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Abstract. Recent work on Semantic Role Labeling (SRL) has with the local tree structure, information useful to the classification
shown that syntactic information is critical to detect and extract pred-of the role. Accordingly, most SRL systems split the labeling pro-
icate argument structures. As syntax is expressed by means of strucess into two different steps: Boundary Detection (i.e. determine the
tured data, i.e. parse trees, its encoding in learning algorithms itext boundaries of predicate arguments) and Role Classification (i.e.
rather complex. labeling such arguments with a semantic role, e.g. Arg0 or Argl).

In this paper, we apply tree kernels to encode the whole predi- Both the above steps require the design and extraction of fea-
cate argument structure in Support Vector Machines (SVMs). We extures from the parse tree. Capturing the interconnected relationships
tract from the sentence syntactic parse the subtrees that span potemong a predicate and its arguments is a hard task. To decrease such
tial argument structures of the target predicate and classify them inomplexity we can design features considering a predicate with only
incorrect or correct structures by means of tree kernel based SVM&ne argument at a time, but this limits our ability to capture the se-
Experiments on the PropBank collection show that the classificatiomantics of the whole predicate structure. An alternative approach to
accuracy of correct/incorrect structures is remarkably high and helpengineer syntactic features is the use of tree kernels as the substruc-
to improve the accuracy of the SRL task. This is a piece of evidencéures that they generate potentially correspond to relevant syntactic
that tree kernels provide a powerful mechanism to learn the compleglues.

relation between syntax and semantics. In this paper we use tree kernels to model classifiers that decide if a
predicate argument structure is correct or not. We apply a traditional
1 INTRODUCTION boundary classifier{ BC) [11] to label all parse tree nodes that are

. . . potential arguments, then we classify the syntactic subtrees which
The design of features for natural language processing tasks is, i'% 9 fy Y

eneral, a critical problem. The inherent complexity of linguistic oo the predicate-argument dependencies, i.e. Predicate Argument
ghenom‘ena often F():haract(.arized b structuredpdataymakes%]difficu?Ioanning TreesRAST). Since the design of effective features to
phe ' . Y . ’ . etncode such information is not simple, tree kernels are a very useful
to find effective attribute-value representations for the target learnin

models %hethod. To validate our approach we experimented tree kernels with

- . . Support Vector Machines for the classification®f.ST's. The re-
In many cases, the traditional feature selection techniques [8] ar PP

; . &ults show that this classification problem can be learned with high
not very useful since the critical problem relates to feature genera-

. - ; accuracy (about 88% df;-measurg) and the impact on the overall
tion rather than selection. For example, the design of features for y( . ) P

natural language syntactic parse-tree re-ranking problem [2] canno RL labeling accuracy is also relevant.
fanguage sy P 9p ; The paper is organized as follows: Section 2 introduces the Seman-
be carried out without a deep knowledge about automatic synta

. . . . ic Role Labeling based on SVMs and the tree kernel spaces; Section
tic parsing. The modeling of syntax/semantics-based features shou formally defines the? AST's and the algorithm to classify them:
take into account linguistic aspects to detect the interesting contex| '

: . ection 4 shows the comparative results between our approach and
e.g. ancestor nodes or semantic dependencies [15]. P P

. ) . .__the traditional one; Section 5 presents the related work; and finally,
A viable alternative has been proposed in [3], where convolutio P Y

R ! "Section 6 summarizes the conclusions.
kernels were used to implicitly define a tree substructure space. The

selection of the relevant structural features was left to the voted per-

ceptron learning algorithm. Such successful experimentation shov@ SEMANTIC ROLE LABELING

that tree kernels are very promising for automatic feature engineein the last years, several machine learning approaches have been

ing, especially when the available knowledge about the phenomenatieveloped for automatic role labeling, e.g. [5, 11]. Their common

is limited. characteristic is the adoption of attribute-value representations for
In a similar way, automatic learning tasks that rely on syntacticpredicate-argument structures. Accordingly, our basic system is sim-

information may take advantage of a tree kernel approach. One dfar to the one proposed in [11] and is hereby described.

such tasks is the Semantic Role Labeling (SRL), as defined e.g. in We use a boundary detection classifier (for any role type) to derive

