
Fast and Effective Kernels for Relational Learning from Texts

Alessandro Moschitti MOSCHITTI@DIT.UNITN .IT

Department of Information and Communication Technology, University of Trento, 38050 Povo di Trento, Italy

Fabio Massimo Zanzotto ZANZOTTO@INFO.UNIROMA2.IT

Department of Computer Science, Systems and Production, University of Rome “Tor Vergata”, 00133 Rome, Italy

Abstract

In this paper, we define a family of syntactic ker-
nels for automatic relational learning from pairs
of natural language sentences. We provide an
efficient computation of such models by opti-
mizing the dynamic programming algorithm of
the kernel evaluation. Experiments with Support
Vector Machines and the above kernels show the
effectiveness and efficiency of our approach on
two very important natural language tasks, Tex-
tual Entailment Recognition and Question An-
swering.

1. Introduction

Statistical relational learning is a wide research area that
includes many techniques and approaches. As pointed out
in (Getoor, 2005), a statistical model depends on domain
relational structures to which model parameters are often
tied.

In the domain of natural language texts several applications
of relational learning have been studied: from the simple
extraction of word collocations, e.g. Named Entities and
keyphrases (Bikel et al., 1999), to a higher level of semantic
relation search, e.g. relation extraction between Named En-
tities (Zelenko et al., 2003; Cumby & Roth, 2003) or predi-
cate argument relations (Moschitti, 2006). Lately, the most
challenging natural language processing goal has been the
extraction of complex relations between entire text frag-
ments. On this subject two main related tasks have captured
the attention of most researchers of the field: Question An-
swering and Textual Entailment recognition.

The former task has been widely studied in the TREC com-
petitions, e.g. (Voorhees, 2003). It consists of a first phase
in which text fragments related to the question are retrieved

Appearing inProceedings of the24 th International Conference
on Machine Learning, Corvallis, OR, 2007. Copyright 2007 by
the author(s)/owner(s).

and a second phase in which the relatedness of question and
answer has to be detected.

The latter is a traditional linguistic problem which has re-
cently gained a considerable attention thanks to the Pascal’s
Recognizing Textual Entailment (RTE) challenges (Dagan
et al., 2005; Bar Haim et al., 2006). Given two sentences,
a text and a hypothesis, the task consists in determining
whether the text implies the hypothesis. In both tasks,
two very complex objects are involved in relations, e.g.
at least two whole sentences. In these conditions typical
language model approaches based on the so called bag-of-
words (Ponte & Croft, 1998) turn out not to be applicable.
Consequently, the solution should rely on the use of domain
knowledge, e.g. WordNet (Miller, 1995) and syntactic in-
formation (Charniak, 2000).

To exploit the above features, we proposed a kernel func-
tion (Zanzotto & Moschitti, 2006) which evaluates the
maximum similarity between two〈text, hypothesis〉 pairs.
These are represented by syntactic parse trees enriched
with relational information, which is defined between the
nodes (i.e. tree constituents) of a text and its correspond-
ing hypothesis. Such relations are automatically tagged by
a WordNet based labeler. In other words, some nodes in
the first and second pair are tagged and the kernel function,
by maximizing the tree similarity, attempts to find which
tags of the first pair correspond to the tags of the second
pair (i.e. a relation matching problem). This is done by
performing a combinatorial search over matches.

In this paper, we generalize the above kernel function and
provide an optimization for its computation which greatly
reduces the learning and testing time. Our approach can
be applied to an entire family of kernels involving pairs of
trees whose nodes encode relational information. The key
idea is to avoid carrying out the redundant computations of
the original method by defining a more effective dynamic
programming algorithm underlying the computation.

We apply such technique with different kernels that we de-
signed to learn the relations between text pairs. Moreover,

Kernels for Relational Learning from Texts

to apply the approach to domains where the number of re-
lated tree nodes may lead to a real combinatorial explo-
sion, we also provide a version of the evaluation algorithm
based on a beam search. The experiments with such mod-
els and two datasets AVE (Peñas et al., 2006) and RTE
(Dagan et al., 2005; Bar Haim et al., 2006) show that our
approach is efficient and reaches the state-of-the-art in en-
tailment recognition task. This is an important result as it
demonstrates that our models can deal with the important
problems of noisy data and error propagation due to auto-
matic syntactic parsing and automatic semantic labeling.

The rest of the paper is organized as follows: Sec. 2 shows
our generalization of the similarity function between any
pair of texts. Sec. 3 presents our optimization which re-
duces the number of kernel computations whereas Sec. 4
reports the running time and the accuracy evaluations of
several family kernels. Finally, Sec. 5 draws the conclu-
sions.

2. A Generalized Text Pair Kernel

In this section we give a generalized version of thecross-
pair similarity model devised in (Zanzotto & Moschitti,
2006). First, we describe the idea to derive relations by
means of such a similarity (Sec. 2.1), then we present our
generalized kernel functions (Sec. 2.2 and Sec. 2.3).

