ2

are the sets of the τ1’s and τ2’s nodes, respectively, and Δ(n1, n2) =∑|F|
i=1 Ii(n1)Ii(n2). The latter is equal to the number of common fragments rooted in

the n1 and n2 nodes, and Δ can be evaluated with the following algorithm:

(1) if the productions at n1 and n2 are different, then Δ(n1, n2) = 0;

(2) if the productions at n1 and n2 are the same, and n1 and n2 have only leaf

children (i.e., they are preterminal symbols), then Δ(n1, n2) = 1;

(3) if the productions at n1 and n2 are the same, and n1 and n2 are not pre-

terminals, then

Δ(n1, n2) =

nc(n1)∏

j=1

(1 + Δ(cjn1
, cjn2

)) (4)

where nc(n1) is the number of the children of n1 and cjn is the jth child of the node

n. Note that since the productions are the same, nc(n1) = nc(n2).

Additionally, we add the decay factor λ by modifying steps (2) and (3) as follows:1

(2) Δ(n1, n2) = λ,

(3) Δ(n1, n2) = λ

nc(n1)∏

j=1

(1 + Δ(cjn1
, cjn2

)).

The computational complexity of (3) is O(|Nτ1
|×|Nτ2

|), although the average running

time tends to be linear (Moschitti 2006a).

The next section shows a technique to assign the same placeholders to similar text

and hypothesis pair.

3.3.2 Kernel for the ground rule space

Given the above tree kernel functions, the definition of a kernel Ks(〈T ,H〉, 〈T ′, H ′〉)
for a ground syntactic rule feature space (i.e., synt) is

Ks(〈T ,H〉, 〈T ′, H ′〉) = TK(T ,T ′)× TK(H,H ′) (5)

Also, the p cont space can be simply obtained using the product (see Moschitti

and Zanzotto 2008 for a detailed explanation). Unfortunately (and surprisingly)

when huge kernel spaces are multiplied according to the Cartesian product, the

resulting number of features is extremely high, and also a robust algorithm like

SVMs becomes subject to the curse of high dimensionality. In other words, too

many irrelevant features make those relevant ineffective.

The solution of this problem for TE is proposed in Zanzotto and Moschitti (2006)

and Moschitti and Zanzotto (2007) and reported in the next section (see (6)). It is

1 To have a similarity score between 0 and 1, we also apply the normalization in the kernel

space, i.e., K ′(τ1, τ2) = TK(τ1 ,τ2)√
TK(τ1 ,τ1)×TK(τ2 ,τ2)

.
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possible to show2 that placeholders determine a link between the fragments of the

text and the hypothesis, which are produced by two distinct tree kernels and merged

by the simple kernel sum. This allows us to approximate the paired feature space.

The advantage is that only the fragments marked by placeholders (i.e., those very

interesting for the target problem) will be paired. This reduced number of feature

pairs is easily manageable by SVMs. As we want to compare the synt space with

the plac basic and plac all, we adopted the same approximation in the computation

of the kernel in (5); i.e., we use the sum instead of the product.

3.3.3 Matching placeholder-based features

Defining kernel functions for plac basic and plac all is not trivial. Tree kernels

applied to two texts or two hypotheses match identical fragments. When placeholders

are added to trees as in plac basic and plac all, the labeled fragments are matched

only if the basic fragments and the assigned placeholders match. For example, let

us compare the pair (T16, H16) of Section 3.2 with the following (T10, H10):

T17 ⇒ H17

S

NP 1

NNP 1

Wanadoo

VP

VBP

bought

NP 2

NNP 2

KStones

S

NP 1

NNP 1

Wanadoo

VP

VBP

owns

NP 2

NNP 2

KStones

The two pairs share many common features such as

〈

S

NP X VP

VBP

bought

NP Y

,

S

NP X VP

VBP

owns

NP Y

〉

Yet, a simple use of the tree kernel function can lead to missing these common

features. In (T16, H16) Y is 3 while in (T17, H17) it is 2 . To detect this feature with

simple tree kernel functions we need to find a correct mapping between placeholders

in (T16, H16) and in (T17, H17). It is straightforward to note that the correspondences

1=1 and 3=2 allow more substructures (i.e., large part of the trees) to be identical.

