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Abstract. In this paper, we present an extensive study of the cutting-
plane algorithm (CPA) applied to structural kernels for advanced text
classification on large datasets. In particular, we carry out a compre-
hensive experimentation on two interesting natural language tasks, e.g.
predicate argument extraction and question answering. Our results show
that (i) CPA applied to train a non-linear model with different tree
kernels fully matches the accuracy of the conventional SVM algorithm
while being ten times faster; (ii) by using smaller sampling sizes to ap-
proximate subgradients in CPA we can trade off accuracy for speed, yet
the optimal parameters and kernels found remain optimal for the exact
SVM. These results open numerous research perspectives, e.g. in natural
language processing, as they show that complex structural kernels can
be efficiently used in real-world applications. For example, for the first
time, we could carry out extensive tests of several tree kernels on mil-
lions of training instances. As a direct benefit, we could experiment with
a variant of the partial tree kernel, which we also propose in this paper.

Keywords: Structural Kernels; Support Vector Machines;Natural Lan-
guage Processing;

1 Introduction

In many computer science areas such as Natural Language Processing (NLP),
Bioinformatics, Data Mining and Information Retrieval, structural kernels have
been widely used to capture rich syntactic information, e.g. [3, 11, 27, 28]. In
particular, in NLP, tree kernel functions can capture a representation of syntac-
tic parse trees, which is considerably more effective than the one provided by
straightforward bag-of-words models. This often results in higher accuracy, e.g.
[15, 17, 29, 10]. Unfortunately, the use of kernels forces us to solve SVM optimiza-
tion problem in the dual space, which, in case of the use of very large datasets,
makes SVM learning prohibitively expensive.

Recently, cutting plane approaches have been proposed to achieve a great
speed-up in the learning of linear models on large datasets, but they still fail to
provide the same training performance on non-linear learning tasks. Indeed, the
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number of kernel evaluations scales quadratically with the number of examples.
To overcome this bottleneck, Yu and Joachims [26] developed two cutting plane
algorithms (CPAs) that have linear or constant-time scaling behavior. However,
their experiments were carried out using only Gaussian and polynomial kernels
on unstructured data, e.g. topic categorization.

In this paper, we study models that combine the speed of CPAs with the
efficiency of SVM-light-TK1, which encodes state of the art structural kernels
[16, 17] in SVM-light [6]. More specifically, by the means of extensive experimen-
tation we examine the applicability of CPAs to well-known structural kernels,
i.e. subtree (ST), subset tree (SST), and partial tree (PT) kernels, which pro-
vide a good sample of the efficient tree kernel technology currently available. To
obtain more general results we considered two advanced and very different text
categorization tasks for which syntactic information is essential: (i) Semantic
Role Labeling (SRL) or predicate argument extraction [19, 14] whose associated
dataset contains several millions of examples; and (ii) Question Classification
(QC), e.g. [12, 24] from question answering domain.

Moreover, we conjectured that the best parameters for CPAs are invariant
with respect to the sample size. In other words, we can use an extremely small
number of examples to carry out a very fast SVM parameterization and kernel
selection. The optimal set of parameters is also optimal for the conventional
SVM-light.

Finally, we defined a novel kernel, unlexicalized PTK (uPTK), which is a
variant of PTK. It excludes single nodes from the feature space so that structural
features are better emphasized.

Our findings reveal that:

– As the theory suggests, CPAs can be successfully applied to the structural
spaces. Indeed, we show that CPA is at least 10 times faster than the exact
version while achieving the same classification accuracy. For example, to
train a conventional SVM-light solver with tree kernels on 1 million examples
requires more than seven days, while CPAs match the same accuracy in just
a few hours.

– By decreasing the sampling size used in the approximation of the cutting
planes, we can trade off the accuracy to a small degree for even faster train-
ing time. For example, learning a model with the accuracy that is only 1.0
percentage point apart from the exact model reduces the training time by a
factor of 50.