[1] over the PropBank corpus [7]. Most literature work models SRL the words compounding an argument and a multiclassifier to assign

as the classification of tree nodes of the sentence parse containitige role (e.gARGOor ARGMdescribed in PropBank [7]). To prepare

the target predicate. Indeed, a node can uniquely determine the sie training data for both classifiers, we used the following algorithm:

of words that compose an argument (boundaries) and provide, alortg Given a sentence from thrining-set generate a full syntactic
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Figure 1. A sentence parse tree with two predicative subtree structitdsS([’s)

2. Let P and A be respectively the set of predicates and the set ohypothesis on the potential parse-tree node subsets which include

parse-tree nodes; the argument nodes of the target predicate. Without the boundary in-
3. For each paikp,a> € P x A: formation, we should consider all possible tree node subsets, i.e. an
- extract the feature representation g€f,.; exponential number.

- ifthe subtree rooted in covers exactly the words of one argument ~ To solve such problems we apply a traditional boundary classifier
of p, putF, , in theT* set (positive examples), otherwise put it (TBC) to select the set of potential argumeftd. Such a subset can
in theT~ set (negative examples). be associated with a subtree which in turn can be classified by means
of atree kernel function. Intuitively, such a function measures to what
extent a given candidate subtreec@mpatiblewith the subtree of a
orrect predicate argument structure.

The outputs of the above algorithm are fié and7~ sets. For the
subtask of Boundary Detection these can be directly used to train &
boundary classifier (e.g. an SVM). Concerning the subtask of Rol&
Classification, the generic binary role labeler for role.g. an SVM) . .
can be trained on th& ", i.e. its positive examples arlfi, i.e. its 3.1 ?ﬁg}edlca‘[e Argument Spanning Trees
negative examples, whefl&™ = 7,7 U T,, according to the ONE- ( s)
vs-ALL scheme. The binary classifiers are then used to build a genVe consider the predicate argument structures annotated in Prop-
eral role multiclassifier by simply selecting the argument associate®ank along with the corresponding TreeBank data as our object
with the maximum among the classification scores resulting from théPace. Given the target predicaten a sentence parse trdeand
individual binary SVM classifiers. asubset = {n, .., ni} of its nodes Nr, we define as the spanning
Regarding the design of features for predicate-argument pairs, wi€e rootr the lowest common ancestor of, .., nx. The node set
can use the attribute-values defined in [5] or tree structures [10]. AlSPanning tree, is the subtree rooted infrom which the nodes that
though we focus on the latter approach, a short description of th@re neither ancestors nor descendants ofrargre removed.
former is still relevant as they are used BYBC. They include the Since predicate arguments are associated with tree nodes (i.e.
Phrase TypePredicate WordHead Worg Governing CategoryPo- they exactly fit into syntactic constituents), we can defineRtex-
sition andVoicefeatures. For example, tiRhrase Typéndicates the ~ icate Argument Spanning Tre@”AST) of a predicate argument
syntactic type of the phrase labeled as a predicate argument and tfgt, {a1, ..,an}, as the node set spanning tre¥ {7") over such
Parse Tree Patleontains the path in the parse tree between the predifodes, i.epga, .. q,}- A PAST corresponds to theninimal sub-
cate and the argument phrase, expressed as a sequence of nontermi@fe tree whose leaves are all and only the words compounding
labels linked by direction (up or down) symbols, /gl VP | NP. the arguments. For example, Figure 1 shows the parse tree of the
A viable alternative to manual design of syntactic features is thesentencéJohn took the book and read its title”
use of tree-kernel functions. These implicitly define a feature spacé?0k{arco,arc,} @ndreadiarc,, arc,} are two PAST struc-
based on all possible tree substructures. Given two ffeemd7,,  tures associated with the two predicatesk andread, respectively.
instead of representing them with the whole fragment space, we cafill the other possibleV.ST's are not validP AST's for these pred-
apply the kernel function to evaluate the number of common fragicates. Note that labeling,,Vs C Nz with a PAST Classifier is
ments. equivalent to solve the boundary detection problem.
Formally, given a tree fragment spage= { f1, fo, . .., fi# }, the The. critice}I points for the application dPASTs are: (1) hqw
indicator function/; (n) is defined, which is equal to 1 if the targgt to design suitable features for the characterizatio dfST's. This
is rooted at node. and equal to 0 otherwise. A tree-kernel function NeW structure requires a careful linguistic investigation about its sig-
overTy andTs is K(T1,Ts) = Z"IENTl Z%EJ\% A(ni,ng),  hificant properties. (2) How to deal with the exponential number of

