
Tree Kernel Engineering for Proposition

Re-ranking

Alessandro Moschitti, Daniele Pighin, and Roberto Basili
{moschitti,basili}@info.uniroma2.it

daniele.pighin@gmail.com

Department of Computer Science
University of Rome ”Tor Vergata”, Italy

Abstract. Recent work on the design of automatic systems for semantic
role labeling has shown that such task is complex from both modeling
and implementation point of views. Tree kernels alleviate such complex-
ity as kernel functions generate features automatically and require less
software development for data pre-processing. In this paper, we study
several tree kernel approaches for boundary detection, argument classi-
fication and, most notably, proposition re-ranking. The comparative ex-
periments on Support Vector Machines with such kernels on the CoNLL
2005 dataset show that very simple tree manipulations trigger automatic
feature engineering that highly improves accuracy and efficiency in every
SRL phase.

1 Introduction

A lot of attention has been recently devoted to the design of systems for the
automatic labeling of semantic roles (SRL) as defined in two important projects:
FrameNet [1], inspired by Frame Semantics, and PropBank [2] based on Levin’s
verb classes. SRL is a complex task consisting in the recognition of predicate
argument structures within natural language sentences.

Research on the design of automatic SRL systems has shown that (shallow
or deep) syntactic information is necessary to achieve a good accuracy, e.g. [3,4].
A careful analysis of literature features encoding such information reveals that
most of them are fragments of syntactic trees of training sentences. Thus, a
natural way to represent them is the adoption of tree kernels as described in
[5]. Tree kernels show important advantages: first, we can implement them very
quickly as the feature extractor module only requires the writing of the procedure
for subtree extraction. In contrast, traditional SRL systems are based on the
extraction of more than thirty features [6], which require the writing of at least
thirty different procedures. Second, combining tree kernels with a traditional
attribute-value SRL system allows us to obtain a more accurate system. Usually
the combination of two traditional systems (based on the same machine learning
model) does not result in an improvement as their features are more or less
equivalent as shown in [4]. Finally, the study of the effective structural features

can inspire the design of novel linear features, which can be used with a more
efficient model (i. e. linear SVMs).

In this paper, we carry out tree kernel engineering [7,8] to increase the ac-
curacy of the boundary detection, argument classification and proposition re-
ranking steps. In the first two cases (Section 2.1), the engineering approach
relates to marking the nodes of the encoding subtrees to generate substructures
more strictly correlated with a particular argument, boundary or predicate. For
the latter case (Section 2.2), i. e. proposition re-ranking, we try both marking
large parts of the tree that dominates the whole predicate argument structure
and utterly reworking the syntactic structure. Our extensive experimentation of
the proposed tree kernels with Support Vector Machines on the CoNLL 2005
data set provides interesting insights on the design of performant SRL systems
(Section 3).

2 A Model for Semantic Role Labeling

The SRL approach that we adopt is based on the deep syntactic parse [9] of
the sentence that we intend to semantically annotate. The standard algorithm
concerns the classification of tree node pairs 〈p, a〉, where p is the node that
exactly dominates the target predicate and a is the node dominating a potential
argument. If 〈p, a〉 is selected as an argument, then the leaves of the tree rooted in
a will be considered as the words constituting such argument. There are hundreds
of pairs in a sentence, thus, if we use training corpora containing hundreds of
thousands of sentences, we have to deal with millions of instances.

To limit such complexity, we can divide the problem in two subtasks: (a)
boundary detection, in which a single classifier is trained on many instances to
detect if a node is an argument or not, i. e. if the sequence of words dominated by
the target node constitutes a correct boundary; and (b) argument classification,
in which only the set of nodes corresponding to correct boundaries are consid-
ered. These can be used to train a multiclassifier that, for such nodes, selects
the most appropriate labeling. For example, n classifiers can be combined with a
One-vs-All approach, selecting for each argument node the role associated with
the maximum among the n scores provided by the individual role classifiers.

The main advantage of this approach is the use of just one computationally
expensive classifier, i. e. the one for boundary detection. Regarding the feature
representation of 〈p, a〉, we can extract syntactic fragments from the sentence-
parse tree proposed in [3], e.g. the Phrase Type or Predicate Word. An alternative
to the manual fragment extraction is the use of Tree Kernels as suggested in [5].
Tree kernels are especially useful when the manual design of features is made
complex by the use of a re-ranking module. This has been shown to be essential
to obtain state-of-the-art performance [10].

The next sections describe our tree kernel approaches for the classification of
boundaries and arguments and the re-ranking of complete predicative structures.

