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Abstract. In this paper, we study novel structures to represent infor-
mation in three vital tasks in question answering: question classification,
answer classification and answer reranking. We define a new tree struc-
ture called PAS to represent predicate-argument relations, as well as a
new kernel function to exploit its representative power. Our experiments
with Support Vector Machines and several tree kernel functions suggest
that syntactic information helps specific task as question classification,
whereas, when data sparseness is higher as in answer classification, study-
ing coarse semantic information like PAS is a promising research area.

1 Introduction

Question answering (QA) can be seen as a form of information retrieval where
one or more answers are returned to a question in natural language in the form
of sentences or phrases. The typical QA system architecture consists of three
phases: question processing, document retrieval and answer extraction [1].

In question processing, useful information is gathered from the question and
a query is created; this is submitted to an information retrieval engine, which
provides a ranked list of relevant documents. From these, the QA system must
extract one or more candidate answers, which can then be reranked following
various criteria such as their similarity to the query. Question processing is usu-
ally centered around question classification (QC), the task that maps a question
into one of k expected answer classes. Such task is crucial as it constrains the
search space of possible answers and contributes to selecting answer extraction
strategies specific to a given answer class. Most accurate QC systems apply su-
pervised machine learning techniques, e.g. Support Vector Machines (SVMs) [2]
or the SNoW model [3], where questions are encoded using various lexical, syn-
tactic and semantic features; it has been shown that the question’s syntactic
structure contributes remarkably to the classification accuracy.

The retrieval and answer extraction phases consist in retrieving relevant doc-
uments [4] and selecting candidate answer passages [5,1] from them. A further
phase called answer re-ranking is optionally applied. It is especially relevant in
the case of non-factoid questions, such as those requiring definitions, where the
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answer can be a whole sentence or paragraph. Here, too, the syntactic structure
of a sentence appears to provide more useful information than a bag of words.

An effective way to integrate syntactic structures in machine learning
algorithms is the use of tree kernel functions [6]. Successful applications of these
have been reported for question classification [2,7] and other tasks, e.g. rela-
tion extraction [8,7]. However, such an approach may be insufficient to encode
syntactic structures in more complex tasks such as computing the relationships
between questions and answers in answer reranking. The information provided
by parse trees may prove too sparse: the same concept, expressed in two different
sentences, will produce different, unmatching parses. One way to overcome this
issue is to try to capture semantic relations by processing shallow representa-
tions like predicate argument structures proposed in the PropBank (PB) project
[9] (www.cis.upenn.edu/∼ace). We argue that semantic structures can be used to
characterize the relation between a question and a candidate answer.

In this paper, we extensively study new structural representations, namely
parse trees, bag-of-words, POS tags and predicate argument structures for
question classification and answer re-ranking. We encode such information by
combining tree kernels with linear kernels. Moreover, to exploit predicate ar-
gument information - which we automatically derive with our state-of-the-art
software - we have defined a new tree structure representation and a new kernel
function to process its semantics. Additionally, for the purpose of answer classi-
fication and re-ranking, we have created a corpus of answers to TREC-QA 2001
description questions obtained using a Web-based QA system.

Our experiments with SVMs and the above kernels show that (a) our approach
reaches state-of-the-art accuracy on question classification and (b) PB predica-
tive structures are not effective for question classification but show promising
results for answer classification. Overall, our answer classifier increases the rank-
ing accuracy of a basic QA system by about 20 absolute percent points.

This paper is structured as follows: Section 2 introduces advanced models to
represent syntactic and semantic information in a QA context; Section 3 explains
how such information is exploited in an SVM learning framework by introduc-
ing novel tree kernel functions; Section 4 reports our experiments on question
classification, answer classification and answer reranking; Section 5 concludes on
the utility of the new structure representations and sets the basis for further
work.

2 Advanced Models for Sentence Representation

Traditionally, the majority of information retrieval tasks have been solved by
means of the so-called bag-of-words approach augmented by language modeling
[10]. However, when the task requires the use of more complex semantics the
above approach does not appear to be effective, as it is inadequate to perform
fine-level textual analysis. To overcome this, QA systems use linguistic processing
tools such as syntactic parsers to produce sentence parse trees. In our study
we exploited two sources of syntactic information: deep syntactic parsers – the
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outcome of a well-studied technology [6,11] – and shallow semantic parsers, only
recently the object of a consistent body of work.

