
Semantic Mapping Between Natural Language
Questions and SQL Queries via Syntactic Pairing

Alessandra Giordani and Alessandro Moschitti

Department of Computer Science and Engineering
University of Trento

Via Sommarive 14, 38100 POVO (TN) - Italy
{agiordani,moschitti}@disi.unitn.it

Abstract. Automatically mapping natural language into programming
language semantics has always been a major and interesting challenge. In
this paper, we approach such problem by carrying out mapping at syn-
tactic level and then applying machine learning algorithms to derive an
automatic translator of natural language questions into their associated
SQL queries. For this purpose, we design a dataset of relational pairs
containing syntactic trees of questions and queries and we encode them
in Support Vector Machines by means of kernel functions. Pair classifi-
cation experiments suggest that our approach is promising in deriving
shared semantics between the languages above.

Key words: Natural Language Interfaces for Database Querying; Ker-
nel Methods; Tree Kernels

1 Introduction

Automatically mapping natural language into programming language semantics
is a major and interesting challenge in the field of computational linguistics since
it may have a direct impact on industrial and social worlds. For example, ac-
cessing a database requires machine-readable instructions that not everybody is
supposed to know. Users should be able to pose a question in natural language
without knowing either the underlying database schema or any complex struc-
tured machine language. The development of natural language interfaces over
databases (NLIDBs), that translate the human intent into machine instructions
used to answer questions, is indeed a classic problem that is becoming of greater
importance in today’s world.

This could be addressed by finding a mapping between natural language
and the database programming language. If we know how to convert natural
language questions into their associated SQL queries, it would be straightforward
to obtain the answers by just executing a query. Unfortunately, previous work
has shown that a full semantic approach to this problem cannot be applied,
therefore shallow and statistical methods are required.

In this paper, we exploit mapping at syntactic level between the two lan-
guages and apply machine learning algorithms to derive the shared shallow se-
mantics. We design a dataset of question and query pairs and represent them by

2 Alessandra Giordani and Alessandro Moschitti

means of syntactic parse trees of the two respective languages. To encode trees
in the learning algorithm, we use two different types of tree kernels and lin-
ear kernels, which are applied to pairs by means of advanced combinations. We
carried out cross-validation experiments on the task of selecting correct queries
given a target set of questions. The results show that our best kernel combina-
tion improves the baseline model of about 32%. The latter is a typical approach
based on a linear kernel applied to the union of the bag-of-words from question
and query texts. The most interesting finding is that the product between the
two kernels representing questions and queries provides feature pairs, which can
express the relational features between the syntactic/semantic representation of
the two languages.

In the remainder, Section 2 introduces the problem of mapping questions
into queries and illustrates the idea of our solution whereas Section 3 describes
the technology to implement it, i.e. kernel methods. Section 4 shows our pro-
posed algorithm to generate a training set of question and query pairs, Section
5 discusses our results and finally, Section 6 draws conclusions.

2 Automatic Mapping of Questions into SQL Queries

Studying the automatic mapping of questions into SQL queries is important
for two main reasons: (a) it allows to design interesting applications based on
databases and (b) it offers the possibility to understand the role of syntax in de-
riving a shared semantics between a natural language and an artificial language.

Given the complexity of theoretically modeling such relationship we use a sta-
tistical and shallow model. We consider a dataset of natural language questions
N and SQL queries S related to a specific domain/database and we automati-
cally learn such mapping from the set of pairs P = N × S. More in detail, (a)
we assume that pairs are annotated as correct when the SQL query answers to
the question and incorrect otherwise and (b) we train a classifier on the above
pairs for selecting the correct queries for a question. Then, to map new questions
in the dataset of the available queries, (c) we rank the latter by means of the
question classifier score and by selecting the top one. In the following we provide
the formal definition of our learning approach.

Fig. 1. Question/Query Syntactic trees

Semantic Mapping Between NL and SQL via Syntactic Pairing 3

2.1 Pair Ranking

The problem of assigning a query (with its result) to a question, can be formally
described as the following ranking problem: (i) given a question n ∈ N and a
set of possible useful queries S, we generate the set of possible pairs P (n) =
{〈n, s〉 : s ∈ S}; (ii) we classify them with an automatic categorizer; (iii) we use
the score/probability output by such model to rank P (n); (vi) we select the top
ranked pairs.