S

NP

NNP

Paul

VP

VBZ

delivers

NP

NP

DT

a

NN

talk

PP

IN

in

NP

JJ

formal

NN

style

(a) A parse tree

VP

VBZ

delivers

NP

NP

DT

a

NN

talk

(b) AST1

VP

VBZ

delivers

NP

NP-B

DT

a

NN

talk

(c) AST
m

1

Fig. 1. Syntactic parse tree of the sentence John delivers a talk in formal style (a),
AST1 (b) and AST

m

1 (c) for the argument A1 a talk.

2.1 Kernels for Boundary Detection and Argument Classification

Once a basic kernel function is defined, we need to characterize the predicate-
argument pair with a subtree. This allows the function to generate a large number
of syntactic features related to such pair. The approach proposed in [5] selects
the minimal subtree that includes a predicate with one of its arguments. For
example, Figure 1(a) shows the parse tree of the sentence Paul delivers a talk in

formal style whereas Frame (b) illustrates the AST1 subtree that characterizes
the predicate to deliver with its argument A1 a talk.

AST1s are very effective for argument classification but not for boundary
detection since two nodes that encode correct and incorrect boundaries may
generate very similar AST1s [5]. To solve this problem, we simply mark the
argument node with the label B, denoting the boundary property. This new
subtree is called a marked argument spanning tree (AST m

1
) and it is shown in

Figure 1(c). A positive example for the AST m
1

classifier is a subtree in which the
marked node exactly covers the boundaries of an argument, whereas the marking
of any other node within the same subtree results in a negative example.

2.2 Tree Kernels for the Proposition Re-ranking Task

Our re-ranking mechanism is similar to that described in [11], where a Viterbi al-
gorithm is used to evaluate the most likely labeling schemes for a given predicate
and a re-ranking mechanism selects the best annotation. The re-ranker is a bi-
nary classifier trained with pairs 〈si, sj〉 where si and sj are taken from the set of
the most m probable prepositions output by the Viterbi algorithm for the same
target predicate. The classifier is meant to output a positive value if si is more

S

NP-A0

NNP-A0

Paul

VP

VBZ

delivers

NP

NP-A1

DT-A1

a

NN-A1

talk

(a) AST
cm

n

TREE

ARG0

A0

NNP

ARG1

rel

deliver

ARG2

A1

NP

ARG3

null

ARG4

null

ARG5

null

ARG6

null

(b) PAS
tl

Fig. 2. AST
cm

n and PAS
tl representations of the example proposition.

accurate that sj and a negative value otherwise. Each candidate proposition si

can be described by a structural feature ti and by a vector of linear features
vi representing information that cannot be captured by ti, e.g. the probability
associated with the annotation output by the Viterbi algorithm. As a whole,
each classifier example ei is described by a tuple 〈t1i , t

2

i , v
1

i , v2

i 〉, where 〈t1i , v
1

i 〉
and 〈t2i , v

2

i 〉 describe the first and second candidate annotations, respectively.
Using the above tuple, we can define the following kernels:

Ktr(e1, e2) = Kt(t
1

1
, t1

2
) + Kt(t

2

1
, t2

2
) − Kt(t

1

1
, t2

2
) − Kt(t

2

1
, t1

2
)

Kpr(e1, e2) = Kp(v
1

1
, v1

2
) + Kp(v

2

1
, v2

2
) − Kp(v

1

1
, v2

2
) − Kp(v

2

1
, v1

2
)

where Kt is a tree kernel function defined in [12] and Kp is a polynomial kernel
applied to the feature vectors. The final kernel that we use for re-ranking is the
following:

K(e1, e2) =
Ktr(e1, e2)

|Ktr(e1, e2)|
+

Kpr(e1, e2)

|Kpr(e1, e2)|
.

Among the many different structural features that we tested with our re-
ranker, the most effective are the completely marked argument structure span-
ning tree (AST cm

n) and the lemmatized type-only predicate argument structure
(PASt).

An AST cm
n (see Figure 2(a)) consists of the node spanning tree embracing

the whole argument structure: each argument node’s label is enriched with the
role assigned to the node by the role multiclassifier, the labels of the descendants
of each argument node being accordingly modified down to pre-terminal nodes.
Marking the nodes’ descendants is meant to force substructures to match only
among homogeneous argument types. This representation is meant to provide
rich syntactic and lexical information about the parse tree encoding the predicate
structure.

