
Combined Syntactic and Semantic Kernels
for Text Classification

Stephan Bloehdorn1 and Alessandro Moschitti2

1 Institute AIFB, University of Karlsruhe, Germany
bloehdorn@aifb.uni-karlsruhe.de

2 University of Rome ‘Tor Vergata’, Italy
moschitti@info.uniroma2.it

Abstract. The exploitation of syntactic structures and semantic back-
ground knowledge has always been an appealing subject in the context
of text retrieval and information management. The usefulness of this
kind of information has been shown most prominently in highly special-
ized tasks, such as classification in Question Answering (QA) scenar-
ios. So far, however, additional syntactic or semantic information has
been used only individually. In this paper, we propose a principled ap-
proach for jointly exploiting both types of information. We propose a
new type of kernel, the Semantic Syntactic Tree Kernel (SSTK), which
incorporates linguistic structures, e.g. syntactic dependencies, and se-
mantic background knowledge, e.g. term similarity based on WordNet,
to automatically learn question categories in QA. We show the power
of this approach in a series of experiments with a well known Question
Classification dataset.

1 Introduction

Text Classification (TC) systems [1], which aim at automatically classifying tex-
tual input into categories according to some criterion of interest are a major
application domain of modern machine learning techniques. Pioneered by [2],
Support Vector Machines (SVMs) have been heavily used for text classification
tasks, typically showing good results. In the simplest case, such systems use the
standard bag-of-words feature representation which encodes the input as vec-
tors whose dimensions correspond to the terms in the overall training corpus.
The inner product (or the cosine) between two such vectors is used as kernel
hence making the similarity of two documents dependant only on the amount of
terms they share. This approach has an appealing simplicity and has produced
good results in cases where sufficient training data is available. However, several
modifications to this rather flat representation have been shown to improve the
overall performance in selected scenarios. In particular, there has been interest
in incorporating information about (i) the syntactic structure of the input texts
and (ii) the semantic dependencies within the used terminology.

Kernel-based learning algorithms like Support Vector Machines have become
a prominent framework for using such a-priori knowledge about the problem do-
main by means of a specific choice of the employed kernel function. On the one

hand, Tree Kernels [3,4] have been used as a powerful way to encode the syntac-
tic structure of the textual input in the form of parse trees and have shown good
results in many natural language applications. On the other hand, Semantic
Smoothing Kernels [5,6,7] exploit background information from semantic refer-
ence structures such as WordNet to make different, though semantically similar,
terms contribute to the overall similarity of the input instances. Intuitively, the
power of this kind of kernels is most apparent when too little training data is
available to build stable models by counting occurrences of identical terminol-
ogy only. While both approaches seem intuitive and powerful, language draws
from both syntax and lexical semantics, therefore, finding principled techniques
for combining kernels on linguistic structures, e.g. Tree Kernels, with Semantic
Kernels appears to be a promising research line.

In this paper, we propose a new type of kernel, the Semantic Syntactic Tree
Kernel (SSTK), which exploits linguistic structure and background knowledge
about the semantic dependencies of terms at the same time. More technically,
the proposed kernel uses semantic smoothing to improve the matching of tree
fragments containing terminal nodes.

We show the power of this approach in a series of experiments from the
Question Classification (QC) domain. Question Classification [8] aims at detect-
ing the type of a question, e.g. whether it asks for a person or for an organization
which is critical to locate and extract the right answers in question answering
systems. A major challenge of Question Classification compared to standard
Text Classification settings is that questions typically contain only extremely
few words which makes this setting a typical victim of data sparseness. Previous
work has shown that Tree Kernels as well as Semantic Smoothing Kernels were
individually capable of improving effectiveness in QC tasks. Our evaluation stud-
ies confirm these findings and indicate a consistent further improvement of the
results when the proposed combined kernel is used. Our new Syntactic Seman-
tic Tree Kernel improves the state-of-the-art in Question Classification, which
makes it a prototype of a possible future full-fledged natural language kernel.

The remainder of this paper is structured as follows. Section 2 introduces
kernel methods and some related work. Sections 3, 4 and 5 describe the design
of the Semantic Smoothing Kernels, Tree Kernels and the combined Semantic
Syntactic Tree Kernels, respectively. Section 6 gives an account on the perfor-
mance of these in a series of evaluation experiments from the QC domain. We
conclude in section 7 with a summary of the contributions, final remarks and a
discussion of envisioned future work.