2.1. Learning from Pairs of Text Fragments

Determining the relations between two generic textsT1 and
T2 is a relational problem which not only depends on the
lexical content but also on the way such content is struc-
turally organized. For example, in the following text pairs:

T1 “All companies file annual reports.”
T2 “All insurance companies file annual

reports.”
(E1)

and

T1 “All companies file annual reports.”
T2 “All companies file annual reports to

the SEC.”
(E2)

we observe that inE1 the first sentence implies the second
whereas no implication can be derived between sentences
in E2.

The difference betweenE1 andE2 is independent of the
meanings of the sentences. It only depends on the syntactic
structures of the four sentences and the relations between
sentences within pairs. For example, most texts match-
ing the “All NP(X) VP(Y)” structure entail texts match-
ing the “All NP(Z X) VP(Y)” structure, where NP and VP
are noun and verbal phrases composed by the sequences of
wordsX , Y or Z. A similar, but negative, relation can be
inferred from the second example. The texts matching “All

NP(X) VP(Y)” do not entail texts matching “All NP(X)
VP(Y) PP(Z)”.

The above example shows that, to automatically derive
textual relations, we need to take syntax into account. For
this purpose in (Zanzotto & Moschitti, 2006)placeholders
were used to mark the sentence constituents, e.g. NP, VP
and PP, in parse trees such that variables, e.g.X , Y andZ,
can be assigned to them. For example, the parse tree of the
sentence pair (E1) is represented as follows:

(E1)
T1 T2

S

NP 1

DT

All

NNS 1

companies

VP 2

VBP 2

file

NP 3

JJ3

annual

NNS 3

reports

S

NP 1

DT

All

NNP

Fortune

CD

50

NNS 1

companies

VP 2

VBP 2

file

NP 3

JJ3

annual

NNS 3

reports

where the placeholders1 , 2 , and 3 indicate the relations
between the structures ofT1 andT2. The relations between
constituents are determined by using the lexical relations
between their component words. These are usually avail-
able in external thesauri, e.g. WordNet (Miller, 1995).

Placeholders on syntactic trees can help to determine if two
text pairs share the samerelationby looking at the subtrees
that they have in common. For example, to determine if
“ In autumn, all leaves fall.” implies “In autumn, all maple
leaves fall.”, we can firstly consider their syntactic and
co-indexed representation:

(E3)
T1 T2

S

PP

IN

In

NP

NN a

automn

v

v

NP b

DT

all

NNS b

leaves

VP c

VBP c

fall

S

PP

IN

In

NP a

NN a

automn

v

v

NP b

DT

all

NN

maple

NNS b

leaves

VP c

VBP c

fall

If we change1 with x and 2 with y in E1 and b with x

and c with y in E3, we can simply compareE1 andE3

and we can discover that they share the following subtrees:

(R)
T1 T2

S

NP x

DT

all

NNS x

VP y

VBP y

S

NP x

DT

all

NN NNS x

VP y

VBP y

This is the relation thatE1 andE3 have in common.

The above example shows that, syntactic trees enriched
with placeholders may help to determine if two text pairs
share the same relations. The next section shows how to

Kernels for Relational Learning from Texts

process such data with kernel functions.

2.2. Tree Kernel Functions

Given the parse trees of text pairs, we may represent them
by appropriately defining and extracting features which en-
code textual relations. However, such manual design ap-
pears to be very complex and it should be carried out for
each different application of textual relational learning. A
viable alternative for the representation of parse trees isthe
use of tree kernels (Collins & Duffy, 2002).

A syntactic tree kernelKT (τα, τβ) computes the number
of common subtrees betweenτα andτβ . Assuming that
we indicate withn a node of the treeτ , with ch(n, j) the
j-th child of the noden, and withnc(n) the number of
children ofn, the functionKT is computed by

KT (τα, τβ) =
∑

nα∈τα

∑

nβ∈τβ ∆(nα, nβ), (1)

where∆(nα, nβ) is recursively defined as follows:

1. ∆(nα, nβ) = 0 if the productions rooted innα and
nβ are not equal

2. ∆(nα, nβ) = λ if nα andnβ are preterminals with the
productionsnα → wα andnβ → wβ andnα = nβ

andwα = wβ .

3. ∆(nα, nβ) = λ
∏nc(nα)

j=1 (1 + ∆(ch(nα, j), ch(nβ , j))
otherwise,

whereλ is the tree decay factor. The above∆(nα, nβ)
evaluation allows us to computeKT in O(|τα||τβ |) time.

By means of the above kernel, we may design a syntactic
similarity between two text pairs(T α

1 , T α
2) and (T β

1 , T
β
2)

by a simple tree kernel sum, i.e.Ks = KT (T α
1 , T

β
1) +

KT (T α
2 , T

β
2). However, when placeholders are used to de-

rive relational information, Eq. 1 will not be effective since
those in pairα are different from those in pairβ. The next
section provides a solution to such problem.