A PAStl (see Figure 2(b)) is a completely different structure that repre-
sents the syntax of the predicate argument structure, i. e. the number, type
and position of each argument, minimizing the amount of lexical and syntactic
information derived from the parse tree. The syntactic links between the argu-
ment nodes are represented as a fake 1-level tree, which is shared by any PAStl

and therefore does not influence the evaluation of similarity between pairs of
structures. Such structure accommodates sequentially all the arguments of an
annotation, each slot being attached a pre-terminal node standing for the node
type and a terminal symbolizing the syntactic type of the argument node. In
general, a proposition consists of m arguments, with m < 7. In this case, all the
nodes ARGi, i ≤ m ≤ 6 are attached a dummy descendant marked null. The
predicate is represented by means of a pre-terminal node labeled rel to which
the lemmatization of the predicate word is attached as a leaf node.

Table 1. Correct (+), incorrect (-) and overall (tot) number of potential argument
nodes from sections 2, 3 and 24 of the PropBank.

Section 2 Section 3 Section 24

+ - tot + - tot + - tot

12,741 185,178 197,919 7,023 139,823 146,846 8,234 130,489 138,723

Table 2. Performance improvement on the boundary detection and argument classifi-
cation tasks using engineered tree kernels.

Boundary detection Argument classification

AST1 75.24 82.07
AST

m

1 75.06 77.17

3 Experiments

In these experiments we evaluate the impact of our proposed kernels on the
different phases of the SRL task. The resulting accuracy improvement confirms
that the node marking approach enables the automatic engineering of effective
SRL features.

The empirical evaluations were carried out within the setting of the CoNLL-
2005 Shared Task [4] described in www.lsi.upc.edu/∼srlconll/ by means of
SVM-light-TK available at http://ai-nlp.info.uniroma2.it/moschitti/ which
encodes fast tree kernel evaluation [12] in SVM-light [13]. We used a regulariza-
tion parameter (option -c) equal to 1 and λ = 0.4 (see [5]).

3.1 Boundary Detection and Argument Classification Results

For the boundary detection experiments we used Section 02 for training and
Section 24 for testing, whereas for argument classification also Section 03 was

used for training. Their characteristics in terms of potential argument nodes1

are shown in Table 1.

Table 3. Number of distinct annotations output by the Viterbi algorithm and of pair
comparisons (i. e. re-ranker input examples) in the PropBank sections used for the
experiments.

Section 12 Section 23 Section 24

Annotations 24,494 26,325 16,240
Comparisons 74,650 81,162 48,582

Table 4. Summary of the proposition re-ranking experiments with different training
sets.

Training section AST
cm

n PAS
tl

PAS
tl + STD

12 - 78.27 77.61
24 76.47 78.15 77.77

12+24 - 78.44 -

The results obtained using the AST1 and the AST m
1

based kernels are re-
ported in Table 2 in rows 2 and 3, respectively. Columns 2 and 3 show their
respective performance (in terms of F1 measure) on the boundary detection and
argument classification phases. We note that: (1) on boundary detection, AST m

1
s

improve the F1 over AST1 by about 7 points, i. e. 82.07 vs. 75.24. This suggests
that marking the argument node simplifies the generalization process; (2) using
an engineered tree kernel also improves the argument classification task by about
2 points, i. e. 77.17 vs. 75.06. This confirms the outcome on boundary detection
experiments and the fact that we need to distinguish the target node from the
others.

3.2 Proposition Re-ranking Results

For our proposition re-ranking experiments, Section 23 was used for testing. On
such test set, considering the first 5 alternatives output by the Viterbi algorithm,
our model has a lower bound of the F1 measure of 75.91 (corresponding to
the selection of the first alternative, i. e. the most likely with respect to the
probabilistic model) and an upper bound of 84.76 (corresponding to the informed
selection of the best among the 5 alternatives, i. e. the theoretical output of a
perfect re-ranker). The number of distinct annotations output by the Viterbi

1 As the automatic parse trees contain errors, some arguments cannot be associated
with any covering node. This prevents us to extract a tree representation for them.
Consequently, we do not consider them in our evaluation. In sections 2, 3 and 24
there are 454, 347 and 731 such cases, respectively.

algorithm for each section that we used is shown in Table 3, Row 2. In Row 3,
the number of pair comparisons, i. e. the number of training/test examples for
the classifier.