2 Kernel Methods and Related Work

Support Vector Machines [9] are state-of-the-art learning methods based on the
older idea of linear classification. The distinguishing feature of SVMs is the
theoretically well motivated and efficient training strategy for determining the
separating hyperplane based on the margin maximization principle. In our con-
text, however, the interesting property of SVMs is their capability of naturally

incorporating data-specific notions of item similarity by means of a correspond-
ing kernel function. Formally, any function κ that for all x, z ∈ X satisfies
κ(x, z) = 〈φ(x), φ(z)〉, is a valid kernel, whereby X is the input domain under
consideration and φ is a suitable mapping from X to a feature (Hilbert-) space F .
Kernels can be designed by either choosing an explicit mapping function φ and
incorporating it into an inner product or by directly defining the kernel function
κ while making sure that it complies with the requirement of being a positive
semi-definite function. Several closure properties aid the construction of valid
kernels from known valid kernels. In particular, kernels are closed under sum,
product, multiplication by a positive scalar and combination with well-known
kernel modifiers. In particular, a given kernel κ can be normalized using the
cosine normalization modifier given by κ′(x, y) = (κ(x, y)) / (

√
κ(x, x)

√
κ(y, y))

to produce kernel evaluations (i.e. similarity measures) normalized to absolute
values between 0 and 1. The reader is referred to the rich literature for fur-
ther information on SVMs and kernel methods, e.g. [10] for a comprehensive
introduction.

Lexical semantic kernels were initially introduced in [5] using inverted path
length as a similarity measure and subsequently revisited in [11,12], each time
based on different design principles. Semantic kernels based on superconcept
representations were investigated in [6] and [7]. As an alternative, [11] have put
Semantic Kernels into the context of Latent Semantic Indexing.

Tree Kernels were firstly introduced in [3] and experimented with the Voted
Perceptron for the parse-tree re-ranking task. The combination with the original
PCFG model improved the syntactic parsing. In [13], two kernels over syntactic
shallow parser structures were devised for the extraction of linguistic relations,
e.g. person-affiliation. To measure the similarity between two nodes, the Contigu-
ous String Kernel and the Sparse String Kernel were used. In [14] such kernels
were slightly generalized by providing a matching function for the node pairs.
The time complexity for their computation limited the experiments on a data set
of just 200 news items. In [15], a feature description language was used to extract
structural features from the syntactic shallow parse trees associated with named
entities. The experiments on named entity categorization showed that too many
irrelevant tree fragments may cause overfitting. In [16] Tree Kernels were firstly
proposed for semantic role classification. The combination between such kernel
and a polynomial kernel of standard features improved the state-of-the-art.

To our knowledge, no other work has so far combined the syntactic and
semantic properties of natural language in a principled way as proposed in our
approach.

3 Semantic Similarity Kernels

In this section we describe the first component of our new kernel, the Seman-
tic Smoothing Kernel, which combines semantic similarity of terms with the
standard bag-of-words representation.

Inverted Path Length:

simIPL(c1, c2) =
1

(1 + d(c1, c2))α

Wu & Palmer:

simWUP (c1, c2) =

2 dep(lso(c1, c2))

d(c1, lso(c1, c2)) + d(c2, lso(c1, c2)) + 2 dep(lso(c1, c2))

Resnik:
simRES(c1, c2) = − log P (lso(c1, c2))

Lin:

simLIN (c1, c2) =
2 log P (lso(c1, c2))

log P (c1) + log P (c2)

Table 1. Measures of semantic similarity.

3.1 Semantic Networks and Similarity

The formal description of semantic kernels requires the introduction of some
definitions. We denote terms as t1, t2, . . . ∈ T and concepts as c1, c2, . . . ∈ C;
we also sometimes use the somewhat informal disambiguation operator c(·) to
map terms to concept representations. To compute useful notions of semantic
similarity among the input terms, we employ semantic reference structures which
we call, for simplicity, Semantic Networks. These can be seen as directed graphs
semantically linking concepts by means of taxonomic relations (e.g. [cat] is-a
[mammal]). Research in Computational Linguistics has led to a variety of well-
known measures of semantic similarity in semantic networks.