For example, let’s consider question n1: “Which states border Texas?” and
the following queries s1: SELECT state name FROM border info WHERE border=’texas’

and s2: SELECT COUNT(state name) FROM border info WHERE border=’texas’. Since
s1 is a correct and s2 is an incorrect interpretation of the question, the classifier
should assign a higher score to the former, thus our ranker will output the 〈n1, s1〉
pair. Note that both s1 and s2 share three terms, state, border and texas, with n1

but 〈n1, s2〉 is not correct. This suggests that we can’t only rely on the common
terms but we should also take into account the syntax of both languages.

Fig. 2. Modified MySQL Grammar

2.2 Pair Representation

The aim of our research is to derive the shared shallow semantics in pairs by
means of syntax. Thus we represent questions and queries using their syntactic
trees, as shown in Figure 1: for the question (a) we use the output the Charniak’s
syntactic parser [1] whereas for the query (b) we use a modification of the SQL
derivation tree.

To build the SQL tree we implemented an ad-hoc parser that follows the
syntactic derivation of a query according to our grammar. Since our database
system embeds a MySQL server, we use the production rules of MySQL, shown
at the top of Figure 2, slightly modified to manage punctuation, i.e. rules 5*, 6*
and 20* related to comma and dot, as shown at the bottom.

4 Alessandra Giordani and Alessandro Moschitti

More in detail, we change the non-terminals Item and SelectItem with the
symbol • to have an uniform representation for the relation between a table
and its column in both the SELECT and WHERE clauses. This allows for matching
between the subtrees containing table, column or both also when they appear in
different clause types of two queries.

It is worth noting that rule 20* still allows to parse nested queries and that the
overall grammar, in general, is very expressive and powerful enough to express
complex SQL queries involving nesting, aggregation, conjunctions and disjunc-
tions in the WHERE clause.

Note that, although we eliminated comma and dot from the original SQL
grammar, it is still possible to obtain the original SQL query, by just performing
a preorder traversal of the tree.

To represent the above structures in a learning algorithm we use tree kernels
described in the following section.

3 Tree Kernels

Kernel Methods refer to a large class of learning algorithms based on inner prod-
uct vector spaces, among which Support Vector Machines (SVMs) are one of the
most well-known algorithms. The main idea is that the parameter model vector
w generated by SVMs (or by other kernel-based machines) can be rewritten as

X
i=1..l

yiαixi, (1)

where yi is equal to 1 for positive and -1 for negative examples, αi ∈ < with
αi ≥ 0, ∀i ∈ {1, .., l} xi are the training instances.

Therefore we can express the classification function as

Sgn(
X

i=1..l

yiαixi · x + b) = Sgn(
X

i=1..l

yiαiφ(oi) · φ(o) + b), (2)

where x is a classifying object, b is a threshold and the product K(oi, o) =
〈φ(oi) · φ(o)〉 is the kernel function associated with the mapping φ.

Note that it is not necessary to apply the mapping φ, we can use K(oi, o)
directly. This allows, under the Mercer’s conditions [2] for defining abstract func-
tions which generate implicit feature spaces. The latter allow for an easier feature
extraction and the use of huge feature spaces (possibly infinite), where the scalar
product (i.e. K(·, ·)) is implicitly evaluated.

In the remainder of this section, we illustrate some kernels for structured
data: the Syntactic Tree Kernel (STK) [3], which computes the number of syn-
tactic tree fragments and the Extended Syntactic Tree Kernel (STKe) [4], which
includes leaves in STK. In the last subsection we show how to engineer new
kernels from them.