– Using a sample size of only 100 instances for CPAs, which takes just a couple
of minutes of learning on one million of examples, we can correctly estimate
the best kernel, its hyper-parameters, and the trade-off parameter. The iden-
tified set of optimal parameters can be further used to train more computa-
tionally expensive and accurate models (i.e. CPAs with larger sample sizes
or the original SVM-light).

1 available at http://disi.unitn.it/moschitti/Tree-Kernel.htm
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– Thanks to the gained speed-up we could efficiently compare different kernels
on the large SRL datasets and establish an absolute rank, where uPTK
proves to be more effective than PTK.

Our results open up new perspectives for the application of structural kernels
in various NLP tasks. The experiments that could not be carried out until now
on full subsets of very large corpora, e.g. training SVM-based SRL classifier such
as in [21, 14] using either polynomial or tree kernels on the full dataset; training
SVM re-rankers for syntactic parsing [3, 23] using tree kernels on the available
data; and training SVM question classifiers using tree kernels and other features
on large subsets of Yahoo! Answers dataset.

The aforementioned motivations encouraged us to make the new Tree Kernel
toolkit used in this paper freely available to the community.

In the remainder of this paper, Section 2 reviews the related work, while Sec-
tion 3 gives careful theoretical treatment to the workings of the cutting plane ap-
proach. Section 4 introduces well-known tree kernels along with the new uPTK.
The experimental analysis (Section 5) describes our experiments on SRL and QC
datasets and also discusses how approximate cutting plane algorithms could be
used to drive parameter selection for the exact SVM solver. Finally, in Section 6,
we draw conclusions and provide directions for the further research.

2 Related work

Since the introduction of SVMs, a number of fast algorithms that can efficiently
train non-linear SVMs have been proposed - for example, decomposition method
along with working set selection [6]. Decomposition methods work directly in the
dual space and perform well on moderately large datasets but their performance
degrades when the number of training examples reaches a level of millions of
examples.

Recently, a number of efficient algorithms using cutting planes to train con-
ventional SVM classifiers have been proposed. For example, SVMperf [7] is based
on a cutting plane algorithm and exhibits linear computational complexity in the
number of examples when linear kernels are used. To improve the convergence
rate of the underlying cutting plane algorithm, Franc and Sonnenburg [5] de-
veloped the optimized cutting plane algorithm (OCAS) that achieves speed-up
factor of 29 over SVMperf. Alternatively, another promising approach based on
stochastic gradient descent and projection steps called Pegasos [22] has shown
promising performance for linear kernels in binary classification tasks.

While the aforementioned algorithms deliver state of the art performance
with respect to accuracy and training time, they scale well only when linear
kernels are used. To overcome this bottleneck, an idea to use approximate cutting
planes with random sampling was emloyed by Yu and Joachims [26]. At each
iteration step an exact cutting plane is replaced by its approximation that is
built from a small subset of examples sampled from the training dataset. The
most recent attempt to address the poor scaling of non-liner models was done
by Joachims [8], where a sparse set of basis vectors is extracted as a part of the
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cutting-plane optimization process. Not only the trained sparse model speeds
up the classification time, but it also improves the training complexity. Even
though the achieved scaling behavior is roughly linear, the method is limited to
the use of only Gaussian kernels.

Following a different line of research, a number of methods that exploit low-
rank approximation of a kernel matrix have been proposed in [4, 25]. However,
the experiments were carried out only on fairly small datasets (thousands of
examples).

The approach we employ in this paper is different in a sense that it is gener-
ally applicable to the learning of any non-linear discriminant function, structural
kernels in particular, and can efficiently handle datasets with hundreds of thou-
sands examples.

3 Cutting Plane Algorithm for Structural Kernels

In this section, we illustrate the the cutting plane approach. Previous work is
focused on structural SVMs whereas the topic of this paper is binary classifica-
tion, thus we present a re-elaborated version of the algorithm tailored for the
binary classification task. This results in an easier discussion of the sampling
approach to compute the approximate cutting planes.