The measures relevant in the context of this paper are summarized in table 1.
These measures make use of several notions. (i) The distance (d) of two concepts
c1 and c2, is the number of superconcept edges between c1 and c2. (ii) The
depth (dep) of a concept refers to the distance of the concept to the unique
root node3. (iii) The lowest super ordinate (lso) of two concepts refers to the
concept with maximal depth that subsumes them both. (iv) The probability
P (c) of encountering a concept c which can be estimated from corpus statistics.
When probabilities are used, the measures follow the trail of information theory
in quantifying the information concept (IC) of an observation as the negative
log likelihood. We point the interested reader to [17] for a detailed and recent
survey of the field.

3 If the structure is not a perfect tree structure, we use the minimal depth.

full No weighting, i.e. SC(c̄)j = 1 for all superconcepts cj of c̄ and SC(c̄)j = 0
otherwise.

full-ic Weighting using information content of SC(c̄)j , i.e. SC(c̄)j =
simRES(c̄, cj).

path-1 Weighting based on inverted path length, i.e. SC(c̄)j = simIPL(c̄, cj) for
all superconcepts cj of c̄ and SC(c̄)j = 0 otherwise using the parameter
α = 1.

path-2 The same but using the parameter α = 2.
lin Weighting using the Lin similarity measure, i.e. SC(c̄)j = simLIN (c̄, cj).
wup Weighting using the Wu&Palmer similarity measure, i.e. SC(c̄)j =

simWUP (c̄, cj).

Table 2. Weighting Schemes for the Superconcept Kernel κS

3.2 Semantic Similarity Kernels based on Superconcepts

In this section, we introduce a class of kernel functions defined on terms that
can be embedded in other kernels that make (in whatever way) use of term
matching4

Definition 1 (Superconcept Kernel). The Superconcept Kernel κS for two
concepts ci, cj ∈ C is given by κS(ci, cj) = 〈SC(ci), SC(cj)〉, whereby SC(·) is
a function C → R|C| that maps each concept to a real vector whose dimensions
correspond to (super-)concepts present in the employed semantic network and
the respective entries are determined by a particular weighting scheme.

This idea, recently investigated in [7], is based on the observation that the
more two concepts are similar the more they share common superconcepts. A
similar approach has been proposed in [6], however focusing on the simple case
of giving the superconcepts in the mapping full and equal weight while varying
the number of superconcepts that are considered.

Obviously, κS is a valid kernel as it is defined explicitly in terms of a dot
product computation. So far, however, we have left the details of the function
SC(·) that maps concepts to its superconcepts unspecified. In the same way as
in earlier work [7], we have investigated the use of different weighting schemes
for the representation of the superconcepts motivated by the following consider-
ations:

1. The weight a superconcept SC(c̄)j receives in the vectorial description of
concept c̄ should be influenced by its distance from c̄.

2. The weight a superconcept SC(c̄)j receives in the vectorial description of
concept c̄ should be influenced by its overall depth in the semantic network.

4 For simplicity, we will restrict our attention on defining kernel functions for concepts
and leave the details of the consideration of lexical ambiguity to the next section.

NP

D N

a cat

NP

D N

NP

D N

a

NP

D N

NP

D N

VP

V

brought

a cat

 cat
NP

D N

VP

V

a cat

NP

D N

VP

V

N

 cat

D

a

V

brought
…

Fig. 1. A tree with some of its fragments.

We have used the measures of semantic similarity introduced in table 1 as
weighting schemes, summarized in table 2. The different weighting schemes be-
have differently wrt the above motivations. While full does not implement any
of them, full-ic considers rationale 2 while path-1 and path-2 consider rationale
1. The schemes lin and wup reflect combinations of both rationales. The super-
concept kernel κS can normalized to [0, 1] in the usual way using the cosine
normalization modifier.

The concept kernel κS(·, ·) can be used directly in conjunction with the stan-
dard linear kernel by means of a simple Semantic Smoothing Kernel.