Although, there may be several approaches to accomplish this task, we apply a

basic heuristic which is very intuitive:

Choose the placeholder assignment that maximizes the tree kernel function over all

possible correspondences.

More formally, let A and A′ be the placeholder sets of 〈T ,H〉 and 〈T ′, H ′〉,
respectively; without loss of generality, we consider |A| ≥ |A′|, and we align a subset

2 Although interesting, this aspect is beyond the purpose of this paper.
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of A with A′. The best alignment is the one that maximizes the syntactic and lexical

overlapping of the two subtrees induced by the aligned set of anchors. By calling C

the set of all bijective mappings from S ⊆ A, with |S | = |A′|, to A′, an element c ∈ C

is a substitution function. We define the best alignment cmax the one determined

by

cmax = argmaxc∈C(TK(t(T , c), t(T ′, i)) + TK(t(H, c), t(H ′, i))

where (i) t(·, c) returns the syntactic tree enriched with placeholders replaced by

means of the substitution c, (ii) i is the identity substitution, and (iii) TK(τ1, τ2)

is a tree kernel function (e.g., the one specified by (3)) applied to the two trees τ1

and τ2.

At the same time, the desired similarity value to be used in the learning algorithm is

given by TK(t(T , cmax), t(T
′, i))+TK(t(H, cmax), t(H

′, i), i.e., by solving the following

optimization problem:

Kp(〈T ,H〉, 〈T ′, H ′〉) = maxc∈C(TK(t(T , c), t(T ′, i)) + TK(t(H, c), t(H ′, i)) (6)

As a final remark, it should be noted that (a) Ks(〈T ,H〉, 〈T ′, H ′〉) is a symmetric

function, since the set of derivation C are always computed with respect to the pair

that has the largest anchor set, and (b) it is not a valid kernel, as the max function

does not in general produce valid kernels. However, in Haasdonk (2005), it is shown

that when kernel functions are not positive semidefinite like in this case, SVMs still

solve a data separation problem in pseudo-Euclidean spaces. The drawback is that

the solution may be only a local optimum. Nevertheless, such a solution can still be

valuable, as the problem is modeled with a very rich feature space.

3.4 Refining cross-pair syntactic similarity

The efficiency of the kernel approach proposed in the previous section should be

improved to favor its applicability with SVMs. This can be done by decreasing

the computational complexity of (6) and by pruning irrelevant information in large

syntactic trees.

Controlling the computational cost. The computational cost of cross-pair similarity

between two tree pairs (6) depends on the size of C . This is combinatorial in the

size of A and A′, i.e., |C| = (|A| − |A′|)!|A′|! if |A| ≥ |A′|. Thus we should keep the

sizes of A and A′ reasonably small.

To reduce the number of placeholders, we consider the notion of chunk defined in

Abney (1996), i.e., not recursive kernels of noun, verb, adjective, and adverb phrases.

When placeholders are in a single chunk in both the text and the hypothesis we

assign them the same name. The placeholder reduction procedure also gives the

possibility of resolving the ambiguity still present in the anchor set A. A way to

eliminate the ambiguous anchors is to select those that reduce the final number of

placeholders. Finally, in Moschitti and Zanzotto (2007), a more efficient algorithm

for computing the kernel Ks is presented together with its training and testing

time.
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Pruning irrelevant information in large text trees. Often only a portion of the parse

trees is relevant to detect entailments. For instance, let us consider the following pair

from the RTE1 corpus:

T18 ⇒ H18

T18 ‘Ron Gainsford, chief executive of the TSI, said: “It is a major concern to

us that parents could be unwittingly exposing their children to the risk of

sun damage, thinking they are better protected than they actually are”.’

H18 ‘Ron Gainsford is the chief executive of the TSI.’

Only the bold part of T supports the implication; the rest is useless and also

misleading: if we used it to compute the similarity it would reduce the importance

of the relevant part. Moreover, as we normalize the syntactic tree kernel with

respect to the size of the two trees, we need to focus only on the part relevant to

the implication. The anchored leaves are good indicators of relevant parts, but also

some other parts may be very relevant. For example, the function word not plays

an important role.