Semantic Mapping Between NL and SQL via Syntactic Pairing 5

Fig. 3. Feature spaces for the tree pair in Figure 1 a) joint space STK+STK b) Carte-
sian product STK×STK

3.1 Syntactic Tree Kernel (STK) and its Extension (STKe)

The main underlying idea of tree kernels is to compute the number of common
substructures between two trees T1 and T2 without explicitly considering the
whole fragment space. Let F = {f1, f2, . . . , f|F|} be the set of tree fragments
and χi(n) an indicator function equal to 1 if the target fi is rooted at node n
and equal to 0 otherwise. A tree kernel function over T1 and T2 is defined as

TK(T1, T2) =
X

n1∈NT1

X
n2∈NT2

∆(n1, n2), (3)

where NT1 and NT2 are the sets of nodes in T1 and T2, respectively, and
∆(n1, n2) =

∑|F|
i=1 χi(n1)χi(n2).

The ∆ function is equal to the number of common fragments rooted in nodes
n1 and n2, and thus, depends on the fragment type. We report its algorithm for
the evaluation of the number of syntactic tree fragments (STFs) [3].

A syntactic tree fragment (STF) is a set of nodes and edges from the original
tree which is still a tree and with the constraint that any node must have all
or none of its children. This is equivalent to state that the production rules
contained in the STF cannot be partial.

To compute the number of common STFs rooted in n1 and n2, the STK uses
the following ∆ function [3]:
1. if the productions at n1 and n2 are different then ∆(n1, n2) = 0;
2. if the productions at n1 and n2 are the same, and n1 and n2 have only leaf
children (i.e. they are pre-terminal symbols) then ∆(n1, n2) = λ;
3. if the productions at n1 and n2 are the same, and n1 and n2 are not pre-
terminals then
∆(n1, n2) = λ

∏l(n1)
j=1 (1 +∆(cn1(j), cn2(j))),

where l(n1) is the number of children of n1, cn(j) is the j-th child of node n and
λ is a decay factor penalizing larger structures.

Figure 3.a shows some STFs of the left tree in Figure 1. STFs satisfy the
constraint that grammatical rules cannot be broken.

STK does not include individual nodes as features. As shown in [4] we can
include at least the leaves, (which in constituency trees correspond to words) by
simply inserting the following step 0 in the algorithm above:
0. if n1 and n2 are leaf nodes and their labels are identical then ∆(n1, n2) = λ;

6 Alessandra Giordani and Alessandro Moschitti

3.2 Kernel Engineering

Kernel engineering can be carried out by combining basic kernels with additive
or multiplicative operators or by designing specific data objects, e.g. the tree rep-
resentation for the SQL syntax, to which standard kernels are applied. Since our
data is a set of pairs, we need to represent the members of a pair and their interde-
pendencies. For this purpose, given two kernel functions, k1(., .) and k2(., .), and
two pairs, p1 = 〈n1,s1〉 and p2 = 〈n2,s2〉, a first approximation is given by sum-
ming the kernels applied to the components: K(p1, p2) = k1(n1, n2) + k2(s1, s2).
This kernel will produce the union of the feature spaces of questions and queries.
For example, the explicit vector representation of the STK + STK space of the
pair in Figure 1 is shown in Figure 3.a. The Syntactic Tree Fragments of the
question will be in the same space of the Syntactic Tree Fragments of the query.

In theory a more effective kernel is the product k(n1, n2)× k(s1, s2) since it
generates pairs of fragments as features, where the overall space is the cartesian
product of the used kernel spaces. For example Figure 3.b shows pairs of STF
fragments, which are essential to capture the relational semantics between the
syntactic tree subparts of the two languages. In particular, the first fragment
pair of the figure may suggest that a noun phrase composed by state expresses
similar semantics of the syntactic construct SELECT state name.

As additional feature and kernel engineering, we also exploit the ability of the
polynomial kernel to add feature conjunctions. By simply applying the function
(1 + K(p1, p2))d, we can generate conjunction up to d features. Thus, we can
obtain tree fragment conjunctions and conjunctions of pairs of tree fragments.