Definition 2 (Semantic Smoothing Kernel). The Semantic Smoothing
Kernel κS for two term vectors (input texts) x, z ∈ X is given by κŜ(x, z) =
x′C ′KSCz where KS is a square symmetric matrix whose entries represent the
kernel evaluations between the concepts and C denotes the matrix that encodes
the evaluations of the disambiguation function C that maps concept dimensions
to term dimensions that constitute the input space X.

4 Tree Kernels for Syntactic Structures

The main rationale behind Tree Kernels is to represent trees in terms of their
substructures (fragments). The kernel function then counts the number of tree
subparts common to both argument trees. We define a tree as a connected di-
rected graph with no cycles. Trees are denoted as T1, T2, . . .; tree nodes are
denoted as n1, n2, . . .; and the set of nodes in tree Ti are denoted as NTi . We
denote the set of all substructures (fragments) that occur in a given set of trees
as {f1, f2, . . .} = F . As the structures we will work with are parse trees, each
node with its children is associated with the execution of a grammar production
rule. The labels of the leaf nodes of the parse trees correspond to terms, i.e.
terminal symbols, whereas the preterminal symbols are the parents of leaves. As
an example Figure 1 in section 4 shows a parse tree of the sentence fragment
‘‘brought a cat’’ with some of its substructures.

Definition 3 (Tree Kernel (Collins & Dufy, 2001)). Given two trees T1

and T2 we define the (Subset-) Tree Kernel as:

κT (T1, T2) =
∑

n1∈NT1

∑

n2∈NT2

∆(n1, n2)

where ∆(n1, n2) =
∑|F|

i=1 Ii(n1)Ii(n2), and where Ii(n) is an indicator function
which determines whether fragment fi is rooted in node n.

∆ is equal to the number of common fragments rooted at nodes n1 and n2.
We can compute it more efficiently as follows:

1. if the productions at n1 and n2 are different then ∆(n1, n2) = 0;
2. if the productions at n1 and n2 are the same, and n1 and n2 only have

leaf children (i.e. the argument nodes are pre-terminals symbols) then
∆(n1, n2) = 1;

3. if the productions at n1 and n2 are the same, and n1 and n2 are not pre-
terminals then

∆(n1, n2) =
nc(n1)∏

j=1

(1 + ∆(chj
n1

, chj
n2

)).

where nc(n1) is the number of children of n1 and chj
n is the j-th child of node

n. Note that, since the productions are the same, nc(n1) = nc(n2). Of course,
the kernel can again be normalized using the cosine normalization modifier.
Additionally, a decay factor λ can be added by modifying steps (2) and (3) as
follows:

2. ∆(n1, n2) = λ,
3. ∆(n1, n2) = λ

∏nc(n1)
j=1 (1 + ∆(chj

n1
, chj

n2
)).

As an example, Figure 1 shows a parse tree of the sentence (fragment)
‘‘bought a cat’’ with some of the substructures that the tree kernel uses
to represent it5.

5 Designing Semantic Syntactic Tree Kernels

The Tree Kernel introduced in the previous section relies on the intuition of
counting all common substructures of two trees. However, if two trees have simi-
lar structures but employ different though related terminology at the leaves, they
will not be matched. From a semantic point of view, this is an evident drawback
as ‘‘brought a cat’’ should be more related to ‘‘brought a tomcat’’ than
to ‘‘brought a note’’.

In analogy with the semantic smoothing kernels for the bag-of-words kernel
as described in section 3.2, we are now interested in also counting partial matches
between tree fragments. A partial match occurs when two fragments differ only
by their terminal symbols, e.g. [N [cat]] and [N [tomcat]]. In this case the
match should give a contribution smaller than 1, depending on the semantic
similarity of the respective terminal nodes. For this purpose, we first define the
similarity of two such tree fragments.
5 The number of such fragments can be obtained by evaluating the kernel function

between the tree with itself.

Definition 4 (Tree Fragment Similarity Kernel). For two tree fragments
f1, f2 ∈ F , we define the Tree Fragment Similarity Kernel as6:

κF (f1, f2) = comp(f1, f2)
nt(f1)∏
t=1

κS(f1(t), f2(t))

where comp(f1, f2) (compatible) is 1 if f1 differs from f2 only in the terminal
nodes and is 0 otherwise, nt(fi) is the number of terminal nodes and fi(t) is the
t-th terminal symbol of fi (numbered from left to right).