The reduction procedure that we apply can be formally expressed as follows:

given a syntactic tree t, the set of its nodes N(t), and a set of anchors, we build a

tree t′ with all the nodes N ′ that are anchors or ancestors of any anchor. Moreover,

we add to t′ the leaf nodes of the original tree t that are direct children of the

nodes in N ′. We apply such procedure only to the syntactic trees of texts before the

computation of the kernel function.

4 Toward a semantic pair feature space

For modeling RTE, plac basic and plac all are appealing spaces, as they learn

generalized rewrite rules. Unfortunately, these models suffer from a major problem

which limits their applicability: they can only learn rules based on syntax and on

simple lexical–semantic evidence at the leaf level, while higher levels of semantic

information are neglected. In particular, lexical–semantic knowledge is only used

to find placeholders, by aligning two semantically similar words. Yet, the semantic

relations between words linked by placeholders are not considered in the final

models. This limitation causes the algorithm to infer erroneous first-order rewrite

rules. Suppose for example that the model leveraging pairs (T10, H10) has to learn

the following rule:

ρ19 =

S

NP X VP Y

VBD y NP Z

→
S

NP X VP Y

VBD y NP Z

where the placeholder y anchors buy and own. This rule is useful to classify examples
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as

T20 ⇒ H20

T20 ‘Romans conquered Gallia ’

H20 ‘Romans governed Gallia ’

where the relation between the two anchored verbs conquer and govern is ‘causation’,

as for buy and own. In WordNet (Miller 1995), own entails buy as well as govern

entails conquer. Yet, the rule will fail when used for

T21 � H21

T21 ‘Oswald assassinated J.F. Kennedy ’

H21 ‘Oswald poisoned J.F. Kennedy ’

where assassinate and poison are anchored as generically similar verbs. The limitation

of the syntactic pair feature spaces is that placeholders do not convey the semantic

knowledge needed in cases such as the above, where the semantic relation between

connected verbs is essential.

In this section, we show that these models can be easily extended to include

shallow semantic information. We present the syntax-semantic pair feature space

which solves some of the above limitations by introducing the notion of typed

anchors. The idea is to enrich the syntactic trees of text and hypothesis with the

relational semantic information standing between anchored words. Operationally, we

do so by assigning a semantic tag expressing the semantic relation to placeholders. In

the example above, by making explicit the entailment relation own ←buy, we obtain

the following correct rule, where the placeholder y is assigned the ← entailment

tag:

ρ22 =

S

NP X VP ← Y

VBD ← y NP Z

→
S

NP X VP ← Y

VBD ← Y NP Z

Of course in case there is no implication between the two verbs we would have a

different fragment pair, since the type on y will be different, i.e., →.

Formally, our syntactic–semantic pair feature space is an extension of plac all,

where the trees are now enriched with semantic typed anchors:

Pσ = {〈σ(ft), σ(fh)〉 : ft ∈ F(T ), fh ∈ F(H)} (7)

where σ enriches fragments with typed anchors. In order to operationally implement

the model, we need to solve two issues: (i) decide what type of semantic relations we

want to represent in the typed anchors (Section 4.1); (ii) define a policy to encode

this information in the tree; i.e., decide at which level(s) of the tree the anchor type

must be encoded (Section 4.2).
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Table 1. Ranked anchor types

Rank Relation type Symbol

1 antinomy ↔
2 part-of ⊂
3 verb entailment ←
4 similarity ≈
5 surface matching =

4.1 Defining anchor types

In the literature, many attempts to introduce semantic information in RTE systems

have failed. One of the main reasons for this failure is that any model using

semantic information deals with ambiguity. To overcome this issue, we focus on a

controlled set of relevant relation types, defined in WordNet: part-of, antinomy, and

verb entailment. This controlled set has been chosen because it is relevant for a large

part of entailment cases.3

We also define two more general anchor types: similarity and surface matching.