where Ny, and N, are the sets of th@'s and T»>’s nodes, re- NSTs. )
. RS INTES For the first problem, the use of tree kernels overf&ST's can
spectively. In turnA(ni,n2) = 7 XY I(n1)Ii(n2), where

be an alternative to the manual feature design as the learning ma-
Ol(<f ))‘ < 1andi(;) is the number of Ievels of the subtrée Thus chine, (e.g. SVMs) can select the most relevant features from a high
A1) assigns a lower weight to larger fragments. Whee= 1, A

is equal to the number of common fragments rooted at nodesd dimensional feature space. In other words, we can use a tree kernel
qu € nur 9 . function to estimate the similarity between t#A.ST's (see Section
ns. As described in [3]A can be computed IO (| N1, | X | Nz, |).

2), hence avoiding to define explicit features.

For the second problem there are two main approaches: (1) We
3 AUTOMATIC CLASSIFICATION OF can consider the classification confidence provide@ By [11] and

PREDICATE ARGUMENT STRUCTURES evaluate then most probable argument node sequer{ees .., n }.
Most semantic role labeling models rely only on the features ex-On them NST's derived from such sequences, we can apply a re-
tracted from the current candidate argument node. To consider a comanking approach based on SVMs with tree kernel. (2) We can use
plete predicate argument structure, the classifier should formulate anly the set of node® A decided byI' BC (i.e. those classified as
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Figure 2. Two-step boundary classification. a) Sentence tree; b) Two canditiafl's; c) ExtendedP AST-Ord labeling

arguments). Thus we need to classify only theRetff NST's asso- 2.c.
ciated with any subset 3?4, i.e. P = {ps : s C PA}. We also explored another relevant direction in enriching the fea-

As a re-ranking task would not give an explicit and clear indica-ture space. It should be noted that the semantic information provided
tion of the classifier ability to distinguish between correct and incor-by the role type can remarkably help the detection of correct or in-
rect predicate argument structures, we preferred to apply the secomdrrect predicate argument structures. Thus, we enrich the argument
approach. However, also the classificatiorPainay be computation- node label with the role type, e.g. ttNP-0 andNP-1 of the cor-
ally problematic, since theoretically there &g = 2/PAl members.  rect PAST of Figure 2.c becomeBlP-Arg0 and NP-Argl (not

In order to develop a very efficient procedure, we applied theshown). We refer to this structure 84.5T-Arg. Of course, to apply
PAST Classifier only to structures that we know that are incorrect.the P AST-Arg Classifier, we need a traditional role multiclassifier
A simple way to detect them is to look for node paits,n2>€ (T RM) which labels the arguments detected BB C'.
PA x PAthat overlap, i.e. eithet; is ancestor ofi; or vice versa.
Note that structures that contain overlapping nodes often also coy THE EXPERIMENTS
tain correct substructures, i.e. subset$0of can be associated with . . - . . .

The experiments were carried out within the setting defined in the

correctPAST. Assuming the above hypothesis, we create two node i i
setsPA, = PA— {ni} andPA; = PA — {ns} and classify CoNLL-2005 Shared Task [1]. We used the PropBank corpus avalil

them with theP AST Classifier to select the correct set of argument able atwww.cis.upenn.edu/ ~ace, along with the Penn Tree
. - . .Bank 2 for the gold treesnww.cis.upenn.edu/ ~treebank )
boundaries. This procedure can be generalized to a set of overlappi L
, which includes about 53,700 sentences.

nodes greater than 2 by selecting a maximal set of non-overlapplnrg Since the experiments over gold parse trees inherently over-

nodes. Additionally, as the Precision’6BC is generally high, the estimate the accuracy in the semantic role labeling task,

\r;’liglt;e;po;cc;verlappmg nodes is very small. Thus we can exploreth%.g. 93% vs. 79% [11], we also adopted Charniak parse

. . . .. trees from the CoNLL 2005 Shared Task data (available at
Figure 2 shows a working example of the multi-stage classifier.