2.3. Kernel Functions over Text Pairs

Since placeholders in two pairs are in principle different,
when added to parse trees, the number of shared substruc-
tures between two texts decreases. Therefore, a substitution
function which assigns the same name to related placehold-
ers is needed.

Given a setc of correspondences between placeholderspα

of the first pair(T α
1 , T α

2) and thosepβ of the second pair
(T β

1 , T
β
2), t(Γ, c) substitutes placeholders with new names,

whereΓ is a text parse tree. If applied to the four trees of
the two pairs, the substitution functiont(Γ, c) guarantees
that the related placeholders have the same name.

For example, letpα andpβ be placeholders ofΓα andΓβ,
respectively, if|pβ| < |pα|, we can define a bijection be-
tween a subsetp′α ⊆ pα andpβ . Fig. 1 shows the tree
Γα with its placeholderspα ={ a, b , c , d}, the treeΓβ

with pβ ={ 1 , 2 , 3} and a possible set of correspondences
c1 = {(a, 1), (b, 2), (c, 3)}.

Fig. 1 also reports how the substitution function works on
the given trees, e.g. in the treeΓα, each placeholdera is re-
placed with the new placeholdera:1 by t(·, c) obtaining the
transformed treet(Γα, c1). Coherently, in the treet(Γβ , c1)
each instance of the placeholder1 in Γβ is replaced with
a:1. After this substitution, the labels of the two trees can
be matched and the tree kernelKT can effectively be ap-
plied.

Having namedC the collection of all the possible sets of
correspondences between the placeholders of two pairs, a
family of similarity functions can be computed as:

KΛ((T α
1 , T α

2), (T β
1 , T

β
2)) =

Λc∈C

(

KT (t(T α
1 , c), t(T β

1 , c)) + KT (t(T α
2 , c), t(T β

2 , c))
)

,

(2)

whereΛ expresses a function overC.

For example, whenΛ is the max function (Zanzotto &
Moschitti, 2006), Eq. 2 finds the maximal similarity in
terms of substructures when a certain number of variables
(placeholders) are instantiated. Although this is not in gen-
eral a valid kernel (Boughorbel et al., 2004), kernel ma-
chines like SVMs still solve a data separation problem in
pseudo Euclidean spaces (Haasdonk, 2005) by finding a lo-
cal optimum that can be satisfactory for the task.

Other kinds of valid kernels of the family can be designed
by using valid kernel operations, e.g.Λc∈C =

∑

c∈C ap-
plied to sums,KT (·, ·) + KT (·, ·), or products,KT (·, ·) ×
KT (·, ·), of tree kernels.

From a computational complexity point of view, asC is
combinatorial with respect to|pα| and |pβ|, |C| rapidly
grows. Assigning placeholders only to chunks helps in
keeping their number controlled. In the RTE (Dagan et al.,
2005) data for example, the number of placeholders is
hardly larger than 7 as hypotheses are generally short sen-
tences. Nevertheless, the number ofKT computations is
still high.

To improve the running time, we observe that as the trees
t(Γ, c) are obtained from the initial treeΓ (containing
placeholders) by applying differentc ∈ C, it is reason-
able to assume that they can share common subparts. Thus,
during the iterations ofc ∈ C, KT (t(Γα, c), t(Γβ , c)) may
compute the similarity between subtrees that have already
been evaluated. In the next section, we exploit the above
property to computeKΛ more efficiently.

Kernels for Relational Learning from Texts

c1 = {(a, 1), (b, 2), (c, 3)} c2 = {(a, 1), (b, 2), (d, 3)}
Γα t(Γα, c1) t(Γα, c2)

X1 a

A2 a

B3 a

w1

a

C4 b

w2

b

D5 d

D6 c

w3

c

C7 d

w4

d

X1 a:1

A2 a:1

B3 a:1

w1

a:1

C4 b:2

w2

b:2

D5 d

D6 c:3

w3

c:3

C7 d

w4

d

X1 a:1

A2 a:1

B3 a:1

w1

a:1

C4 b:2

w2

b:2

D5 d:3

D6 c

w3

c

C7 d:3

w4

d:3

Γβ t(Γβ , c1) t(Γβ , c2)

X1 1

A2 1

B3 1

m1

1

C4 2

m2

2

D5

D6 3

m3

3

C7

m4

X1 a:1

A2 a:1

B3 a:1

m1

a:1

C4 b:2

m2

b:2

D5

D6 c:3

m3

c:3

C7

m4

X1 a:1

A2 a:1

B3 a:1

m1

a:1

C4 b:2

m2

b:2

D5

D6 d:3

m3

d:3

C7

m4

Figure 1.Tree pairs with placeholders andt(T, c) transformation

3. Fast Kernels for Relational Learning

The previous section has shown that the similarity func-
tion KΛ (Eq. 2) firstly applies a transformationt(·, c) and
then computes the tree kernelKT (Eq. 1) based on the∆
function (see Section 2.2). The overall process can be opti-
mized if ∆ is evaluated with respect to substitutionsc and
by factorizing redundant∆ computations. In this section
we firstly motivate the previous idea (Sec. 3.1), then we
introduce the notation needed to describe the fast kernels
(Sec. 3.2) which are finally presented in (Sec. 3.3).