The first type links words which are similar according to the WordNet similarity

measure described in (Jiang and Conrath 1997). This type is intended to capture

synonymy and hyponymy. The second type is activated when words or lemmas match,

capturing semantically equivalent words. The complete set of relation types used in

the experiments is given in Table 1.

4.2 Policies for augmenting placeholders with anchor types

To integrate anchor types in the syntactic tree, the main problem is to decide how the

semantic information should be encoded, i.e., where the new typed labels should be

most effectively integrated. We experiment with two possible feature space models:

Typed anchor model (ta). Anchor types augment only the preterminal nodes of the

syntactic tree;

Propagated typed anchor model (tap). Anchors climb up in the syntactic tree ac-

cording to some specific climbing-up rules, similar to what done for place-

holders.

The ta model is easy to implement: typed anchor simply augment the preterminal

nodes of anchored words.

The tap model allows anchor types to climb up in the syntactic tree, repeating the

anchor type information in many fragments, which are compared by the tree kernel

function. This guarantees that the type information is used in the decision process.

The tap model is more complex with respect to ta, as it depends on the strategy

3 For the part-of relation, transitivity is not used: we use only connected words that are in
directly related synsets. For antinomy, inheritance is not used: we anchor words with an
antinomy relation only if these words are in directly related synsets.
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adopted for the anchor climbing-up. In particular, the strategy must account for

how anchors that climb up to the same node should interact. We implement our

strategy by using climbing-up rules as done in the case of placeholders. Yet, in our

case rules must consider the semantic information of the typed anchors. The choice

of correct climbing-up rules is critical, as an incorrect rule could completely alter the

semantics of the tree, as we show in later examples. In the case of placeholders, the

climbing-up rule states that a constituent in the syntactic tree takes the placeholder

of its semantic head. It is easy to demonstrate that in the case of typed anchors

this rule would have disastrous effects. For example, consider the following false

entailment pair:

T23 � H23

S = 3

NP = 1

NNP = 1

John

VP = 3

VBZ

is

NP = 3

DT

a

JJ ↔ 2

tall

NN = 3

boy

S = 3

NP = 1

NNP = 1

John

VP = 3

VBZ

is

NP = 3

DT

a

JJ ↔ 2

short

NN = 3

boy

In the example, we apply the above-mentioned rule: the typed anchor = 3 climbs up

to the preterminal node NP, instead of the typed anchor ↔ 2 , as it is the head of the

constituent. If modeled in this way, this false entailment pair could generate, among

others, the incorrect rewrite rule

ρ24 =

S = 3

NP = 1 VP = 3

VBZ

is

NP = 3

�

S = 3

NP = 1 VP = 3

VBZ

is

NP = 3

which states the following:

if two fragments have the same syntactic structure S(NP ,VP (VBZ,NP )), and there

is a semantic equivalence (=) on all constituents, then entailment does not hold.
This rule is wrong, as all substructures are semantically equivalent.

The problem is that the wrong typed anchor climbed up the tree: we need the

antinomy anchor on the adjective (tall/short) to climb up, instead of the matching

anchor on the noun (boy/boy), in order to learn a correct rule. Our strategy must

then implement a climbing-up rule producing these trees:

T25 � H25

S ↔ 3

NP = 1

NNP = 1

John

VP ↔ 3

VBZ

is

NP ↔ 3

DT

a

JJ ↔ 2

tall

NN = 3

boy

S ↔ 3

NP = 1

NNP = 1

John

VP ↔ 3

VBZ

is

NP ↔ 3

DT

a

JJ ↔ 2

short

NN = 3

boy
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In this case the pair generates correct rewrite rules, such as

ρ26 =

S ↔ 3

NP = 1 VP ↔ 3

VBZ

is

NP ↔ 3

�

S ↔ 3

NP = 1 VP ↔ 3

VBZ

is

NP ↔ 3

The rule states the following:

if two fragments have the same syntactic structure S(NP1, VP (VBZ,NP2)), and

there is an antonym type (↔) on the S and NP2 , then entailment does not hold.