4 Dataset Generation

In the previous sections we have defined models to automatically learn the map-
ping between questions and queries. Since we aim at having very accurate ap-
proaches we apply supervised techniques and, consequently, we need training
data. More precisely, we need correct and incorrect pairs of questions and queries.
Since in practical applications this is the most costly aspect, we should gener-
ate such learning set in a smart way. In this perspective, we consider that, in
real world domains, we may expect to have examples of questions and the as-
sociated queries which answer to such information need. Such pairs may have
been collected when users and operators of the database worked together for the
accomplishment of some tasks. In contrast, we cannot assume to have available
pairs of incorrect examples, since (a) the operator tends to immediately provide
the correct query and (b) both users and operators do not really understand the
use of negative examples and the need to have unbiased distribution of them.

Therefore, we need techniques to generate negative examples from an initial
set of correct pairs. Unfortunately, this is not a trivial task since when mixing
a question and query belonging to different pairs we cannot assume to only
generate incorrect pairs, e.g. when swapping x with y in the two pairs 〈Which
states border Texas?, x〉 and 〈What are the states bordering Texas?, y〉, we obtain
other two correct pairs.

Semantic Mapping Between NL and SQL via Syntactic Pairing 7

To generate a gold standard dataset we would need to manually check this
aspect thus we design an algorithm to limit the human supervision. It consists
of the following steps:
• Generalizing question and query instances: substitute the involved concepts in
questions and their related field values in the SQL queries by means of variables
(expressing the category of such values).
• Clustering the generalized pairs: intuitively each cluster represents the infor-
mation need about a target semantic concept, e.g. “bordering state”, common
to questions and queries. This requires a limited manual intervention.
• Pairing questions and queries of distinct clusters, i.e. the cartesian product
between the set of questions and the set of queries belonging to the pairs of a
target cluster. This allows to find new positive examples that were not present
in the initial corpus.
• Final dataset annotation: consider all possible pairs, i.e. cartesian product
between all the questions and queries of the dataset, and annotate them as neg-
atives if they have not been annotated as positives in the previous step.

We use the GeoQueries1 corpus translated by Popescu et al. [5] as our
initial dataset. It consists of 250 pairs of NL questions and SQL queries over a
small database about United States geography. In the following we describe in
detail all the steps through which the final dataset is generated.

Fig. 4. Example of the initial corpus (A, on the left) and the generalized version (B,
on the right). The latter is divided in two clusters (identified by the two brackets).

4.1 Pair Generalization

Our approach to automatically annotate pairs relies on automatically detecting
if swapping members of different pairs produces correct or incorrect examples.
For this purpose, we detect similar syntactic structures of questions and queries
by generalizing concept instances with variables.

In a database concepts are represented as tables’ fields. These are used in
SQL to select data satisfying some conditions, i.e. concept constrained to a value.

1 http://www.cs.utexas.edu/users/ml/nldata.html

8 Alessandra Giordani and Alessandro Moschitti

Typically these values are natural language terms so we substitute them with
variables if they appear in both questions and queries. For example, consider
s1 in Figure 1. The condition is WHERE state name = ’Texas’ and ’Texas’ is
the value of the concept state name. Since ’Texas’ is also present in the related
question we can substitute it with a variable VARstate (one variable for each dif-
ferent concept). Our assumption is that questions whose answer can be retrieved
in a database, tend to use the same terms stored in the database.

An example of the generalization phase is shown in Figure 4. On the left
there is a set of four pairs containing four distinct questions and three related
queries (connected by the lines) whereas on the right four generalized pairs are
shown. We note that, after substituting instances with variables, both n1 and
n3 are generalized into n′1, which is thus paired with two distinct SQL queries,
i.e. s′1 and s′2. This is not surprising since there can be more SQL queries that
correctly retrieve an answer to a NL question. In this case we define them to
be semantically equivalent, i.e. s′1 ≡ s′2. At the same time it is possible to write
many NL questions that map to the same query.

It is worth noting that with the generalization process, we introduce redun-
dancy that we eliminate by removing duplicated questions and queries. Thus,
the output dataset is usually smaller than the initial one. However the num-
ber of training examples will be larger, not only because of the introduction of
negatives but also due to the automatic discovering of new positives.