3.1. Reusing Previous Computation

First of all, to simplify the description of our approach,
we only focus on the computation of one tree kernel
function in Eq 2, i.e. we only considerKΛ(Γα, Γβ) =
Λc∈C

(

KT (t(Γα, c), t(Γβ , c))
)

, where the(Γα, Γβ) pair

can be either(T α
1 , T

β
1) or (T α

2 , T
β
2).

Second, we observe that the two trees,t(Γ, c1) andt(Γ, c2),
obtained by applying two sets of correspondencesc1, c2 ∈
C, may partially overlap sincec1 andc2 can share a non-
empty set of common elements. Indeed, if we define the set
of subtreeS shared byt(Γ, c1) andt(Γ, c2) and containing
placeholders inc1 ∩ c2 = c, then t(γ, c) = t(γ, c1) =
t(γ, c2) ∀γ ∈ S. Therefore, when applying a tree kernel
functionKT to a pair(Γα, Γβ), it may be possible to find
c such that subtrees ofΓα and subtrees ofΓβ are invari-
ant with respect toc1 andc2, i.e. KT (t(γα, c), t(γβ , c)) =
KT (t(γα, c1), t(γ

β , c1))= KT (t(γα, c2), t(γ
β , c2)). This

suggests that to evaluateKΛ(Γα, Γβ) more efficiently, we
can refine the dynamic programming algorithm for the∆
computation.

As an example, let us consider the two trees,Γα andΓβ,
represented in Fig. 1 and the application of two differ-

ent transformationsc1 = {(a, 1), (b, 2), (c, 3)} andc2 =
{(a, 1), (b, 2), (d, 3)}. Nodes are generally in the form
Xi z whereX is the original node label,z is the place-
holder, andi is used to index nodes of the tree. Two
nodes are equal if they have the same node label and the
same placeholder. The first frame of the figure represents
the original treesΓα andΓβ. The second frame contains
the transformed treest(·, c1) while the last frame shows
the two trees derived applyingt(·, c2). We choosec1

and c2 such that they have a common non-empty subset
c = {(a, 1), (b, 2)}.

Now, since the subtree ofΓα rooted in A2 a contains
only placeholders that are inc, in the transformed trees,
t(Γα, c1) andt(Γα, c2), the subtrees rooted inA2 a:1 are
identical. The same happens forΓβ with the subtree rooted
in A2 1 as all its placeholders are contained inc. Thus, in
the transformed trees,t(Γβ , c1) andt(Γβ , c2), the subtrees
rooted inA2 a:1 are identical. As a result,KT applied to
the above subtrees gives an identical result.

3.2. Notations and Operators

To describe the algorithm that exploits the previous idea,
we define three basic operators which extract specific infor-
mation about trees and placeholders. We need to (1) know
the placeholders contained in a given subtree, (2) project
a set of correspondences onto two specific sets of place-
holders and (3) redefine the transformation functiont. In
the definition of the above operators, we assume a tree with
placeholdersΓ, a noden ∈ Γ, and a setC of all the sets of
correspondences between placeholders.

The first operator isp(n) that extracts the set of placehold-
ers from a subtree ofΓ rooted inn. For example, in Fig. 1,
the set of placeholders in the subtree ofΓα rooted inA2 is
p(A2) = { a, b}.

Kernels for Relational Learning from Texts

The second operator, the projectorc|X,Y = {(x, y) ∈
c|x ∈ X, y ∈ Y }, is defined on two sets of placeholdersX

andY and a set of correspondencesc ∈ C. For example, the
projection ofc1 = {(a, 1), (b, 2), (c, 3)} on the setsX =
{ a, b} andY = { 1 , 2} is c1|X,Y = {(a, 1), (b, 2)}.

The last operator,t(n, c), applies to subtrees of a given tree.
It returns the subtree ofΓ rooted inn where the placehold-
ers have been substituted according toc. For example, us-
ing the trees in Fig. 1 and this new operator, we can use
t(A2, c2) to indicate the subtree rooted inA2 a:1 node of
Γα shown in the right frame of Fig. 1.

3.3. A Fast Evaluation of the KΛ Function

To give a more efficient algorithm for the kernelKΛ com-
putation, we (a) integrate the transformationt(·, c) in the
computation of the tree kernelKT , (b) formalize when two
differentc’s lead to the same∆ evaluation and (c) define
an algorithm forKΛ that takes into account the previous
property. By introducingc in KT (t(Γα, c), t(T β, c)), KΛ

can be rewritten as:

KΛ(Γα, Γβ) = Λc∈C

(

KT (Γα, Γβ , c)
)

(3)

KT can now be computed as:

KT (Γα, Γβ , c) =
∑

nα∈Γα

∑

nβ∈Γβ

∆(nα, nβ , c), (4)

where the new∆ function also depends onc as follows:

1. ∆(nα, nβ, c) = 0 if the productions rooted innα and
nβ after the application of the transformationt(nα, c)
andt(nβ , c) are not equal

2. ∆(nα, nβ, c) = λ if nα andnβ are preterminals and
t(nα, c) = t(nβ , c)

3. ∆(nα, nβ, c) = λ

nc(nα)
∏

j=1

(1 + ∆(ch(nα, j), ch(nβ, j), c)

otherwise.