2.1 Syntactic Structures

The syntactic parse tree of a sentence is a hierarchical representation of the
syntactic relationships between its words. In such tree, each node with its chil-
dren is associated with a grammar production rule, where the symbol at the
left-hand side corresponds to the parent and the symbols at the right-hand
side are associated with the children. The terminal symbols of the grammar are
always associated with the leaves of the tree.

Parse trees have often been applied in natural language processing applica-
tions requiring the use of grammatical relations, e.g. extraction of subject/object
relations. It has been shown [2,7] that syntactic information outperformed bag-
of-words and bag-of-n-grams on question classification in QA. The advantage
of computing parse tree-based sentence similarity with respect to purely lexical
approaches is that trees provide structural relations hard to compute otherwise.

However, when approaching complex QA tasks, the use of parse trees has some
limitations. For instance in definitional QA candidate answers can be expressed
by long and articulated sentences or even paragraphs. Since the information
encoded in a parse tree is intrinsically sparse, it does not contribute well to com-
puting the similarity between such answers; shallow semantics however, being
a more “compact” source of information, could prevent the sparseness of deep
structural approaches and the noise of bag-of-word models.

2.2 Semantic Structures

Initiatives such as PropBank (PB) [9] have led to the creation of vast and
accurate resources of manually annotated predicate argument structures1. Us-
ing these, machine learning techniques have proven successful in Semantic Role
Labeling (SRL), the task of attaching semantic roles to predicates and their
arguments. SRL is a fully exploitable technology: our SVM-based SRL system
achieves a 76% accuracy on PB data [12]. Attempting an application of SRL
to QA seems natural, as pinpointing the answer to a question relies on a deep
understanding of the question and answer’s semantics.

Let us consider a typical PB annotation for a sentence, such as: [ARG0

Compounded interest] [pred computes] [ARG1 the effective interest rate for

an investment] [ARGM−TMP during the current year].

Such shallow semantic annotation is a useful information source. For instance,
the PB annotation of a similar sentence would be: [ARGM−TMP In a year][ARG1

the bank interest rate] is [pred evaluated] by [ARG0 compounded interest].

Such annotations can be represented via tree structures as those in Figure 1,
which we call PASs. These attempt to capture the semantics of both sentences.
1 The PB corpus contains 300,000 words annotated with predicative information on top

of the Penn Treebank 2 Wall Street Journal texts. For each predicate, the expected
arguments are labeled sequentially from ARG0 to ARG5, ARGA and ARGM .
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Fig. 1. Predicate argument structures of two sentences expressing similar semantics

We can improve such representation by substituting the arguments with their
most important word – often referred to as the semantic head – as in Figure 2.
It seems intuitive that data sparseness can be remarkably reduced by using this
shallow representation instead of the BOW representation.
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Fig. 2. Improved predicate argument structures of two different sentences

Knowing that parse trees and PASs may improve the simple BOW represen-
tation, we face the problem of representing tree structures in learning machines.
Section 3 introduces a viable representation approach based on tree kernels.
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Fig. 3. T1 and T2 with their fragments f1, f2 and f3 derived by the kernel function

3 Syntactic and Semantic Tree Kernels

As mentioned above, encoding syntactic/semantic information represented by
means of tree structures in the learning algorithm is problematic. One possible
solution is to use as features of a structure all its possible substructures. Given
the combinatorial explosion of considering the subparts, the resulting feature
space is usually very large. To manage such complexity we can define kernel
functions that implicitly evaluate the scalar product between two feature vectors
without explicitly computing such vectors.