Conceptually, this means that the similarity of two tree fragments is above
zero only if the tree fragments have an identical structure. The fragment sim-
ilarity is evaluated as the product of all semantic similarities of corresponding
terminal nodes (i.e. sitting at identical positions). It is maximal if all pairs have
a similarity score of 1. We now define the overall tree kernel as the sum over the
evaluations of κF over all pairs of tree fragments in the argument trees. Techni-
cally, this means changing the summation in the second formula of definition 3
as in the following definition.

Definition 5 (Semantic Syntactic Tree Kernel). Given two trees T1 and
T2 we define the Semantic Syntactic Tree Kernel as:

κT (T1, T2) =
∑

n1∈NT1

∑

n2∈NT2

∆(n1, n2)

where ∆(n1, n2) =
∑|F|

i=1

∑|F|
j=1 Ii(n1)Ij(n2)κF (fi, fj).

Obviously, the naive evaluation of this kernel would require even more com-
putation and memory than for the naive computation of the standard kernel as
also all compatible pairs of tree fragments would need to be considered in the
summation. Luckily, this enhanced kernel can be evaluated in the same way as
the standard tree kernel by adding the following step

0. if n1 and n2 are pre-terminals and label(n1) = label(n2) then ∆(n1, n2) =
λκS(ch1

n1
, ch1

n2
),

as the first condition of the ∆ function definition (Section 4), where label(ni)
is the label of node ni and κS is a term similarity kernel, e.g. based on the
superconcept kernel defined in section 3.2. Note that: (a) since n1 and n2 are
pre-terminals of a parse tree they can have only one child (i.e. ch1

n1
and ch1

n2
)

and such children are words and (b) Step 2 is no longer necessary.
Beside the novelty of taking into account tree fragments that are not identical

it should be noted that the lexical semantic similarity is constrained in syntactic
structures, which limit errors/noise due to incorrect (or, as in our case, not
provided) word sense disambiguation.
6 Note that, as the tree fragments need to be compatible, they have the same number

of terminal symbols at compatible positions.

6 Experimental Evaluation

In a series of experiments we aimed at showing that our approach is effective
for IR and text mining applications. For this purpose, we experimented with
the TREC question classification corpus for advanced retrieval based on the
Question Answering paradigm.

6.1 Experimental setup

The long tradition of QA in TREC has produced a large question set used by
several researchers which can be exploited for experiments on Question Classi-
fication. According to [8], we can define question classification “to be the task
that, given a question, maps it to one of k classes, which provide a semantic con-
straint on the sought-after answer”. Such questions are categorized according to
different taxonomies of different grains. We consider the same dataset and classi-
fication problem as described in [18,8]. The dataset consists of free text questions
and is freely available7. It is divided into 5,500 questions8 for training and the
500 TREC 10 questions for testing. Each of these questions is labeled with ex-
actly one class of the coarse grained classification scheme (see [18]) consisting
of the following 6 classes: Abbreviations, Descriptions (e.g. definition and man-
ner), Entity (e.g. animal, body and color), Human (e.g. group and individual),
Location (e.g. city and country) and Numeric (e.g. code and date).

We have implemented the kernels introduced in sections 3–5 within the SVM-
light-TK software available at ai-nlp.info.uniroma2.it/moschitti/ which en-
codes tree kernel functions in SVM-light [19]. In all experiments, we used the
noun hierarchy of WordNet9 as the underlying semantic network. For word sense
disambiguation, we used a simplifying assumption in mapping each term to its
most frequent noun sense (if it exists). Note that this approach implies an in-
herent word sense disambiguation side effect, likely to have a negative impact
on the results. The results can also be seen as a pessimistic estimate. Kernel
similarities that were undefined because of a missing mapping to a noun synset
were implicitly assumed to take the default values (i.e. zero for distinct and one
identical terms respectively).

6.2 Evaluation of Superconcept Smoothing Kernels

In a first experiment we investigated the effect of simply smoothing term features
based on the idea of the Semantic Smoothing Kernel. Questions were prepro-
cessed using the usual steps, namely tokenization, lemmatization and stoopword-
removal leading to a total number of 8,075 distinct TFIDF-weighted features.