From the above equations, it follows that∆(nα, nβ , c) is
applied to the two subtrees rooted innα ∈ Γα andnβ ∈
Γβ after their placeholders are transformed byt(nα, c) and
t(nβ , c). Of course, this transformation involves only the
subset of placeholders ofc which are in the two subtrees,
i.e. c|p(nα),p(nβ). Therefore, the following property

∆(nα, nβ, c1) = ∆(nα, nβ, c2)
if c1|p(nα),p(nβ) = c2|p(nα),p(nβ)

(5)

holds.

According to Eq. 5,KT can be defined as follows:

KT (Γα, Γβ , c) =
∑

nα∈Γα

∑

nβ∈Γβ

∆(nα, nβ, c|p(nα),p(nβ)),

(6)

c1 = {(a, 1), (b, 2), (c, 3)}
c1|p(nα),p(nβ)

=

Γα

X1 A2 B3 C4 D5 C6 C7

Γβ

X1 (a,1),(b,2),(c,3) (a,1),(b,2) (a,1) (b,2) (c,3) (c,3)∅
A2 (a,1),(b,2) (a,1),(b,2) (a,1) (b,2)∅ ∅ ∅
B3 (a,1) (a,1) (a,1) ∅ ∅ ∅ ∅
C4, (b,2) (b,2) ∅ (b,2) ∅ ∅ ∅
D5 (c,3) ∅ ∅ ∅ (c,3) (c,3) ∅
D6 (c,3) ∅ ∅ ∅ (c,3) (c,3) ∅
C7 ∅ ∅ ∅ ∅ ∅ ∅ ∅

c2 = {(a, 1), (b, 2), (d, 3)}
c2|p(nα),p(nβ)

=

Γα

X1 A2 B3 C4 D5 C6 C7

Γβ

X1 (a,1),(b,2),(d,3) (a,1),(b,2) (a,1) (b,2) (d,3)∅ (d,3)
A2 (a,1),(b,2) (a,1),(b,2) (a,1) (b,2)∅ ∅ ∅
B3 (a,1) (a,1) (a,1) ∅ ∅ ∅ ∅
C4 (b,2) (b,2) ∅ (b,2) ∅ ∅ ∅
D5 (d,3) ∅ ∅ ∅ (d,3) ∅ (d,3)
D6 (d,3) ∅ ∅ ∅ (d,3) ∅ (d,3)
C7 ∅ ∅ ∅ ∅ ∅ ∅ ∅

Common submatrix:c1|p(nα),p(nβ)
∩ c2|p(nα),p(nβ)

=

Γα

X1 A2 B3 C4 D5 C6 C7

Γβ

X1 - (a,1),(b,2) (a,1) (b,2) - - -
A2 (a,1),(b,2) (a,1),(b,2) (a,1) (b,2)∅ ∅ ∅
B3 (a,1) (a,1) (a,1) ∅ ∅ ∅ ∅
C4 (b,2) (b,2) ∅ (b,2) ∅ ∅ ∅
D5 - ∅ ∅ ∅ - - -
D6 - ∅ ∅ ∅ - - -
C7 ∅ ∅ ∅ ∅ ∅ ∅ ∅

Figure 2.Projection ofc during the∆ computations

where the last step of∆(nα, nβ, c) definition changes in:

3. ∆(nα, nβ, c) = λ

nc(nα)
∏

j=1

(

1+∆(ch(nα, j), ch(nβ , j),

c|p(ch(nα,j)),p(ch(nβ ,j))

)

otherwise.

The above definition reduces the computational cost since
∆(nα, nβ, c) are used more than once in the computation
of Λc∈C

(

KT (Γα, Γβ , c)
)

.

As an example of the usefulness of Eq. 5, let us consider
Fig. 2 which reports the projection of the sets of corre-
spondencesc1 and c2 according to the nodes ofΓα and
Γβ of Fig. 1. The three matrices represent the projections
c1|p(nα),p(nβ), c2|p(nα),p(nβ) andc1∩c2|p(nα),p(nβ) for the
node pair(nα, nβ). The first row shows the nodes ofΓα

while the first column represents those of the second tree,
Γβ . For the sake of clarity, we report here the values of the
projection functionp(n) for each noden of both Γα and
Γβ :

Γα n X1 A2 B3 C4 D5 C6 C7

p(n){ a , b , c , d }{ a , b }{ a}{ b }{ c , d }{ c }{ d }

Γβ n X1 A2 B3 C4 D5 C6 C7

p(n) { 1 , 2 , 3 } { 1 , 2 }{ 1 }{ 2 } { 3 } { 3 } ∅

Kernels for Relational Learning from Texts

Note that the bottom matrix in Fig. 2 contains all the
pairs for which c1|p(nα),p(nβ) = c2|p(nα),p(nβ) holds.
For this example, this property holds 37 times over 49
computations. Therefore, to evaluate∆(nα, nβ , c1), we
need 12 computations after we have already computed
∆(nα, nβ, c2).