Below, we report the tree kernel function devised in [6] computing the num-
ber of common subtrees between two syntactic parse trees and a new version
evaluating the number of semantic structures shared between two PASs.
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3.1 Syntactic Tree Kernel

Given two trees T1 and T2, let {f1, f2, ..} = F be the set of substructures (frag-
ments) and Ii(n) be equal to 1 if fi is rooted at node n, 0 otherwise. We define

K(T1, T2) =
∑

n1∈NT1

∑

n2∈NT2

Δ(n1, n2) (1)

where NT1 and NT2 are the sets of nodes in T1 and T2, respectively and Δ(n1, n2) =∑|F|
i=1 Ii(n1)Ii(n2). The latter is equal to the number of common fragments rooted

in nodes n1 and n2. We can compute Δ as follows:

1. if the productions at n1 and n2 are different then Δ(n1, n2) = 0;
2. if the productions at n1 and n2 are the same, and n1 and n2 only have leaf

children (i.e. they are pre-terminals symbols) then Δ(n1, n2) = 1;
3. if the productions at n1 and n2 are the same, and n1 and n2 are not pre-

terminals then

Δ(n1, n2) =
nc(n1)∏

j=1

(1 + Δ(cj
n1

, cj
n2

)) (2)

where nc(n1)2 is the number of children of n1 and cj
n is the j-th child of node n.

As proved in [6], the above algorithm allows to evaluate Eq. 1 in O(|NT1 |×|NT2|).
A decay factor λ is usually added by changing the formulae in (2) and (3) to3:

2. Δ(n1, n2) = λ,
3. Δ(n1, n2) = λ

∏nc(n1)
j=1 (1 + Δ(cj

n1
, cj

n2
)).

For instance, Figure 3 shows two trees and the substructures they have in
common. It is worth to note that the fragments of the above Syntactic Tree
Kernel (STK) are such that any node contains either all or none of its children.
Consequently, [NP [DT]] and [NP [NN]] are not valid fragments. This limita-
tion makes it unsuitable to derive important substructures from the PAS tree.
The next section shows a new tree kernel that takes this into account.

3.2 Semantic Tree Kernel

As mentioned above, the kernel function introduced in Section 2 is not sufficient
to derive all the required information from trees such as the PAS in Fig. 2: we
would like to have fragments that contain nodes with only part of the children,
e.g. to neglect the information constituted by ARGM-TMP. For this, we need
to slightly modify the PAS and to define a new kernel function.

First, we change the PAS into the PAS+ structure as shown in Figure 2(a).
Each slot node accommodates an argument label in the natural argument order.
2 Note that, since the productions are the same, nc(n1) = nc(n2).
3 A normalization in the kernel space, i.e. K′(T1, T2) = K(T1,T2)√

K(T1 ,T1)×K(T2,T2)
, ensures a

similarity score between 0 and 1.
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Fig. 4. A PAS+ with some of its fragments

Since diverse predicates or their different use may involve a different number of
arguments, we provide additional slots, filled with null arguments. The figure
shows just one slot to complete a structure of 5 arguments. More slots can be
added to manage the maximum number of arguments that a predicate can have.
The leaf nodes are filled with a wildcard character, i.e. *. They may alternatively
accommodate additional information. The slot nodes are used in such a way that
the adopted tree kernel function can generate fragments containing one or more
children like for example those shown in frames (b), (c) and (d). As previously
pointed out, if the arguments were directly attached to the root node, the kernel
function would only generate the structure with all children (or the structure
with no children, i.e. empty).

Second, we observe that the above approach generates many matches with
slots filled with the null label. To solve this problem, we have set a new step 0:

0. if n1 (or n2) is a pre-terminal node and its child label is null, Δ(n1, n2) = 0;

and by subtracting one unit to Δ(n1, n2), in step 3:

3. Δ(n1, n2) =
∏nc(n1)

j=1 (1 + Δ(cj
n1

, cj
n2

)) − 1,

The new Δ in Eq. 1 defines a new kernel4 that we call Shallow Semantic Tree
Kernel (SSTK).

4 Experiments

The purpose of our experiments is to study the impact of the new structure rep-
resentations introduced earlier for QA tasks. In particular, we focus on question
classification and answer reranking for Web-based QA systems.
4 By induction, it can be proven that SSTK applied to PAS+ generates the space of

all possible k-ary relations derivable from a set of k arguments.
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In the question classification (QC) task, we extend previous studies, e.g. [2,7],
by testing a set of previously designed kernels and their combination with our
new Shallow Semantic Kernel. SVMs are the learning machines used to build the
multi-class classifiers based on the SSK, the kernel combinations being the sum
of the individual models. This operation always produces a valid kernel [13].