4.2 Pair Clustering and Final Dataset Annotation

Once the pairs have been generalized, we cluster them according to their seman-
tic equivalence so that we can automatically derive new positive examples by
swapping their members. We define semantically equivalent pairs those correct
pairs with (a) equivalent NL questions or (b) equivalent SQL queries. Given
that two equivalent queries should retrieve the same result set, we can automat-
ically test their equivalence by simply executing them. Unfortunately, this is just
a necessary condition (e.g. ’Texas’ can be the answer of two different queries)
therefore we manually evaluate new pairings obtained applying this condition.

Note that automatically detecting semantic equivalence of natural language
questions with perfect accuracy is a hard task, so we consider as semantically
equivalent either identical questions or those associated with semantic equivalent
queries. We also apply transitivity closure to both members of pairs to extend
the set of equivalent pairs.

For example, in Figure 4.b s′1 and s′2 retrieve the same results so we verify
that they are semantically equivalent queries and we assign them to the same
cluster (CL1), i.e. information need about the large cities of a state (with a
population larger than 150,000 people). Alternatively, we can also consider that
n′1 and n′2 are both paired with s′2 to derive that they are equivalent, avoiding
the human intervention. Concerning s′3, it retrieves a result set different form
the previous one so we can automatically assign it to a different cluster (CL2),
i.e. involving questions about any city of a state. Note that, once n′2 is shown
to be semantically equivalent to n′1 we can pair them with s′1 to create the new

Semantic Mapping Between NL and SQL via Syntactic Pairing 9

Fig. 5. Clustering Algorithm

pair highlighted with the dashed relation 〈n′2,s′1〉. Indeed the negative example
set is 〈n′3, s′1〉, 〈n′3, s′2〉, 〈n′1, s′3〉, 〈n′2, s′3〉.

The above steps are formally described by the algorithm in Figure 5. It takes
as input the generalized dataset as a list of correct pairs I ⊂ {〈n, s〉 : n ∈ N , s ∈
S} and returns a matrix M storing all positive and negative pairs P = N × S.
M is obtained by (a) dividing I in k clusters of semantically related pairs and
(b) applying the transitive closure to the semantic relationship between member
pairs. More in detail, we first initialize its entries with a negative value, i.e.
M [n, s] = −1∀n ∈ N , s ∈ S.

Second, we group together each 〈n, s〉 and 〈n′, s′〉 ∈ I, if at least two of their
members are identical. If not we test if the two query members, s and s′ retrieve
the same result set. Since this may be time consuming we run this test only if
the selected columns in their SELECT clause are the same and if the two result
sets share the same minimum.

Third, since the condition above is only necessary for semantic equivalence,
in case we find the same result sets, we manually check if the natural language
question members are semantically equivalent. This is faster and easier than
checking the SQL queries.

Finally, once the initial clusters have been created, we apply the transitive
closure to the cluster ck to include all possible pairing between questions and
queries belonging to ck, i.e. ck = {〈n, s〉 : n, s ∈ ck}. We store in M the id of
the clusters in the related pairs, i.e. M [n][s] = k for each ck. As a side effect all
entries of M still containing −1 will be negative examples.

10 Alessandra Giordani and Alessandro Moschitti

5 The Experiments

In these experiments, we study the effectiveness of our algorithm for automati-
cally mapping questions into queries by testing the accuracy of selecting for each
question of the test set its correct query. For this purpose, we learn a classifier
of correct and incorrect pairs and we use it as a ranker for the possible queries
as described in Section 2.

5.1 Setup

The query ranker consists in an SVM using advanced kernels for representing
question and query pairs. We implemented the Syntactic Tree Kernel (STK)
and it’s extension (STKe) described in Section 3 and several combinations in
SVM-Light [6] software.

As test set, we use our dataset obtained from GeoQueries by applying
our algorithm described in Section 4. After the generalization process the initial
250 pairs of questions/queries are reduced to 155 pairs containing 154 different
NL question and 80 different SQL queries. We found 76 clusters, from which
we generated 165 positive and 12.001 negative examples for a total of 154 ×
70 pairs. Since the number of negatives is much greater than the positives, we
have to eliminate negative pairings from the test set such that the learning is
more efficient. Moreover, since we want to test the model with feasible pairs we
have to preprocess the pairs to reduce the test set. We addressed these problems
by keeping only pair that share at least 2 common stems since, intuitively, a
positive pairing share at least a variable and a concept (eg. VARstate cities).
Actually, we don’t commit any error in the pre-processing if we classify a pair
as incorrect when its question and query share only one stem or no stem at
all. From our automatically generated negative examples set we excluded 10.685
pairs, reducing it to 1.316 examples.