3.4. A Beam Search for the Max Function Computation

The previous section has shown an efficiency optimization
of redundant evaluation specific to the target kernel family
KΛ. However, traditional search algorithms can be applied
jointly. In the following, we show a beam search algorithm
designed to improve the computation speed ofKmax:

kernel computation(Γα, Γβ)
begin

agenda = ∅
insert(agenda,∆(Γα, Γβ , ∅))
for each a1 ∈ pα

for each a2 ∈ pβ

for each ∆(Γα, Γβ , c) ∈ agenda
insert(agenda′, ∆(Γα, Γβ, c ∪ {(a1, a2)}))

agenda = agenda′

return peek first value(agenda)
end

Theagenda retains the partial setk of correspondencesc
that have the best value of the partial kernelKmax com-
puted over the partial matrix∆. The partial matrix∆
has null values for pairs of nodes(nα, nβ) if the sub-
trees rooted innα and nβ contain placeholders that are
not in the partial set of correspondencesc. The procedure
insert(agenda, ∆(Γα, Γβ, c)) puts in thek-sizeagenda

the setc if Kmax is higher than the minimum value in
agenda. The procedurepeek first value(agenda) takes
the highest score ofagenda. The algorithm complexity is
O(k|pα||pβ ||Γα||Γβ |)

4. The Experiments

The aim of the experiments is twofold: (a) we show the
speed-up that our fast evaluation ofKΛ produces in both
learning and testing phase of Support Vector Machines and
(b) we illustrate the potentiality of theKΛ family for rela-
tional learning tasks such as Textual Entailment Recogni-
tion and Question Answering.

4.1. Experimental Setup

We implementedKΛ with the naı̈ve (Eq. 2) and fast
(Eq. 3) computation approaches in the SVM-light-TK
software available athttp://ai-nlp.info.uniroma2.
it/moschitti. This encodes different tree kernels in
SVM-light (Joachims, 1999). We used the default cost fac-
tor and trade-off parameters and we setλ to 0.4.

To experiment with entailment relations, we used the data
sets made available by the first (Dagan et al., 2005) and
second (Bar Haim et al., 2006) Recognizing Textual Entail-
ment Challenge. These corpora are divided in development
D1 andD2 and test setsT 1 andT 2. D1 contains 567 ex-
amples whereasT 1, D2 andT 2 all have the same size, i.e.
800 instances. Each example is an ordered pair of texts for
which the entailment relation has to be decided.

To experiment with relations between question and answer,
we used the Answer Validation Exercise (AVE) dataset
(Peñas et al., 2006). This contains pairs of questions and
answers for which the correctness, i.e. if the answer cor-
rectly responds to the associated question, has to be pre-
dicted. The AVE development set contains 2,870 instances.
Here, the positive and negative examples are not equally
distributed. It contains 436 positive and 2,434 negative ex-
amples.

Since all the above three datasets were used in international
competitions, we could exactly compare with state-of-the-
art approaches.

4.2. Running Time Experiments

Analytically determining the complexity of our fast compu-
tation (FC) is difficult as it depends on the variability and
type of the application data. Since this comes from natural
language sentences, defining models that quantify the num-
ber of elementary operations in the kernel function is quite
complex. However, we can provide an empirical evalua-
tion of our algorithm in terms of its impact on training and
classification running time.

To give a finer evaluation, we studied the number of∆ (de-
fined in Sec. 3.3) iterations according to different data sets.
This is better suited to compare between the naı̈ve compu-
tation (NC) and FC as it is not biased by the processing
time required by the learning and classification code not
correlated with the kernel functions.

To study the relation between the size of training data and
the learning time needed by NC and FC, we divided D1
and D2 in bins of increasing sizes (from 10% to 100% with
step 10%). Plot (a) in Figure 3 shows the time required for
training an SVM with bins extracted from RTE2. Subfigure
(b) illustrates the plot of∆ iterations instead of execution
time. We note that FC greatly reduces the computation time
and the number of∆ iterations (not biased by additional
time) is decreased by about 10 times (see when using all
training data).

To study the classification time, we classified data bins of
increasing size with the same SVM model trained on the
whole D1. Figure 4 shows that NC requires about 12 times
the number of iterations of FC to classify T1, this produces
a much higher testing time.