In the answer reranking task, we approach the problem of detecting descrip-
tion answers (among the most complex in the literature [14,15]). We learn binary
answer classifiers based on question-answer pairs constructed by querying our
Web QA system, YourQA [16], with the same questions as the test set used
in the QC experiment. Our experiments with different kernel combinations on
question-answer pairs allow us to select the best performing classifier, which in
turn is used to re-rank answers. The resulting ranking is compared with the
ranking provided by Google and by YourQA.

4.1 Question Classification

As a first experiment, we focus on question classification (QC), because of its
great impact on the quality of a QA system and because it is a widely approached
task for which benchmarks and baseline results are available [2,3].

QC is defined as a multi-classification problem which consists in assigning
an instance I to one of n classes, which generally belong to two types: fac-
toid, seeking short fact-based answers (e.g. name, date) or non-factoid, seek-
ing e.g. descriptions or definitions (see e.g. the taxonomy in [3]). We design
a question multi-classifier by using n binary SVMs combined according to the
ONE-vs-ALL scheme, where the final output class is the one associated with the
most probable prediction. Question representation is based on the following fea-
tures/structures: parse tree (PT), bag-of-words (BOW), bag-of-POS tags (POS)
and predicate argument structure (PAS). We implemented the proposed kernels
in the SVM-light-TK software available at ai-nlp.info.uniroma2.it/moschitti/
which encodes the tree kernel functions in SVM-light [17]5. The PAS structures
were automatically derived by our SRL system [12].

As benchmark data, we use the question training and test set available at:
l2r.cs.uiuc.edu/∼cogcomp/Data/QA/QC/, where the test set are the TREC 2001
test questions6 [18]. We refer to this split as UIUC.

The performance of the multi-classifier and the individual binary classifiers is
measured with accuracy resp. F1-measure. To collect more statistically signifi-
cant information, we run 10-fold cross validation on the 6,000 questions.

Question Classification Results. Table 1.(a) shows the accuracy of different
question representations on the UIUC split (Column 1) and the average accuracy

5 We adopted the default regularization parameter (i.e., the average of 1/||x||) and
tried a few cost-factor values to adjust the rate between Precision and Recall on the
development set.

6 The benchmark is manually partitioned according to the coarse-grained question
taxonomy defined in [3] – i.e. ABBR, DESC, NUM, HUM, ENTY and LOC – and
contains 5,500 training and 500 test instances.

ai-nlp.info.uniroma2.it/moschitti/
l2r.cs.uiuc.edu/~cogcomp/Data/QA/QC/
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± standard deviation on the cross validation splits (Column 2) whereas Table
1.(b) reports the F1 for the individual classes using the best model, PTBOW.
The analysis of the above data suggests that:

Firstly, the STK on PT and the linear kernel on BOW produce a very high
result, i.e. about 90.5%. This is higher than the best outcome derived in [2],
i.e. 90%, obtained with a kernel combining BOW and PT. When our BOW is
combined with STK, it achieves an even higher result, i.e. 91.8%, very close
to the 92.5% accuracy reached in [3] by using complex semantic information
derived manually from external resources. Our higher results with respect to [2]
are explained by a highly performing BOW, the use of parameterization and
most importantly the fact that our model is obtained by summing two separate
kernel spaces (with separate normalization), as mixing BOW with tree kernels
does not allow SVMs to exploit all its representational power.

Secondly, model PTBOW shows that syntactic information can be beneficial
in tasks where text classification is vital, such as QA. Here, syntax can give a
remarkable contribution in determining the class of a question; moreover, the
lexical information (BOW) has a limited impact due to the little number of
words forming a question.

Thirdly, the PAS feature does not provide improvement. This is mainly due
to the fact that at least half of the training and test questions only contained
the predicate “to be”, for which a PAS cannot be derived by our PB-based shal-
low semantic parser. Also, PT probably covers most of the question’s semantic
information encoded by PAS.