The above example shows that the anchor type that has to climb up depends on

the structure of the constituents; thus climbing-up rules depend on the structure. The

algorithm to encode such dependency can be very complex. Luckily, this intuition

can be also captured by a simpler approximation. Instead of having climbing-up

rules for each constituent type, we can rely on a ranking of the anchor types (as the

one reported in Table 1). The anchor type that climbs up is the one that has a higher

rank. In the example, this strategy produces the correct solution, as antinomy has

a higher rank than surface match. We then implement in our model the following

climbing-up rule:

If two typed anchors climb up to the same

node, give precedence to that with the highest

ranking in the ordered set of types T = (↔,

⊂,←,≈,=).

Our ordered setT is consistent with common-sense intuitions. In the experimental

section we will empirically demonstrate its validity by reporting experiment evidence.

5 Experimental evaluation

In the previous sections, we have defined several feature spaces, and we have shown

that plac basic and plac all can encode richer and more expressive features than

simpler spaces (namely, lex, cont, p cont, and synt) in SVMs.

Our experiments aim at empirically showing the above claim, where the repres-

entation layer used to manually or automatically extract features is constituted by

automatically generated parse trees. Moreover, we show that plac basic and plac all

can be successfully extended with semantic information by creating the new spaces

ta and tap.

Our experiments are organized as follows: Section 5.2 shows that plac basic and

plac all outperforms synt. This suggests that ground syntactic rules learned from synt

are less powerful than the first-order rules learnable from plac basic and plac all.

Unfortunately, the above outcome is less evident when the simple lex is added to

the previous models as shown in Section 5.3; the extreme effectiveness of the latter

tends to make flat the contribution of the other feature spaces. To support this

interpretation, in Section 5.4 we show, by means of learning curves, that plac basic
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Table 2. Feature spaces used in the experiments

Feature space

Syntactic pair (synt)
Syntactic pair with placeholders on the preterminal nodes (plac basic)
Syntactic pair with propagated placeholders (plac all)
Syntactic pair with typed anchors on the preterminal nodes (ta)
Syntactic pair with propagated typed anchors (tap)
Lexical similarity (lex)
Simple entailment trigger (trig)

and plac all expressing first-order syntactic rules are able to learn from examples,

whereas lex reaches immediately a plateau.

Moreover, the first-order-based models used in combination with the similarity

features improve the latter. As a final analysis, experimental results in Section 5.5

show that first-order rule feature spaces are also suited for including the semantics

of typed anchors (ta and tap).

5.1 Experimental settings

For the experiments, we used the RTE Challenge datasets: RTE1 (Dagan et al.

2006), RTE2 (Bar-Haim et al. 2006), and RTE3 (Giampiccolo et al. 2007). These

sets contain respectively 1367, 1600, and 1600 training/testing instances, evenly split

between positive and negative examples. The RTE set is the union of the three sets.

We also used the following resources:

• the Charniak parser (Charniak 2000) and the morpha lemmatizer (Minnen,

Carroll and Pearce 2001) to carry out the syntactic and morphological

analysis;

• WordNet 2.0 (Miller 1995) to extract the verbs in entailment, the derivation-

ally related words, and the antonymous words used both for finding and for

typing anchors;

• the wn::similarity package (Pedersen, Patwardhan and Michelizzi 2004) to

compute the similarity function for finding anchors between the text T and

the hypothesis H and to compute the lexical similarity (lex) in the similarity

feature space we used for comparison;

• SVM-light-TK4 (Moschitti 2006b) which encodes the basic tree kernel func-

tion, in SVM-light (Joachims 1999).

The feature sets used in the experiments are reported in Table 2.

5.2 First-order versus ground syntactic feature spaces

In a first set of experiments, we compare the two first-order spaces plac basic and

plac all against the ground space, synt.