3.1 Cutting-plane algorithm (dual)

The cutting-plane algorithm is based on a slight modification of SVM optimiza-
tion problem, known as a 1-slack reformulation Joachims [7]:

minimize
w,ξ≥0

1

2
‖w‖2 + Cξ

subject to ∀c ∈ {0, 1}n :

1

n
w ·

n∑

i=1

ciyixi ≥
1

n

n∑

i=1

ci − ξ,

(1)

where each non-zero ci of a vector c = (c1, . . . , cn) ∈ {0, 1}n selects a corre-
sponding constraint of the form: yi(w ·xi) ≥ 1−ξi from a standard optimization
problem.

To derive the dual formulation, the Lagrangian of the primal problem (1) is
computed as:

LP =
1

2
‖w‖2 + Cξ −

2n∑

j=1

αj

( 1

n

n∑

k=1

ckj(ykw · xk − 1) + ξ
)
, (2)

where ckj denotes the kth component of a vector cj that corresponds to the
the jth constraint, i.e. cj defines the jth constraint of (1), and αj ≥ 0 are the
Lagrange multipliers, one for each of the 2n inequality constraints.
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Using the fact that both gradients of LP with respect to w and ξ vanish:

δLP
δw

= w −
2n∑

j=1

αj

( 1

n

n∑

k=1

ckjykxk

)
= 0

δLP
δξ

=
1

n

2n∑

j=1

αj − C = 0,

(3)

and by substituting variables expressed from (3), we obtain the dual Lagrangian:

LD =

2n∑

i=1

αid
(i) − 1

2

2n∑

i=1

2n∑

j=1

αiαjg
(i) · g(j) (4)

where d(i) = 1
n

∑n
k=1 cki and g(i) = − 1

n

∑n
k=1 ckiykxk are respectively the bias

and the subgradient that define a cutting plane model (d(i), g(i)) added to the
set of constraints at each iteration (Algorithm 1, lines 12-13). Now we can state
the dual variant of the optimization problem (1):

maximize
a≥0

hTα− 1

2
αTHα

subject to αT1 ≤ C,
(5)

where hi = d(i) and Hij = g(i) · g(j). Using the first equation from (3), we get
the connection between the primal and dual variables:

w =

2n∑

j=1

αj

( 1

n

n∑

k=1

ckjykxk

)
= −

2n∑

j=1

αjg
(j), (6)

where g(j) is a subgradient of a cutting plane model as defined in algorithm 1
(line 9). When working in the dual space, to find the most violated constraint
(Algorithm 1, lines 9-11) we need to compute the following quantity for each
training example:

w · φ(xi) = −
|S|∑

j=1

αjg
(j) =

n∑

k=1

( |S|∑

j=1

1

n
αjckjyk

)
K(xi,xk), (7)

where K(xi,xk) = φ(xi) · φ(xi) is a kernel. Note that here we use the sum only
over a small number of active constraints |S| instead of 2n. The cutting plane
method maintains the maximum size of the working set |S| constant which is
normally much less that the total number of iterations T . This has another
important implication, as the dual problem (5) has the number of dual variables
independent of the number of training examples, which produces a solution that
is very sparse. The analysis of the inner product given by (7) reveals that since it
needs to be computed for each training example, it requires the time O(n2+Tn).
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Algorithm 1 Cutting Plane Algorithm (dual) with uniform sampling

1: Input: (x1, y1), . . . , (xn, yn), C, ε
2: S ← ∅; t = 0;
3: repeat
4: Update the Gram matrix H with a new constraint
5: α← optimize (5)
6: ξ = 1

C
(hTα− 1

2
αTHα)

7: w = −
∑|S|

j=1 αjg
(j)

8: Sample r examples from the training set
/* find a cutting plane */

9: for i = 1 to r do

10: ci ←
{

1 yi(w · φ(xi)) ≤ 1
0 otherwise

11: end for
12: d(t) = 1

r

∑r
i=1 ci

13: g(t) = − 1
r

∑r
i=1 ciyiφ(xi)