Kernels for Relational Learning from Texts

�

��

��

��

��

���

���

���

���

�� �� �� �� �� �� �� �� 	� ���

�������� �� �������� ����

��
��
��
� ��� ! "#$%&'�'�#()

*�+' "#$%&'�'�#(

(a) RTE2

,-,./,,

0-,./,1

2-,./,1

3-,./,1

4-,./,1

5-,./,1

6-,./,1

1-,./,1

0, 2, 3, 4, 5, 6, 1, 7, 8, 0,,
9:;<:=>?@: AB >;?C=C=@ D?>?

EF
GH
IJ
KL
MI
NO
P
QO
IJ
POR
KS
T

UVWXY Z[\] _̂V_W[`
aVb_ Z[\] _̂V_W[`

(b) RTE2

Figure 3.Training time and number of∆ iterations according to different data bins

c

dc

ec

fc

gc

hcc

hdc

hec

hfc

hgc

dcc

hc dc ic ec jc fc kc gc lc hcc
mnopnqrstn uv rnwr xsrs

yz
{|
}~
�

���� �����������
����� �����������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�� �� �� �� �� �� �� �� �� ���
������ ¡¢� £¤ �¥ ¦¡ ¡

§̈
©ª
«¬
®
«̄°
±²
³±
«¬
²±́
µ
¶

·̧ ¹º »¼½¾¿º º̧À¼ÁÂ
Ã¸ÀÄÅ »¼½¾¿º¸ºÀ¼Á

Figure 4.Testing time and number of∆ iterations according to different test data bins and fixed training data from RTE1.

Finally, when the beam search is applied along with FC on
the RTE, SVMs decrease their learning time from 61.77 to
54.04 seconds (on RTE2 data) and their testing time from
87.72 to 71.17 seconds (on RTE1 data). We note that there
is not much speed improvement since the number of place-
holders is small and practically constant in such datasets.
However other application domains different from text may
show an unbounded number of placeholders. In such case
algorithms like beam search would be the only feasible so-
lutions.

4.3. Accuracy Evaluation

To verify the quality of our relational learning approach,
we measured the accuracy of three different kernels:

• KB((T α
1 , T α

2), (T β
1 , T

β
2)) = KT (T α

1 , T
β
1)+KT (T α

2 , T
β
2),

• Kmax((T α
1 , T

α
2), (T β

1 , T
β
2)) = max

c∈C

(

KT (t(T α
1 , c), t(T β

1 , c))

+ KT (t(T α
2 , c), t(T β

2 , c))
)

• KΣ((T α
1 , T α

2), (T β
1 , T

β
2)) =

∑

c∈C

(

KT (t(T α
1 , c), t(T β

1 , c))

+KT (t(T α
2 , c), t(T β

2 , c))
)

,

where(T α
1 , T α

2) and(T β
1 , T

β
2) are two text pairs. Note that

KB andKΣ are two valid kernels whereasKmax is not. It
should be noted that, along with syntactic information, RTE
systems usually use a kernel based on lexical similarity be-
tween words, see e.g. (Corley & Mihalcea, 2005). This

lexical kernel is built on external resources, e.g. WordNet,
which are able to generalize words and provide a higher
recall. To have a fair comparison with such systems, we
added a similar lexical kernel (LK) to the above models.

Table 1 shows the results of the above kernels on the split
used for the RTE and AVE competitions. We note that (i)
the tree kernelKB does not significantly improveLK as,
without the use of placeholders for linking constituents,
few relations could be derived; (ii)Kmax relevantly im-
provesLK. Although it is not a valid kernel, it intuitively
selects the best correspondence between placeholders; (iii)
KΣ also improves LK but it shows a lower accuracy than
Kmax and (iv) as expected, the beam search applied to
Kmax decreases its accuracy.

Finally, Kmax model improves the average result of the
systems participating in RTE1, RTE2 and AVE of about
9 (i.e. 0.63 vs 0.54), 5 (i.e. 0.64 vs 0.59) and 8 (i.e. 0.43
vs 0.35) absolute percent points, respectively. It should be
noted that the best two systems of RTE outperformed all
the others of about 10-5 absolute percent points. However,
they cannot be taken as the reference systems since they use
lexical resources and training data not available to the other
participants. The third best system was theKmax model
which would also have been the best approach in AVE if
all the participants had had the same resources, i.e. a fair
comparative setting.

Kernels for Relational Learning from Texts

RTE1 RTE2 AVE
Acc Acc Prec Rec F1

LK 0.597 0.617 0.251 0.823 0.385
LK + KB 0.619 0.616 0.398 0.384 0.391
LK + Kmax 0.631 0.640 0.386 0.495 0.434
LK + KΣ 0.605 0.621 0.364 0.478 0.414
LK + Kmax + beam 0.621 0.617 0.310 0.571 0.401
Avg others 0.54 0.59 - - 0.35

Table 1.Accuracy of Relational Kernels on RTE1 and RTE2. Pre-
cision, Recall, and F1-measure on AVE.

LK LK + KB LK + Kmax LK + KΣ LK + Kmax

+beam

0.619±0.022 0.619±0.013 0.642±0.018 0.635±0.028 0.639±0.019

Table 2.Accuracy of Relational Kernels derived on 5-fold cross
validation on RTE2.