4 SVM-light-TK is available at http://disi.unitn.it/moschitti/.
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Table 3. Mean accuracy and standard deviation within different pair feature spaces:

n-fold cross-validations repeated m times

Dataset Settings synt plac basic plac all

RTE1 2-fold × 4 55.18 (±0.92) 55.34 (±1.11) 56.12 (±1.08)
RTE2 2-fold × 4 55.02 (±1.34) 58.99 (±1.56) 61.26 (±1.68)
RTE3 2-fold × 4 50.12 (±1.26) 59.92 (±1.36) 62.29 (±1.51)
RTE 6-fold × 5 54.07 (±1.43) 60.31 (±1.44) 58.27 (±1.53)

We run four different experiments by repeating m times in an n-fold cross-

validation on the RTE1, RTE2, and RTE3 and RTE datasets. The results are

reported in Table 3: the first column shows the dataset; the second describes the

number of folds and the number of times the experiment has been carried out;

the third, the fourth, and the last column report the averaged accuracy along with

the standard deviation when using synt, plac basic, and plac all. The results show

the following: (a) The accuracy obtained with plac all is always significantly better

than the accuracy obtained with synt, especially for the RTE2 and the RTE3 sets.

(b) In the case of RTE1 and RTE2, the accuracy produced by synt is roughly

equal to the one produced by plac basic. Indeed, plac basic differs from synt only

in the leaves. (Placeholders are assigned only to the preterminal nodes.) In other

words, only few fragments contain relational information, i.e., placeholders. We can

conclude that a significant improvement can only be observed when moving from

plac basic to plac all which better describes first-order rules. (c) In the case of RTE3,

the assignment of placeholders to preterminal nodes already yields an important

improvement (cf. synt with plac basic).

The above results suggest that our spaces are able to model a richer set of rules,

thanks to the use of variables. We also claim that such space includes most of

the entailment trigger-based features. To show the validity of this statement, we

performed an experiment combining synt and plac all with the simple entailment

trigger feature space (trig).

For trig, we used three features representing three different rules, similar to Hickl

et al. (2006), Imkpen et al. (2006), and Snow, Vanderwende and Menezes (2006):

(1) SVO that tests if T and H share a similar subject–verb–object construct; (2)

Apposition that tests if H is a sentence headed by the verb to be and if in T there is

an apposition that states H; (3) Anaphora that tests if the SVO sentence in H has a

similar wh-sentence in T and if the wh-pronoun may be resolved in T with a word

similar to the object or the subject of H.

Results in Table 4 show that synt + trig accuracy is lower than the one of synt,

suggesting that the two feature spaces are different, and it is complex to merge

them together. In contrast, since the first-order syntactic rule feature space encodes

already the first-order rules of trig the accuracy of plac all+trig is not significantly

different from plac all. (SVMs are very robust to redundant features.)
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Table 4. Mixing syntactic pair feature spaces with entailment trigger feature spaces

Dataset Settings synt synt + trig plac all plac all + trig

RTE2 2-fold × 4 54.80 (±1.26) 53.66 (±1.00) 59.56 (±0.84) 59.26 (±0.81)

Table 5. Experiments mixing the syntactic pair feature space and a simple distance

feature space: n-fold cross-validations repeated m times

Dataset Settings lex lex + synt lex + plac basic lex + plac all

RTE1 2-fold × 4 58.56 (±1.37) 59.58 (±1.30) 60.12 (±1.29) 60.19 (±1.54)
RTE2 2-fold × 4 61.47 (±1.19) 61.80 (±1.21) 62.87 (±0.74) 63.69 (±1.23)
RTE3 2-fold × 4 68.16 (±1.49) 67.77 (±1.09) 67.87 (±1.23) 68.32 (±1.00)
RTE 6-fold × 5 63.31 (±1.58) 63.36 (±1.68) 63.67 (±1.61) 64.07 (±1.45)

5.3 Combining the lexical similarity and the syntactic paired-content feature spaces

Many studies suggest that lexical overlap is a good heuristic to approximate textual

entailment predictions (e.g., Corley and Mihalcea 2005). This section analyzes the

interaction between the lexical similarity space (lex) and the basic plac and plac all

by combining them.

For lex, we used only one feature: the lexical overlap as described in Corley and

Mihalcea (2005), computed by means of WordNet-based similarity between words

(i.e., Jiang and Conrath 1997) along with the simple token and lemma matching.