To evaluate the results of the automatic mapping, we applied standard 10-
fold cross validation and measure the average accuracy and the Std. Dev. of
selecting the correct query for each question of the test set.

5.2 Results

We tested several models for ranking based on different kernel combinations
whose results are reported in tables Table 1 and Table 2. The first two columns
of Table 1 show the kernels used for the question and the query, respectively.
More in detail, our basic kernels are: (1) linear kernel (LIN) built on the bag-of-
words (BOW) of the questions or of the query, e.g. SELECT is considered a feature
for the query; (2) a polynomial kernel of degree 3 on the above BOWs (POLY);
(3) the Syntactic Tree Kernel (STK) on the parse tree of the question or the
query and (4) STK extended with leaf features (STKe).

Columns 3 and 4 show the average accuracy (over 10 folds) ± Std. Dev. of
two main kernel combinations by means of product and sum. Note that we can
also sum or multiply different kernels, e.g. LIN×STKe.

Semantic Mapping Between NL and SQL via Syntactic Pairing 11

Table 1. Kernel combination ac-
curacy

K1 K2 K1×K2 K1+K2

LIN LIN 70.7±12.0 57.3±10.4

POLY POLY 71.9±11.5 55.1±8.4

STK STK 70.3±9.3 54.9±10.1

STKe STKe 70.1±10.9 56.7±12.0

LIN STK 74.6±9.6 56.8±10.0

LIN STKe 75.6±13.1 56.6±12.4

POLY STK 73.8±9.5 56.4±10.1

POLY STKe 73.5±10.4 56.5±10.0

STK LIN 64.7±11.5 56.7±9.7

STKe LIN 68.3±9.6 56.2±11.7

STK POLY 65.4±10.9 55.2±9.5

STKe POLY 68.3±9.6 56.2±11.7

Table 2. Kernel engeneering re-
sults

Advanced Kernels Accuracy

STK2+POLY2 72.7±9.7

STK2
e+POLY2 73.2±11.4

(1+LIN2)2 73.6±9.4

(1+POLY2)2 73.2±10.9

(1+STK2)2 69.4±10.0

(1+STK2
e)2 70.0±12.2

(1+LIN2)2+STK2 75.0±10.8

(1+POLY2)2+STK2 72.6±10.5

(1+LIN2)2+LIN×STK 75.9±9.6

(1+POLY2)2+POLY×STK 73.2±10.9

POLY×STK+STK2+POLY2 73.9±11.5

POLY×STKe+STK2
e+POLY2 75.3±11.5

An examination of the reported tables suggests that: first, the basic tradi-
tional model based on linear kernel and BOW, i.e. LIN + LIN, provides an
accuracy of only 57.3%, which is greatly improved by LIN×LIN=LIN2, i.e. by
13.5 points 2.

The explanation is that the sum cannot express the relational feature pairs
coming from questions and queries, thus LIN cannot capture the underlying
shared semantics between them. It should be noted that only kernel methods
allow for an efficient and easy design of LIN2, since the traditional approach
would have required to build the cartesian product of the question BOW by
query BOW. This can be very large, e.g. 10K features for both spaces leads to
a pair space of 100M features.

Second, the K1+K2 column confirms that the feature pair space is essential
since the accuracy of all kernels implementing individual spaces (e.g. kernels
which are sums of kernels) is much lower than the baseline model for feature
pairs, i.e. LIN2.

Third, if we include conjunctions in the BOW representation by using POLY,
we improve the LIN model, when we use the feature pair space, i.e. 71.9% vs
70.8%. Also, POLY2 is better than STK2 since it includes individual terms/words,
which are not included by STK.