Next, the 10-fold cross-validation experiments confirm the trends observed in
the UIUC split. The best model is PTBOW which achieves an average accuracy
of 86.1%. This value is lower than the one recorded for the UIUC split. The
explanation is that the test set in UIUC is not consistent with the training set
(it contains the TREC 2001 questions) and it includes a larger percentage of
easily classified question types, e.g. the numeric (22.6%) and description classes
(27.6%) while their percentage in training is 16.4% and 16.2%, respectively. This
shows the importance of cross-validation results that, given the very low values
the standard deviation, also suggest that the superior accuracy of the PTBOW
over the BOW model is statistically significant.

Finally, for individual binary classification, the most accurate is the one
carried out for NUM, which generally exhibits easily identified cues such as
“how much/many”. The more generic ENTY type proves hardest in both the
UIUC and cross-validation experiments, while LOC and HUM remain well-
classified in both cases also thanks to their regular patterns (“where” and “who”
identifiers).

4.2 Answer Classification and Reranking

Question Classification does not allow to fully exploit the predicate argument
potential since questions tend to be short and with no predicates. A different
scenario is answer classification, i.e. deciding if a passage/sentence correctly an-
swers the question: here, the semantics that the classifier has to generate are
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Table 1. Accuracy of the question classifier with different feature combinations and
performance of the best classifier by question class

(a)

Features Acc Acc
(UIUC) (xval.)

PT 90.4 84.8±1.4
BOW 90.6 84.7±1.4
PAS 34.2 43.0±2.2
POS 26.4 32.4±2.5
PTBOW 91.8 86.1±1.3
PTBOWPOS 91.8 84.7±1.7
PASBOW 90.0 82.1±1.5
PASBOWPOS 88.8 81.0±1.7

(b)

Q. class P R F1 F1
(UIUC) (UIUC) (UIUC) (xval.)

ABBR 87.5 77.8 82.4 78.5± 7.0
DESC 95.8 99.3 97.5 84.6±2.3
ENTY 73.6 83.0 78.0 75.7±1.3
HUM 89.6 92.3 90.9 86.8±2.0
LOC 86.6 85.2 85.7 88.9±1.5
NUM 99.0 86.7 92.5 94.2±1.4
Multi-Class. Accuracy 91.8 86.1±1.3

not constrained to a small taxonomy and the length of an answer may make the
representation based on PT too sparse.

We learn answer classification with a binary SVM which determines if a answer
is correct for the target question: consequently, the classification instances are
the 〈question, answer〉 pairs. Each pair component can be encoded with PT,
BOW, POS and PAS representations and processed with the previouskernels.

The output of the binary classifier can be used to rerank the list of candidate
answers of a QA system. Starting from the top answer, each instance is classified
based on its correctness with respect to the question. If it is classified as correct
its rank is unchanged; otherwise it is pushed down, until a lower ranked incorrect
answer is found.

As output of the basic QA we use Google rank along with the YourQA [16]
system. YourQA uses the Web documents corresponding to the top 20 Google
results for the question. Then, each sentence in each document is compared to
the question to compute the Jaccard similarity, which, in the answer extraction
phase, is used to select the most relevant sentence. A passage of up to 750 bytes
is then created around the sentence and returned as an answer.

As test data, we collected the 138 TREC 2001 test questions labeled as
“description” and for each, we obtained a list of answer paragraphs extracted
from Web documents using YourQA. Each paragraph sentence was manually
evaluated according to whether it contained an answer to the corresponding
question; moreover, to simplify the classification problem, we isolated for each
paragraph the sentence which obtained the maximal judgment (in case more
than one sentence in the paragraph had the same judgment, we chose the first
one). We collected a corpus containing 1123 sentences, 401 of which – labeled as
“+1” – answered the question either concisely or with noise; the rest – labeled
as “-1”– were either irrelevant to the question or contained hints relating to the
question but could not be judged as valid answers7.
7 For instance, given the question “What are invertebrates?”, the sentence “At least

99% of all animal species are invertebrates, comprising . . . ” was labeled “-1” , while
“Invertebrates are animals without backbones.” was labeled “+1”.
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Answer Classification and Reranking Results. To gather statistically
significant data, we ran 5-fold cross-validation, with the constraint that two
pairs 〈q, a1〉 and 〈q, a2〉 associated with the same question q could not be split
between training and testing. The answer classification experiment results are
in Tab. 2.