The results, reported in Table 5 were obtained with n-fold cross-validation. They

show that the accuracy produced by lex alone is close to all mixed feature spaces:

first-order rules seem to give no contribution, especially for the RTE3 and RTE

datasets. However, by paring the distributions of the fold accuracy generated with the

n-fold cross-validation and applying the sign test we found that on the RTE dataset,

lex + plac all is better than lex and lex + synt with 0.005 statistical significance.5

This proves that the space using first-order derivations is more accurate than others

when used in combination with lexical overlap heuristics.

5.4 When and why to use first-order rule feature spaces

The kind of first-order rules generated with our feature spaces seem to only

marginally improve lex. However, this may depend on the small size of the training

data. To confirm this hypothesis, we analyzed the learning curves of the different

models (Section 5.4.1). Moreover, to show that our models effectively learn first-order

rules, we studied them with respect to classes of examples, which can be solved by

different classes of rules (Section 5.4.2).

5 More than 22 out of 30 times the first space has better results than the other two.
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Fig. 2. (a) Learning curves over RTE2. (b) Learning curves over RTE3.

Fig. 3. Learning curves of lex and lex + plac all in RTE2 and in RTE3.

5.4.1 Learning curves

We analyzed four feature spaces: synt, plac basic, plac all, and lex. The results for

the first three spaces and the fourth space are respectively reported in Figures 2 and

3. We computed the learning curves using the official split in development and test

sets of RTE2 and RTE3, where the development set is in turn divided in samples of

increasing size with a step of 200 training examples. Each point in the figure is the

average accuracy obtained over four runs.6

Even when all data is used, synt, plac basic and plac all do not reach a plateau,

meaning that they can improve their accuracy with further data. In contrast, the

6 For each point, four models of the classifier are learned on four different samples of the
training set.
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curves of the lex model (Figure 3) are flat or, in the case of RTE3, decreas-

ing. This is not surprising, since only one parameter has to be learnt, i.e., the

threshold; thus the number of needed examples is small. As a final conclusion our

first-order feature spaces can really learn from example, whereas the lex model

cannot.

5.4.2 Which feature space for which pair?

In this section, we explore how the different feature spaces behave on pairs showing

specific phenomena that can be better captured using first-order syntactic rules. For

these pairs, plac all should outperform the other models. We also aim at studying

which rule can be learned.

For this purpose, we use the gold standard of entailment examples provided by

Vanderwende and Dolan ( 2006). In their study of the RTE1 dataset the authors

discovered that 390 pairs out of the 800 of the test set can be classified using

solely syntactic cues. Most importantly, entailment examples were clustered in the

following four classes (describing the syntactic transformations that hold between

texts and hypotheses): (1) syntactic phenomena not involving alternation; (2)

syntactic phenomena involving alternation; (3) single word replacement; and (4) lack

of syntactic parallelism. Each class is further divided into subclasses, representing

specific syntactic transformations rule. For example, the Have-Possessive subclass is

a specific type of syntactic phenomenon involving ‘have’ alternation; to be correctly

classified, the examples of this category require a model able to handle the first-order

transformation rule: X’s Y → X has Y.

Experimental results of our model over the above dataset are reported in Table 6:

the first column reports the feature space; the first row represents the classes of

syntactic phenomena in Vanderwende and Dolan (2006). The second row shows the

number of cases falling in each class according to the manual gold standard (note

that examples can belong to more than one class when more than one transformation

takes place); and all the other rows illustrate the accuracy of our different models

when classifiers are trained on the RTE1 development set.

The results indicate that placeholders are useful whenever first-order trans-

formation rules are required, i.e., for pairs in the classes syntactic phenomena

involving and not involving alternation. In these cases, plac all outperforms synt and

lex + plac all improves on lex. This is particularly true for the examples showing

syntactic phenomena not involving alternation. As expected, in the other two classes

of phenomena (single word replacement and lack of syntactic parallelism) RTE is not

improved by the use of placeholders, since first-order transformations do not play a

relevant role.