/* add a constraint to the active set */
14: S ← S ∪ {(d(t), g(t))}
15: t = t+ 1
16: until d(t) +w · g(t) ≤ ξ + ε
17: return w, ξ

Similarly, as we add a cutting plane to S at each iteration t, a new column is
added to the Gram matrix H (Algorithm 1, line 4) requiring the computation
of

Hit = g(i) · g(t) =
1

n2

n∑

k=1

n∑

l=1

ckicltykylK(xk,xl) (8)

which takes O(Tn2). Thus, the obtained O(n2) scaling behavior makes cutting
plane training no better than conventional decomposition methods.

To address this limitation, we employ the approach of Yu and Joachims [26]
to construct approximate cuts by sampling r examples from the training set.
They suggest two strategies to sample examples, namely uniform and impor-
tance sampling (the pseudocode of the algorithm using sampling is presented
in Algorithm 1). These two strategies derive constant-time and linear-time al-
gorithms. The former uniformly samples r examples from the training set to
approximate the cut. Thus, we approximate a subgradient with only r exam-
ples, which replaces the number of expensive kernel evaluations in (7) over n by
a more tractable:

∑r
i,j=1K(xi,xj) (lines 9-13 in Algorithm 1). The importance

sampling acts in a more targeted way as it looks through the whole dataset to
compute two cutting planes, one to be used in the optimization problem (Al-
gorithm 1, line 5), and the other for termination criterion (Algorithm 1, line
16). The training complexity reduces from O(n2) to O(T 2r2), when the uniform
sampling algorithm is used, to O(Tnr) for the importance sampling.
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4 Tree Kernels

The main idea underlying tree kernels is to compute the number of common
substructures between two trees T1 and T2 without explicitly considering the
whole fragment space. Let F = {f1, f2, . . . , f|F|} be the set of tree fragments
and χi(n) an indicator function equal to 1 if the target fi is rooted at node n
and equal to 0 otherwise. A tree kernel function over T1 and T2 is defined as

TK(T1, T2) =
∑

n1∈NT1

∑

n2∈NT2

∆(n1, n2),

where NT1
and NT2

are the sets of nodes in T1 and T2, respectively, and

∆(n1, n2) =

|F|∑

i=1

χi(n1)χi(n2).

The ∆ function is equal to the number of common fragments rooted in nodes
n1 and n2 and thus depends on the fragment type.

4.1 Fragment types

In [16], we pointed out that there are three main categories of fragments: the
subtree (ST), the subset tree (SST) and the partial tree (PT) fragments corre-
sponding to three different kernels. STs are fragments rooted in any node of a
tree along with all its descendants. The SSTs are more general structures since,
given the root node of an SST, not all its descendants (with respect to the refer-
ring tree) have to be included, i.e. the SST leaves can be non-terminal symbols.
PT fragments are still more general since their nodes can contain a subset of the
children of the original trees, i.e. partial sequences.

For example, Figure 1 illustrates the syntactic parse tree of the sentence
Autism is a disease on the left along with some of the possible fragments on
the right of the arrow. ST kernel generates complete structures like [D a] or [NP
[D a] [N disease]]. SST kernel can generate more structures, e.g. [NP [D]

[N disease]] whereas PT kernel can also separate children in the fragments,
e.g. [NP [N disease]], and generate the individual tree nodes as features, e.g.
Autism or VBZ.

[28] provided a version of SST kernel, which also generates leaves, i.e. words,
as features, hereafter, SST-bow. However, such lexical features, when the data
is very sparse, tend to cause overfitting. Thus, we give the definition of a variant
of PTK, namely, the unlexicalized partial tree kernel (uPTK), which does not
include lexicals and individual nodes in the feature space. This will promote the
importance of structural information.

4.2 Unlexicalized Partial Tree Kernel (uPTK)

The algorithm for the uPTK computation straightforwardly follows from the
definition of the ∆ function of PTK provided in [16]. Given two nodes n1 and
n2 in the corresponding two trees T1 and T2, ∆ is evaluated as follows:
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Figure 2: A tree for the sentence “Autism is a disease” (top left) with some of its partial tree

fragments (PTFs).