Next, the above point suggests that syntactic models can improve BOW al-
though too many syntactic features (generated by STK) make the model unsta-
ble as suggested by the lower accuracy (70.1%) provided by STKe×STKe=STK2

e.
This consideration leads us to experiment with the model LIN × STK and LIN
× STKe, which combine words of the questions with syntactic constructs of SQL
queries. They produce high results, i.e. 74.6% and 75.6%, and the difference with

2 Although the Std. Dev. associated with the model accuracy is high, the one associ-
ated with the distribution of difference between the model accuracy is much lower,
i.e. 5%

12 Alessandra Giordani and Alessandro Moschitti

previous models is statistical significant (90% confidence interval). This suggests
that the syntactic parse tree of the SQL query is very reliable (it is obtained with
100% of accuracy) while the natural language parse tree, although accurate, in-
troduces noise that degrades the overall feature representation. As a consequence
it is more effective to use words only in the representation of the first member of
the pairs. This is also prooved by the last four lines of Table 1, showing the low
accuracies obtained when relying on NL synctactic parse trees and SQL BOWs.
However, POLY × STKe performs worse than the best basic model LIN × STKe

(80% confidence level).
Finally, we experimented with very advanced kernels built on top of feature

pair spaces as shown in Table 2. For example, we sum different pair spaces,
STK2

e and POLY2, and we apply the polynomial kernel on top of pair spaces
by creating conjunctions, over feature pairs. This operation tends to increase
too much the cardinality of the space and makes it ineffective. However, using
the simplest initial space, i.e. LIN, to build pair conjunctions, i.e. (1+LIN2)2,
we obtain a very interesting and high result, i.e. 73.6% (statistically significant
with a confidence of 90%). Using the joint space of this polynomial kernel and
of simple kernel products we can still improove our models.

This suggests that kernel methods have the potentiality to describe rela-
tional problems using simple building blocks although new theory describing the
degradation of kernels when the space is too complex is required.

Finally, to study the stability of our complex kernels, we compared the learn-
ing curve of the baseline model, i.e. LIN+LIN, with the those of best models,
i.e. LIN×STKe and STK2+(1+LIN2)2. Figure 6 shows that complex kernels are
not only more accurate but also more stable, i.e. their accuracy grows smoothly
according to the increase of training data.

Fig. 6. Learning curves for GeoQueries corpora

Semantic Mapping Between NL and SQL via Syntactic Pairing 13

5.3 Related Work

As the literature suggest, NLiDBs can be classifyied according to the approach
employed in deriving an SQL query that retrieves the answer of a given NL
question against a database. In this section we review three systems based on
different approaches and that were also tested on the GeoQueries. For a com-
plete review of many NLiDB refer to Chandra and Mihalcea [7].

Systems based on an authoring rely on semantic grammar specified by an
expert user to interpret question over the database. CatchPhrase [8] is an au-
thoring tool where the author is asked to name database elements, tailor entries
and define additional concepts. According to the authors this tool achieves 80%
recall and 86% precision.

Another approach is based on annotation. An example of a system that uses
this approach is Precise [5]. Reducing the problem of finding a semantic inter-
pretation of ambiguous phrases to a graph matching problem, authors achieves
100% precision on a subset of semantically tractable questions (77,5% recall).

The machine learning approach, that induces semantic grammar from a cor-
pus of correct pairs of questions and queries, has been used in Krisp [9]. Krisp
performs semantic parsing mapping sentences into their computer-executable
meaning representations. For each production in the meaning representation lan-
guage it trains an SVM classifier based on string subsequence kernels. Then it
uses these classifiers to compositionally represent a natural language sentence in
their meaning representations. Krisp achieves approximatively 94% precision and
78% recall. Our system, also based on the machine learning approach, doesn’t
decline to answer any questions and shows an accuracy of 76% when the SQL
query of the pair with the highest rank is executed to retrieve the answer of the
paired question.

Regarding the use of tree kernels for natural language tasks several models
have been proposed and experimented [3, 10–18].

6 Conclusions

In this paper, we approach the problem of mapping natural into programming
language semantics by automatically learning a model based on lexical and syn-
tactic description of the training examples. In our study, these are pairs of NL
questions and SQL queries, which we annotated by means of our semi-supervised
algorithm based on the initial annotation available in the GeoQueries corpus.