7 http://l2r.cs.uiuc.edu/∼cogcomp/Data/QA/QC/
8 These are selected from the 4500 English questions published by USC (Hovy et al.,

2001), 500 questions annotated for rare classes and the 894 questions from TREC 8
and TREC 9.

9 http://wordnet.princeton.edu/

ai-nlp.info.uniroma2.it/moschitti/
http://l2r.cs.uiuc.edu/~cogcomp/Data/QA/QC/
http://wordnet.princeton.edu/

macro-averaging

soft margin parameter c

kernel 0.1 0.2 0.3 1.0 2.0 3.0

linear 0.21 0.38 0.47 0.62 0.63 0.64

full 0.38 0.49 0.55 0.61 0.61 0.68
full-ic 0.53 0.53 0.53 0.62 0.55 0.55
path-1 0.25 0.42 0.51 0.64 0.64 0.64
path-2 0.22 0.39 0.47 0.63 0.65 0.64
lin 0.36 0.49 0.56 0.64 0.62 0.70
wup 0.34 0.49 0.54 0.62 0.61 0.69

micro-averaging

soft margin parameter c

kernel 0.1 0.2 0.3 1.0 2.0 3.0

linear 0.09 0.25 0.34 0.55 0.57 0.58

full 0.27 0.38 0.45 0.55 0.56 0.68
full-ic 0.47 0.46 0.47 0.60 0.49 0.48
path-1 0.14 0.32 0.40 0.57 0.58 0.59
path-2 0.08 0.28 0.37 0.57 0.59 0.58
lin 0.27 0.37 0.47 0.57 0.57 0.69
wup 0.23 0.37 0.45 0.56 0.56 0.68

Table 3. Absolute macro and micro F1 results for QC, for different values of c
and different semantic smoothing kernels. The best results per setting of c are
highlighted

We performed binary classification experiments on each of the 6 question types
for different settings of the ’soft margin’ parameter c. Table 3 summarizes the
absolute macro F1 as well as the micro F1 values obtained in the question clas-
sification setting. The best values per setting of c are highlighted.

The results indicate that the smoothing of the term features considerably
affects the performance compared to the simple linear kernel baseline. According
to the results, the lin scheme seems to achieve the best overall performance with
a relative improvement of 9.32% for the macro F1 value in the case of c = 3 (i.e.
the setting for which the linear kernel achieves its maximum). For a more detailed
description of these experiments, refer to [7]. For QC, however, the traditional
bag-of-words (bow) appears to be somewhat insufficient as it ignores structure
and function words that are likely to influence the results.

6.3 Evaluation of Syntactic Semantic Tree Kernels

In these experiments, we used the same experimental setup as used in [18] as it
contains the most comprehensive comparison of experiments on the QC corpus
introduced above. As literature results are given in terms of the accuracy of the
multi-classification of the TREC questions, to compare with them, we designed
a multiclassifier based on the scores of the SVMs. For each questions, we selected
the class associated with the maximum score.

In this experiment, we compared the linear kernel based on bag-of-words
(this time including function words), the original STK and the new SSTK as
introduced in Section 5 with different term similarities10. The question parse
trees were obtained by running the Charniak’s parser. Table 4 reports the results
of the multiclassifier based on SSTK. Column 1 shows the type of similarity used
in the semantic syntactic tree kernel function, where string matching means that

10 We again used the superconcept kernels as term similarities, however, in contrast to
the previous section we used normalized versions.

the original tree kernel is used. Columns from 2 to 6 report the accuracy of the
multiclassifier according to several values of the λ parameter11 (see Section 5).

Accuracy

λ parameter 0.4 0.05 0.01 0.005 0.001

linear (bow) 0.905

string matching 0.890 0.910 0.914 0.914 0.912

full 0.904 0.924 0.918 0.922 0.920
full-ic 0.908 0.922 0.916 0.918 0.918
path-1 0.906 0.918 0.912 0.918 0.916
path-2 0.896 0.914 0.914 0.916 0.916
lin 0.908 0.924 0.918 0.922 0.922
wup 0.908 0.926 0.918 0.922 0.922

Table 4. Accuracy of SSTK on QC, for different values of λ parameter and
different semantic smoothing kernels. The best λ settings are highlighted

We note that (a) our basic Syntactic Tree Kernel improves the state-of-the-
art accuracy, i.e. 91.4% vs. 90% of [18], (b) this is further improved when we use
one of the semantic smoothing kernel and (c) the Wu-Palmer similarity achieves
the highest accuracy, i.e. 92.6%.