2.2.2. Shallow Semantic Tree Kernel (SSTK)

A shallow semantic tree fragment (SSTF) is almost identical to a STF, the

difference being that the contribution of special nodes labeled with null should

be zero. This is necessary as the Shallow Semantic Tree Kernel (SSTK) [? ] is

applied to special trees containing SLOT nodes that, when empty, have children

labeled with null. Two steps are modified in the algorithm:

0. if n1 (or n2) is a pre-terminal node and its child label is null,∆(n1, n2) = 0;

3. ∆(n1, n2) =
∏l(n1)

j=1 (1 + ∆(cn1(j), cn2(j))) − 1,

The above steps do not change the computational complexity of the original algo-

rithm, which is therefore O(|NT1 ||NT2 |).

2.2.3. Partial Tree Kernel (PTK)

If we relax the production rule constraint over the STFs, we obtain a more

general substructure type called partial tree fragment (PTF), generated by the ap-

plication of partial production rules such as [VP [VBZ [is]]] in Figure 2. The ∆
function for the Partial Tree Kernel (PTK) is the following. Given two nodes n1

and n2, STK is applied to all possible child subsequences of the two nodes, i.e. the

String Kernel is applied to enumerate their substrings and the STK is applied on

each of such child substrings. More formally:

1. if the node labels of n1 and n2 are different then ∆(n1, n2) = 0;

8

Fig. 1. A tree for the sentence “Autism is a disease” (top left) with some of its partial
tree fragments (PTFs).

1. if the node labels of n1 and n2 are different then ∆(n1, n2) = 0;

2. else ∆(n1, n2)=µ
(
λ2+

∑

I1,I2,l(I1)=l(I2)

λd(I1)+d(I2)

l(I1)∏

j=1

∆(cn1(I1j), cn2(I2j))
)
,

where: (a) I1 = 〈h1, h2, h3, ..〉 and I2 = 〈k1, k2, k3, ..〉 are index sequences asso-
ciated with the ordered child sequences cn1

of n1 and cn2
of n2, respectively; (b)

I1j and I2j point to the j-th child in the corresponding sequence; (c) l(·) returns
the sequence length, i.e. the number of children; (d) d(I1) = I1l(I1) − I11 + 1
and d(I2) + 1 = I2l(I2) − I21+1; and (e) µ and λ are two decay factors for the
size of the tree and for the length of the child subsequences with respect to the
original sequence, i.e. we account for gaps.

The uPTK, can be obtained by removing λ2 from the equation in the step 2.
An efficient algorithm for the computation of PTK is given in [16]. This evaluates
∆ by summing the contribution of tree structures coming from different types
of sequences, e.g. those composed by p children such as:

∆(n1, n2) = µ
(
λ2 +

∑lm
p=1∆p(cn1

, cn2
)
)
, (9)

where ∆p evaluates the number of common subtrees rooted in subsequences of
exactly p children (of n1 and n2) and lm = min{l(cn1), l(cn2)}. It is easy to
verify that we can use the recursive computation of ∆p proposed in [16] by
simply removing λ2 from Eq. 9.

5 Experiments

In these experiments, we study the impact of the cutting plane algorithms
(CPAs), reviewed in Section 3, on learning complex text classification tasks in
structural feature spaces. For this purpose, we compare the accuracy and the
learning time of CPAs, according to different sample size against the conven-
tional SVMs.
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In the second set of experiments, we investigate the possibility of using fast
parameter and kernel selection with CPA for conventional SVM. For this pur-
pose, we carried out experiments with different classifiers on two different do-
mains.