We note that: first, the contribution of the POS feature in answer classification
is much higher than in question classification and even outperforms the PT
feature (see Table (a)). This is because on the one side we work with Web data,
a noisy input wich can drastically reduce parser performance; on the other,
POS tagging is a more robust operation and yields less errors. Moreover, while
question classification is a multi-classification task where the POS feature must
be used to determine a semantic category, definition answer classification is a
binary classification task – hence statistically simpler.

Second, although the accuracy of PAS as a standalone was inferior to that of
PT, when coupled with BOW it yielded higher accuracy8; in this case, its ability
to generalize the answer information allowed to overcome the erroneous/noisy
information provided by the PT on Web data.

Table 2. Answer classifier with different feature combinations, baseline classifiers
accuracy and MRR of the best reranker compared to the baseline

(a)

Features P R F1
PT 56.4 70.0 59.6±4.0
BOW 58.5 85.9 69.3±6.6
POS 52.4 84.1 64.0±5.9
PAS 52.4 71.1 58.6±5.6
PTBOW 59.8 79.7 68.1±8.0
PASBOW 64.1 79.2 70.7±5.9
PTBOWPOS 63.8 71.7 67.4±7.6
PASBOWPOS 64.4 75.2 69.2± 6.5

(b)

Baseline P R F1
Gg@1 39.7 9.4 15.2±3.1
QA@1 45.3 10.9 17.6±2.9
Gg@all 35.8 100 52.7±6.2
QA@all 35.8 100 52.7±6.2

Gg QA Reranker
MRR 54.8±6.7 60.1±4.1 79.2±0.9

Third, we compared the answer classifier with two baselines built using the
YourQA and Google rankings. For this, we considered the top N ranked results
as correct definitions and the remaining ones as incorrect for different values of
N . Table 2.(b) shows the results for N = 1 and the maximum N (all), i.e. all the
available answers. Each measure is the average of the Precision, Recall and F1
of the three systems on the cross-validation splits. The F1 of Google (Gg) and
YourQA (QA) are greatly outperformed by the classifier, even when all answers
are considered (N = all) and the low standard deviations ensure the statistical
relevance of the results.
8 Although the standard deviation in this case is high, as the complexity can vary

across splits, since the PAS and PASBOW models are similar, the standard deviation
of their difference is lower, i.e. 2.03. When we performed the t-test on such value,
we confirmed that PASBOW is superior to BOW with a 90% level of confidence.
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Finally, we implemented the simple re-ranking algorithm described previously
and assessed its performance with the MRR9 metric adopted in TREC 200110.

YourQA’s MRR outperforms the Google MRR ( Tab. 2.(b), last row) as
Google ranks are based on whole documents, not on single passages, so doc-
uments where no passage contains all of the question’s keywords may be ranked
higher than others containing them all. When the answer classifier is applied to
improve the QA ranking, MRR reaches .792, rising by nearly 20 points.

Related Work on Definitional QA. Unfortunately, no results are known to
the authors concerning a Web-based answer classifier for the same question set
and few are available on the performances computed over description questions
alone on the NIST corpus; for instance, NTT’s system achieved an MRR of .247
on description questions using a heuristic searching for appositions [15].

Interesting related work on definition answer reranking [20] was conducted by
comparing the use of an SVM classifier predictions to induce a ranking and of
the Ranking SVM algorithm [17]. In [21], ranks were computed based on the
probabilities of biterm language models generating candidate answers.

5 Conclusion

In this paper, we introduce new structures to represent textual information
in three question answering tasks: question classification, answer classification
and answer reranking. We define a new tree structure called PAS to represent
predicate-argument relations, which we automatically extract using our SRL
system. We also introduce a new kernel function to exploit its representative
power.

Our experiments with SVMs and such new functions suggest that syntactic in-
formation helps specific tasks such as question classification. On the other hand,
the coarse-grained semantic information contained by the PAS gives promising
results in answer classification, which suffers more from data sparseness. More-
over, our simple answer reranker, based on the answer classifier output, obtains
a 20% more accurate ranking than our baseline QA system.

In the future, we will study the utility of PASs for other tasks affected by noisy
data and apply a true SVM reranker trained with the proposed information.
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