7 Conclusion

In this paper, we have investigated how the syntactic structures of natural lan-
guage texts can be exploited simultaneously with semantic background knowl-
edge on term similarity. For this purpose, we have proposed a new family of
kernels called Semantic Syntactic Tree Kernels (SSTK) that is based on Tree
and Semantic Smoothing Kernels. We have motivated this class of kernels by
counting all compatible tree fragments of two parse trees weighted by their joint
terminology. To our knowledge, no other work has so far combined the syntac-
tic and semantic properties of natural language in such a principled way. We
conducted a series of experiments on the TREC question classification data.
Our results indicate that the newly proposed Semantic Syntactic Tree Kernels
outperform the conventional linear/semantic kernels as well as tree kernels im-
proving the state of the art in Question Classification. In the future, it would
be interesting to study different models of lexical semantics, e.g. latent semantic
kernels, with kernels based on different syntactic/semantic structures.

11 We preliminary selected the best cost-factor (parameter j) on the validation set and
then experimented with different λ values. We also noted that the parameter c is
not critical when tree kernels are used. This means that the accuracy does not vary
too much and the highest value seems to be achieved with the default SVM-light
setting.

References

1. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput-
ing Surveys 34(1) (2002) 1–47

2. Joachims, T.: Text categorization with support vector machines: learning with
many relevant features. In: Proceedings of ECML, Chemnitz, DE (1998)

3. Collins, M., Duffy, N.: Convolution kernels for natural language. In: NIPS, MIT
Press (2001)

4. Moschitti, A.: Efficient convolution kernels for dependency and constituent syn-
tactic trees. In: Proceedings of ECML, Berlin, Germany. (2006)

5. Siolas, G., d’Alche Buc, F.: Support Vector Machines based on a semantic kernel
for text categorization. In: IJCNN. Volume 5. (2000)

6. Mavroeidis, D., Tsatsaronis, G., Vazirgiannis, M., Theobald, M., Weikum, G.:
Word sense disambiguation for exploiting hierarchical thesauri in text classifica-
tion. In: PKDD. (2005)

7. Bloehdorn, S., Basili, R., Cammisa, M., Moschitti, A.: Semantic kernels for text
classification based on topological measures of feature similarity. In: Proceedings
of ICDM. (2006)

8. Li, X., Roth, D.: Learning question classifiers. In: Proceedings of the 19th Inter-
national Conference on Computational Linguistics (COLING). (2002)

9. Vapnik, V., Golowich, S.E., Smola, A.J.: Support vector method for function
approximation, regression estimation and signal processing. In: NIPS. (1996)

10. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge
University Press (2004)

11. Cristianini, N., Shawe-Taylor, J., Lodhi, H.: Latent Semantic Kernels. Journal of
Intelligent Information Systems 18(2-3) (2002) 127–152

12. Basili, R., Cammisa, M., Moschitti, A.: A semantic kernel to exploit linguistic
knowledge. In: AI*IA: Advances in Artificial Intelligence. (2005)

13. Zelenko, D., Aone, C., Richardella, A.: Kernel methods for relation extraction.
Journal of Machine Learning Research (2003)

14. Culotta, A., Sorensen, J.: Dependency tree kernels for relation extraction. In:
Proceedings of ACL. (2004)

15. Cumby, C., Roth, D.: Kernel methods for relational learning. In: Proceedings of
the Twentieth International Conference (ICML 2003). (2003)

16. Moschitti, A.: A study on convolution kernels for shallow semantic parsing. In:
proceedings of ACL. (2004)

17. Budanitsky, A., Hirst, G.: Evaluating wordnet-based measures of lexical semantic
relatedness. Computational Linguistics 32(1) (2006) 13–47

18. Zhang, D., Lee, W.S.: Question classification using Support Vector Machines. In:
Proceedings of SIGIR. (2003)

19. Joachims, T.: Making large-scale SVM learning practical. In: Advances in Kernel
Methods. (1999)