To represent syntactic/semantic relationships expressed by the pairs above,
we largely adopted kernel methods along with SVMs. We designed innovative
combinations between different kernels for structured data applied to pairs of
objects. To our knowledge, the functions that we propose for relational semantics
description are novel. The experiments of the automatic question translation
system show a satisfactory accuracy, i.e. 76%, although large improvement are
still possible.

The main contributions of our study are: (i) we show that our automatic
mapping between question and SQL queries is viable, (ii) in at least one task

14 Alessandra Giordani and Alessandro Moschitti

we have proved that kernel products are effective, (iii) syntax is important to
map natural language into programming languages and (iv) we have generated
a corpus for future studies, which we are going to make publically available.

References

1. Charniak, E.: A maximum-entropy-inspired parser. In: Proceedings of NAACL’00.
(2000)

2. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge
University Press (2004)

3. Collins, M., Duffy, N.: New ranking algorithms for parsing and tagging: Kernels
over discrete structures, and the voted perceptron. In: Proceedings of ACL’02.
(2002)

4. Zhang, D., Lee, W.S.: Question classification using support vector machines. In:
Proceedings of the 26th annual international ACM SIGIR conference on Research
and development in informaion retrieval, ACM Press (2003) 26–32

5. Popescu, A.M., A Etzioni, O., A Kautz, H.: Towards a theory of natural language
interfaces to databases. In: Proceedings of the 2003 International Conference on In-
telligent User Interfaces, Miami, Association for Computational Linguistics (2003)
149–157

6. Joachims, T.: Making large-scale SVM learning practical. In Schölkopf, B., Burges,
C., Smola, A., eds.: Advances in Kernel Methods. (1999)

7. Chandra, Y., Mihalcea, R.: Natural language interfaces to databases, University
of North Texas, Thesis (M.S.) (2006)

8. Minock, M., Olofsson, P., Näslund, A.: Towards building robust natural language
interfaces to databases. In: NLDB ’08: Proceedings of the 13th international con-
ference on Natural Language and Information Systems, Berlin, Heidelberg (2008)

9. Kate, R.J., Mooney, R.J.: Using string-kernels for learning semantic parsers. In:
Proceedings of the 21st ICCL and 44th Annual Meeting of the ACL, Sydney,
Australia, Association for Computational Linguistics (July 2006) 913–920

10. Kudo, T., Matsumoto, Y.: Fast Methods for Kernel-Based Text Analysis. In
Hinrichs, E., Roth, D., eds.: Proceedings of ACL. (2003) 24–31

11. Cumby, C., Roth, D.: Kernel Methods for Relational Learning. In: Proceedings of
ICML 2003, Washington, DC, USA (2003) 107–114

12. Culotta, A., Sorensen, J.: Dependency Tree Kernels for Relation Extraction. In:
ACL04, Barcelona, Spain (2004) 423–429

13. Kudo, T., Suzuki, J., Isozaki, H.: Boosting-based parse reranking with subtree
features. In: Proceedings of ACL’05, US (2005)

14. Toutanova, K., Markova, P., Manning, C.: The Leaf Path Projection View of
Parse Trees: Exploring String Kernels for HPSG Parse Selection. In: Proceedings
of EMNLP 2004, Barcelona, Spain (2004)

15. Kazama, J., Torisawa, K.: Speeding up Training with Tree Kernels for Node
Relation Labeling. In: Proceedings of EMNLP 2005, Toronto, Canada (2005) 137–
144

16. Shen, L., Sarkar, A., Joshi, A.k.: Using LTAG Based Features in Parse Reranking.
In: EMNLP, Sapporo, Japan (2003)

17. Zhang, M., Zhang, J., Su, J.: Exploring Syntactic Features for Relation Extraction
using a Convolution tree kernel. In: Proceedings of NAACL, New York City, USA
(2006) 288–295

Semantic Mapping Between NL and SQL via Syntactic Pairing 15

18. Zhang, D., Lee, W.: Question classification using support vector machines. In:
Proceedings of SIGIR’03, Toronto, Canada, ACM (2003)