Some of the above results do not fully reveal the role of the
beam search andKΣ, e.g. in one case the latter performs
lower thanKB. The problem here is that the results de-
rived on a single split may not be statistically significant.
To overcome this problem, we also ran a 5-fold cross vali-
dation on RTE21.

The results reported in Table 2 are the average over 5 sam-
ples ± the confidence limits at 90%. We note that (i)
KB+LK performs asLK alone (i.e. 0.619). This suggests
thatKB does not add any information toLK. (ii) KΣ is
slightly less accurate thanKmax (i.e. 0.635 vs 0.642). (iii)
The beam search slightly deteriorates the accuracy ofKmax

(0.642 vs 0.639).

5. Conclusions

In this paper, we have presented a new family of kernels for
relational learning from texts and we have provided fast al-
gorithms for their evaluation. We have empirically demon-
strated that our approach reduces the number of compu-
tations of the∆ matrix employed for the dynamic com-
putation of the above kernel functions. This allows us to
experiment with very large datasets, from Text Entailment
Recognition and Question Answering challenges, and other
kernels of the proposed family. The results show that our
relational kernels obtain state-of-the-art accuracy by using
limited resources, i.e. a syntactic parser and a lexical se-
mantic network.

Finally, promising future research could be devoted (a) to
study innovative relational kernels of the proposed family,
(b) to use our approach for the design of large-scale ap-
plications like web question answering, e.g. by re-ranking
the n-best answers and (c) to apply our methods to new do-
mains different from text, in which syntactic information is
provided, e.g. XML documents.

1We did not run n-fold validation on the other datasets as they
contain repeated instances and mixing them between train and
testing would have highly biased the results

Acknowledgments

Alessandro Moschitti would like to thank the AMI2 lab at the
University of Trento and the EU project LUNA ”spoken Language
UNderstanding in multilinguAl communication systems” contract
no 33549 for supporting part of his research. Many thanks to the
anonymous reviewers for their helpful suggestions.

References
Bar Haim, R., Dagan, I., Dolan, B., Ferro, L., Giampiccolo, D.,

Magnini, B., & Szpektor, I. (2006). The II PASCAL RTE chal-
lenge.PASCAL Challenges Workshop. Venice, Italy.

Bikel, D., Schwartz, R., & Weischedel, R. (1999). An Algorithm
that Learns What’s in a Name.Machine Learning, Special Is-
sue on Natural Language Learning.

Boughorbel, S., Tarel, J.-P., & Fleuret, F. (2004). Non-mercer ker-
nel for SVM object recognition.Proceedings of BMVC 2004.
London, England.

Charniak, E. (2000). A maximum-entropy-inspired parser.Proc.
of the 1st NAACL. Seattle, Washington, USA.

Collins, M., & Duffy, N. (2002). New ranking algorithms for pars-
ing and tagging: Kernels over discrete structures, and the voted
perceptron.Proceedings of ACL02. Morristown, NJ, USA.

Corley, C., & Mihalcea, R. (2005). Measuring the semantic simi-
larity of texts. Proc. of the ACL Workshop on Empirical Mod-
eling of Semantic Equivalence and Entailment. Ann Arbor,
Michigan, USA.

Cumby, C., & Roth, D. (2003). Kernel methods for relational
learning.Proceedings of ICML 2003. Washington, DC, USA.

Dagan, I., Glickman, O., & Magnini, B. (2005). The PASCAL
RTE challenge.PASCAL Challenges Workshop. Southampton,
U.K.

Getoor, L. (2005). Tutorial on statistical relational learning. ILP
(p. 415).

Haasdonk, B. (2005). Feature space interpretation of SVMs with
indefinite kernels.IEEE Trans Pattern Anal Mach Intell, 27.

Joachims, T. (1999). Making large-scale svm learning practical.
Advances in Kernel Methods-Support Vector Learning. MIT
Press.

Miller, G. A. (1995). WordNet: A lexical database for English.
Communications of the ACM.

Moschitti, A. (2006). Efficient convolution kernels for depen-
dency and constituent syntactic trees.Proceedings of ECML,
Berlin, Germany.

Peñas, A., Rodrigo, A., Sama, V., & Verdejo, F. (2006). Overview
of the answer validation exercise 2006.Working Notes for the
CLEF 2006 Workshop. Alicante, Spain.

Ponte, J. M., & Croft, W. B. (1998). A language modeling ap-
proach to information retrieval.Proceedings of SIGIR ’98.
New York, NY, USA.

Voorhees, E. M. (2003). Overview of TREC 2003.TREC.

Zanzotto, F. M., & Moschitti, A. (2006). Automatic learningof
textual entailments with cross-pair similarities.Proceedings of
the 21st Coling and 44th ACL. Sydney, Australia.

Zelenko, D., Aone, C., & Richardella, A. (2003). Kernel methods
for relation extraction.Journal of Machine Learning Research.