5.1 Experimental setup

We integrated two approximate cutting plane algorithms using sampling [26]
with SVM-light-TK [16]. For brevity, in this section we will refer to the algo-
rithm that uses uniform sampling as uSVM, importance sampling (iSVM), and
SVM-light-TK as SVM. While the implementation of sampling algorithms uses
MOSEK to optimize quadratic problem, SVM is based on SVM-light 5.0 solver.
As the stopping criteria of the algorithms, we fix the precision parameter ε at
0.001.

We experimented with five different kernels: the ST, SST, SST-bow, PT, uPT
kernels described in Section 4, which are also normalized in the related kernel
space. All the experiments that do not involve parameter tuning use the default
trade-off parameter (i.e. 1 for normalized kernels) and the default λ fixed at 0.4.

As a measure of classification accuracy we use the harmonic average of the
Precision and Recall, i.e. F 1-score. All the experiments were run on machines
equipped with Intel R© Xeon R© 2.33GHz CPUs carrying 6Gb of RAM under Linux
2.6.18 kernel.

5.2 Data

We used two different natural language datasets corresponding to two different
tasks: Semantic Role Labeling (SRL) and Question Answering.

The first consists of the Penn Treebank texts [13], PropBank annotation [19]
and automatic Charniak parse trees [2] as provided by the CoNLL 2005 eval-
uation campaign [1]. In particular, we tackle the task of identification of the
argument boundaries (i.e. the exact sequence of words compounding an argu-
ment). This corresponds to the classification of parse tree nodes in correct or
not correct boundaries2. For this purpose, we train a binary Boundary Classifier
(BC) using the AST subtree defined in [14], i.e. the minimal subtree, extracted
from the sentence parse tree, including the predicate and the target argument
nodes. To test the learned model, we extract two sections, namely sec23 and
sec24, that contain 234,416 and 149,140 examples respectively. The models are
trained on two subsets of 100,000 and 1,000,000 examples. The proportion of
positive examples in the whole corpus is roughly 5%. The dataset along with
the exact structural representation is available at http://danielepighin.net/
cms/research/MixedFeaturesForSRL.

The second corpus, is a Question Classification (QC) dataset, whose testset
comes from the TREC 10 - Question Answering evaluation campaign whereas

2 In the automatic trees some boundary may not correspond to any node. In this case,
we choose the lower node dominating all the argument words.
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Fig. 2. F1-score as a function of the sampling size on SRL dataset (1 million examples).
Horizontal axis at top is the training time of the uSVM algorithm.

the training set3 was developed in [12]. The task consists in selecting the most ap-
propriate type of the answer from a set of given possibilities. The coarse grained
question taxonomy [28, 12] consists of six non overlapping classes: Abbreviations
(ABBR), Descriptions (DESC, e.g. definitions or explanations), Entity (ENTY,
e.g. animal, body or color), Human (HUM, e.g. group or individual), Location
(LOC, e.g. cities or countries) and Numeric (NUM, e.g. amounts or dates). For
each question, we used the full parse tree as its representation (similarly to [28,
16, 18]). This is automatically extracted by means of the Stanford parser4 [9].
We actually have only 5,483 questions in our training set, due to parsing issues
with a few of them. The testset is constituted by 500 questions and the size of
the categories varies from one thousands to few hundreds.

5.3 Accuracy and Efficiency vs. Sampling Size

In these experiments, we test the trade-off between speed and accuracy of CPAs.
We use uSVM, since it is faster than iSVM, and compare it against SVM on the
SRL task by training on 1 million examples and testing on the two usual testing
sections, i.e. sec23 and sec24. We used the SST kernel since it has been indicated
as the most accurate in similar tasks, e.g. [16]. Figure 2 plots the F1-score for
different values of the sampling size. The dashed horizontal lines denote the
accuracy achieved by the exact SVM. The training time for the uSVM algorithm
is plotted along the top horizontal axis.