By inspecting the above results it is also possible to determine whether or not a

specific feature space models a specific rule better than the others, by following the

principle that ‘a model which correctly classifies a set of examples clearly requiring

a specific first-order transformation most probably encodes such kind of first-order
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Table 6. Accuracy with different feature spaces on specific syntactic phenomena over

a portion of the RTE1 test set

Syntactic phenomena

Involving Not involving Single word Lack of syntactic
alternation alternation replacement parallelism

No. of cases 77 166 29 196

synt 49.35 50.60 41.38 48.98
plac basic 44.16 48.19 48.28 47.45
plac all 59.74 52.41 44.83 48.98
lex 66.23 49.40 72.41 29.59
lex + synt 62.34 54.82 55.17 47.45
lex + plac basic 51.95 44.58 44.83 36.73
lex + plac all 67.53 56.02 62.07 42.86

Table 7. Experimenting with typed anchors: accuracy results on a 4-fold

cross-validation over the RTE2 dataset

Fold ta tap plac all

1 64.21 65.99 63.71
2 58.92 59.66 58.44
3 59.41 61.39 60.64
4 62.60 62.85 62.60
Mean 61.29 62.47 61.35
Standard deviation ±2.54 ±2.68 ±2.32

rule’.7 For example, if the model correctly classifies active/passive alternations, it

likely encodes a rule for active/passive forms. Thus, by noting that plac all model

classifies Be-Appositive, be located-Appositive, and Genitive-Location better than synt,

we argue that plac all can derive such kind of rules better than synt.

5.5 Experiments using typed anchors

In this section we check if first-order syntactic rule feature spaces can be improved

by semantic information. Thus, we tested plac all and its extensions with semantic

information, i.e., ta and tap introduced in Section 4.

Table 7 reports the accuracy obtained in a 4-fold cross-validation over the RTE2

dataset. The small difference between ta and plac all accuracy suggests that encoding

typed anchors only at the preterminal level is again not sufficient for the generation

of effective feature spaces. Thus, such information has to be propagated in the

7 Note that a more systematic inspection would be too difficult. Indeed, determining which
rules fire for a pair is complex, since SVMs make a decision over a pair using a linear
combination of the distances between the target pair and the support vectors. Detecting
which first-order transformation rule has fired, especially when a complex kernel space
(like the paired tree substructures) is currently an open problem.
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whole syntactic tree. Indeed, the results obtained with tap are significantly higher8

than those obtained by plac all. Therefore, our way of typing anchors with the

semantics of word relations is a promising research line for RTE. In general, our

results also empirically confirm the findings in Bar-Haim, Szpecktor and Glickman

(2005), which state that lexical and syntactic levels are complementary for RTE.

6 Conclusion

In this paper, we have proposed the pair content feature space, a novel feature

space for RTE that allows ML algorithms to derive first-order rules based on a

syntactic–semantic representation of training examples. We have also proposed a

method to encode shallow semantic information in data representation through the

use of typed anchors. Our model employs variables (represented with placeholders)

and linguistic features, as those used in feature structures (Carpenter 1992).

As a final remark, we observe that several methods for automatically harvesting

first-order rewrite rules from large corpora have been recently proposed in the

literature, e.g., DIRT (Lin and Pantel 2001) and TE/ASE (Szpektor et al. 2004)).

These models are complementary to ours, as they are based on a completely different

principle (i.e., the distributional hypothesis; Harris 1964). While these methods can

only extract rules encoding a generic notion of similarity between two textual

patterns (e.g., X play Y ∼ X win Y ), recent extensions (Bhagat, Pantel and Hovy

2007; Basili et al. 2007; Pantel et al. 2007) allow the derivation of more specific

directional entailment rules, such as X play Y →X win Y. However, these models

cannot learn rewrite rules such as ‘the X VERB Y � X does not VERB Y ’, which

are instead learned by our model.

Although, several systems tried to leverage large repositories such as DIRT (with

limited success; de Salvo Braz et al. 2005b; Raina et al. 2005), the combined use of

the two forms of extracting first-order rewrite rules is a very interesting research line.

Pilot experiments using verbs in entailment extracted with the method presented in

Zanzotto, Pennacchiotti and Pazienza (2006) and our model have shown promising

results.
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