Table 4 summarizes the outcome of our experiments. First, we compared the
accuracy of the AST cm

n and PAStl classifiers trained on Section 24 (in Row 3,
Columns 2 and 3) and discovered that the latter structure produces a notice-
able F1 improvement, i. e. 78.15 vs. 76.47. Second, we added the local (to each
argument node) linear features commonly employed for the boundary detection
and argument classification tasks, as in [10] to the PAStl kernel (Column 4).
The comparison with the simple PAStl on 2 different training sets (Rows 2
and 3) shows that the introduction of the standard linear features produces a
performance decrease on both sections 12 and 24 . Finally, we trained our best
re-ranking kernel, i. e. the PAStl, with both sections 12 and 24 achieving an F1

measure of 78.44 (Row 4).
These results suggest that: (1) the

�
�

��

��

��

��

��

�	
�����
���������������
��������������������

����� !"#$%"& #'#()
���� !"#$%"& #'#()

Fig. 3. Learning curve comparison for
the boundary detection phase between
the AST1 and AST m

1
F1 measures.

re-ranking task is very difficult from
a ML point of view: in fact, adding
or removing thousands of training ex-
amples has only a small impact on the
classification accuracy; (2) the PAStl

kernel is much more effective than the
AST cm

n one, which is always outper-
formed. This may be due to the fact
that two AST cm

n s always share a great
number of substructures, since most
alternative annotations tend to be very
alike and the small differences among
them only affect a small part of their
enriched syntactic parse trees; (3) on
the other hand, the little amount of
local parsing information encoded in
the PAStls allows for a good generalization process; (4) the introduction of the
standard, local linear features in our re-ranking model caused a performance loss
of about 0.5 points on both Sections 12 and 24. This fact, which is in contrast
with what has been shown in [10], might be the consequence of the small training
sets that we employed. In fact, local linear features tend to be very sparse and
their effectiveness should be evaluated against a larger data set.

4 Conclusions

The design of automatic systems for the labeling of semantic roles requires the
solution of complex problems. Among others, feature engineering is made difficult
by the structural nature of the data, i. e. features should represent information
contained in automatic parse trees. A system based on tree kernels alleviate such
complexity as kernel functions can automatically generate effective features.

In this paper, we have improved tree kernels by studying different strategies,
e.g. AST m

1
s highly improve accuracy in both the boundary detection (about 7%)

and argument classification subtasks (about 2%). We have also engineered dif-
ferent structured features for the re-ranking module, which improves our system
of about 2.5 percent points. This is quite a good results as it approaches the
state-of-the-art using only a small fraction of all the available data. In the near
future, we would like to use more such data along with other kernels described
in [12].

Acknowledgments

This research is partially supported by the European project, PrestoSpace (FP6-
IST-507336).

References

1. Johnson, C.R., Fillmore, C.J.: The framenet tagset for frame-semantic and syn-
tactic coding of predicate-argument structure. In proceedings of NAACL 2000,
Seattle WA. (2000)

2. Kingsbury, P., Palmer, M.: From Treebank to PropBank. In proceedings of
LREC’02, Las Palmas, Spain (2002)

3. Gildea, D., Jurasfky, D.: Automatic labeling of semantic roles. Computational
Linguistic 28(3) (2002) 496–530

4. Carreras, X., Màrquez, L.: Introduction to the CoNLL-2005 shared task: Semantic
role labeling. In proceedings of CoNLL-2005, Ann Arbor, Michigan, (2005)

5. Moschitti, A.: A study on convolution kernels for shallow semantic parsing. In
proceedings of ACL’04, Barcelona, Spain (2004)

6. Pradhan, S., Hacioglu, K., Krugler, V., Ward, W., Martin, J.H., Jurafsky, D.:
Support vector learning for semantic argument classification. Machine Learning
Journal (2005)

7. Moschitti, A., Coppola, B., Pighin, D., Basili, R.: Engineering of syntactic features
for shallow semantic parsing. In proceedings of the ACL Workshop on Feature
Engineering for Machine Learning in Natural Language Processing, Ann Arbor,
Michigan, (2005)

8. Moschitti, A., Pighin, D., Basili, R.: Tree kernel engineering in semantic role
labeling systems. In proceedings of the EACL Workshop on Learning Structured
Information in Natural Language Applications, Trento, Italy, (2006)

9. Charniak, E.: A maximum-entropy-inspired parser. In: Proceedings of the 1st
Meeting of NAACL. (2000)

10. Haghighi, A., Toutanova, K., Manning, C.: A joint model for semantic role labeling.
In proceedings of CoNLL-2005, Ann Arbor, Michigan. (2005)

11. Moschitti, A., Pighin, D., Basili, R.: Semantic role labeling via tree kernel joint
inference. In proceedings of CoNLL-X. (2006)

12. Moschitti, A.: Efficient convolution kernels for dependency and constituent syn-
tactic trees. In proceedings of ECML 2006, Berlin, Germany. (2006)

13. Joachims, T.: Making large-scale SVM learning practical. In Schölkopf, B., Burges,
C., Smola, A., eds.: Advances in Kernel Methods - Support Vector Learning. (1999)