We note that:

– changing the sample size allows us to tune the trade-off between accuracy
and speed. Indeed, as we increase the sampling size, the F1-score grows until

3 http://l2r.cs.uiuc.edu/cogcomp/Data/QA/QC/
4 http://nlp.stanford.edu/software/lex-parser.shtml
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Fig. 3. Number of support vectors (displayed beside each data point) as a function of
the sampling size for the 1-slack algorithm.

it reaches the accuracy of the exact SVM (at 5,000). In this case, the uSVM
produces the same accuracy of SVM while being 10 times faster.

– with a sample size of 2,500 the accuracy of the uSVM is only 1.0 percentage
point apart fromt the exact model whereas the training time savings are of
a factor over 50. This corresponds to a training time smaller than 4 hours
for uSVM vs. 7.5 days for SVM.

– finally, we note that our reported F1-score for boundary classification is
state-of-the-art only if tree kernels are used, e.g. [20].

5.4 Producing a Sparse Model

Another interesting dimension to compare sampling algorithms with the exact
SVM solver would be to evaluate the sparseness of the produced solutions. As
we have already mentioned in Section 3.1, uSVM and iSVM employ the 1-slack
formulation that produces very sparse models [7]. This becomes especially im-
portant when very large datasets are used, as the improved sparsity can greatly
reduce the classification time. Figure 3 is different from Figure 2, as it displays
the classification results for sec23 subset of SRL dataset along with the number
of support vectors (plotted beside a data point) learned by each model.

Indeed, the number of support vectors grows, as we increase the sampling
size in an attempt to match the accuracy of the exact SVM. The model learned
by the exact SVM contains 61,881 support vectors, while uSVM model produces
41,714 support vectors. We would like to have more experimental data to make
the comparison more sound but the slow training of the exact SVM makes this
endeavor almost infeasible (just the training of the exact SVM on 1 million of
examples takes over 7.5 days!)
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Fig. 4. F1-score (left) and training time (right) as a function of margin parameter C
on the 100,000 subset of SRL dataset (C is on a logarithmic scale).
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(right) categories of Question Classification dataset (C is on a logarithmic scale).

5.5 Fast Parameterization

On very large datasets, finding the best set of parameters for an exact solver,
e.g. SVM-light, using structural kernels becomes prohibitively expensive, thus
greatly limiting the possibility to find the best performing model. Hence, we test
the idea of fast parameter selection for the exact SVM using CPAs and small
samples.

We chose the trade-off parameter, C, as our target parameter and we select a
subset of 100,000 examples from SRL data to train uSVM, iSVM, and SVM with
C ∈ {0.01, 0.1, 1, 10, 100, 1000}. We could not use 1 million dataset since SVM
prevents to carry out experiments within a tractable time frame. The left plot
of Figure 4 shows that F1 of the three models has the same behavior according
to C. Thus, we can select the optimum value according to the fast method (e.g.
with a sample size 1000) to estimate the best value of C of SVM.

Moreover, it is interesting to observe the plot on the right of Figure 4. This
shows the training time on the previous subset with respect to C values. It reveals
that the use of sampling algorithms, particularly uSVM, provides substantial
speed-up in the training time, especially when large values for C are used. Not
surprisingly, uSVM is a preferable choice, since it has a constant-time scaling
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Sample
size

ST SST SST-bow PT uPT
F1 time

F1 time
F1 time

F1 time
F1 time

sec23 sec24 sec23 sec24 sec23 sec24 sec23 sec24 sec23 sec24

100 6.8 6.5 3.9 74.9 72.6 1.0 74.3 73.0 2.2 71.9 70.7 3.7 73.3 71.4 3.7
250 14.2 13.0 14.4 78.4 76.2 4.1 78.5 76.3 6.1 74.6 73.2 13.7 76.5 74.6 14.2
500 20.3 18.7 46.6 80.2 77.2 14.0 79.5 77.3 16.9 76.3 74.4 45.0 78.3 76.3 47.6
1000 23.5 21.2 143.7 82.0 79.7 45.3 81.3 79.0 55.9 78.2 76.2 158 79.6 76.9 158.8

SVM 12.6 10.94 213.8 80.78 78.56 37.5 80.38 78.13 42.2 74.39 73.47 89.1 77.54 75.87 100.4

Table 1. F1 measured on two testsets, sec23 and sec24, for five different kernels:
ST, SST, SST-bow, PT, and uPT kernels, trained on 1 million instances. The best
results are shown in bold. The training time is given in minutes. The bottom row is
the performance of SVM trained on only 100k examples.

behavior. These results show that the proposed algorithms can provide fast and
reliable parameter search for the best model.

To generalize the findings above we carried out the same experiment on the
second dataset. We ran tests for a range of values on all six categories of the QC
dataset. Since each category has only 5500 examples, here, however, the main
concern is not the training time, but the ability of uSVM and iSVM to match
the behavior of the exact SVM with respect to the parameter C. For brevity, we
provide the results only for DESC and NUM categories. Figures 5 shows that
both sampling algorithms match well the behavior of the exact SVM for DESC
and NUM categories of QC dataset.

5.6 Kernel Testing and Selection

The previous section has shown that sampling algorithms can be used for fast
selection of the parameter C. Here we investigate if the same approach can be
applied for the efficient selection of the best kernel. The aim is to check if a
very fast uSVM algorithm, i.e. using a small sample size, can identify the best
performing kernel. Thus, we ran uSVM algorithm on 1 million subset of SRL
dataset by varying the sample size and using five different structural kernels:
ST, SST, SST-bow, PT and uPT kernels. The results reported in Table 1 show
that:

– uSVM has a consistent behavior across different sample sizes for all kernel
functions. This suggests that a small sample, e.g. 100 training examples, can
be used to select the most suitable kernel for a given task in a matter of a
couple of minutes.

– the bottom row of the Table 1 reports the results of SVM trained on a smaller
subset of 100k examples (only one experiment with SVM on a subset of 1
million examples takes over 7 days), which demonstrates that the results
obtained with uSVM are consistent with the exact solver.

– as already happened in similar tasks, SST kernel appears to provide the best
performance with respect to the training time and accuracy whereas the ST
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Fig. 6. F1-score as a function of λ decay factor (length of the child sequences) for SST
kernel. Training carried out by uSVM on SRL (1million examples) for samples sizes
100, 250 and 500.

kernel, as expected, cannot generate enough features to characterize correct
or incorrect boundary. Indeed, its F1 is very low even when large amount of
data is used.

– surprisingly the SST-bow kernel which simply adds bow to SST is less accu-
rate. This suggests that adding words can reduce the generalization ability
of the tree kernels, while the syntactic information is very important like
in SRL. This aspect is confirmed by the F1 of uPT, which is higher than
PT. Indeed, the former does not generate pure lexical features, i.e. words,
whereas the latter does.

– finally, since we can quickly pick the most appropriate kernel, we can also
perform a fast tuning of kernel hyper-parameters. For this task, we experi-
ment with λ, which is one of the most important factors defining tree kernel
performance. Figure 6 displays the behavior of F1 with respect to the range
of λ values. The plot shows that F1 varies considerably so several values
should be tested. We carried out these experiment in a few minutes but
using SVM we would have required several weeks.

6 Conclusions

In this paper, we have presented the cutting plane technique for training clas-
sification SVMs and pointed out why it works with structural kernels. We have
presented the dual formulation of CPA for binary classification task along with
two sampling algorithms - uSVM and iSVM. The experiments on Semantic Role
Labeling and Question Classification show very promising results with respect
to accuracy and efficiency. Our major achievement is a speed-up factor of over
10 compared to the exact SVM, while obtaining the same precise solution. In
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addition, the proposed method gives the flexibility to train very fast models by
trading off accuracy for the training time.

We have also demonstrated that the proposed approach works well for the
fast parameter estimation task, so that the best model could be found efficiently.
Although, more experiments are required to compare sparseness of the obtained
solutions, we still get a hint that sampling algorithms, following 1-slack problem
formulation, find a sparser solution.

In the short-term future, we plan to extend our work in fast parameter and
kernel selection to design the best model.
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