In Frame (a);I'BC labels as potential arguments (gray color) threeWWW'|S"UpC'edU/ ~sriconll ) along with the official per-

. . - formance evaluator.
overlapping nodes related ARG1 This leads to two possible solu- All the experiments were performed with the SVM-light soft-
tions (Frame (b)) of which only the first is correct. In fact, accord- P P 9

. o ware [6] available asvmlight.joachims.org .ForTBC and
ing to the second one, the propositional phraséhe bookwould T RM,we used the linear kernel with a regularization parameter (op-

be incorrectly attached to the verbal predicate, i.e. in contrast Wm}ion ¢ ) equal to 1. A cost factor (optios ) of 10 was adopted for

the parse tree. ThEAS.T Clas.sn‘ler, applied to. the twiV ST, is tTBC to have a higher Recall, whereas t6iRM, the cost factor
expected to detect this inconsistency and provide the correct output. . . .
Was parameterized according to the maximal accuracy of each argu-
ment class on the validation set. For thel ST Classifier, we imple-
3.2 Designing Features with Tree Fragments mented the tree kernel defined [3] inside SVM-light with &qual

The Frame (b) of Figure 2 shows two perfectly identidabT's. 10 0.4 (see [10]).

Therefore, it is not possible to discern between them using only .

their fragments. To solve the problem we can enrich ¥6Ts 4.1 Gold Standard Tree Evaluations

by marking their argument nodes with a progressive number, startn these experiments, we used the sections from 02 to 08 of the
ing from the leftmost argument. For example, in the fis$7" of TreeBank/PropBank (54,443 argument nodes and 1,343,046 non-
Frame (c), we mark aklP-0 andNP-1 the first and second argu- argument nodes) to train the traditional boundary classifig8 ().

ment nodes whereas in the secdidT we transform the three ar- Then, we applied it to classify the sections from 09 to 21 (125,443
gument node labels iINP-0, NP-1 andPP-2. We will refer to the  argument nodes vs. 3,010,673 non-argument nodes). We obtained
resulting structure as AST-Ord (ordinal number). This simple 2,988N ST's containing at least one overlapping node pair out of the
modification allows the tree kernel to generate different argumentotal 65,212 predicate structures (according tofteC' decisions).
structures for the abov&' ST's. For example, from the firg¢ ST in From the 2,988 overlapping structures, we derived 3,624 positive and

Figure 2.c, the fragmenfblP-1 [NP][PP]] ,[NP [DT][NNI]] 4,461 negativeV ST's, that we used to train the AST-Ord Classi-
and[PP [IN][NP]] are generated. They do not match anymorefier.
with the [NP-0 [NP][PP]] , INP-1 [DT][NN]] and[PP-2 The performance was evaluated throughfheneasure over Sec-

[IN]INPT]] fragments generated from the secakid@T in Figure  tion 23, which includes 10,406 argument nodes out of 249,879 parse
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Table 1. Two-step boundary classification performance usingiti®”, RN D and H EU baselines, and thB AST'-Ord classifier.
Section 21 Section 23
bnd bnd+class bnd bnd+class
PAST Classifier PAST Classifier PAST Classifier PAST Classifier
- Ord | Arg RND— Ord | Arg RN I— Ord | Arg RN — Ord | Arg RNI
P. | 875 88.3| 88.3| 86.9| 855 | 86.3| 86.4| 85.0| 786 | 79.0| 79.3| 77.8| 73.1| 73.5| 73.4| 72.3
R. [ 87.3]|88.1|883|87.1|85.7|865|86.8| 856 78.1| 784 | 78.7| 779 73.8| 74.1| 744 73.6
[y | 8741 882|883|87.0] 856 86.4| 86.6| 85.3 [ 783 78.7] 79.0| 77.9| 73.4] 73.8| 73.9| 72.9

tree nodes. After applying tHEBC classifier, we detected 235 over- CoNLL 2005 shared task. Again, we train€d@C on sections 02-08
lapping N ST's, from which we extracted 204 corre®tAST's and
385 incorrect ones. On such gold standard trees, we measured ordy all sections 02-21. Then, we trained Ad ST, PAST-Ord, and
the performance of th& AST-Arg Classifier which was very high,
i.e. 87.1% in Precision and 89.2% in Recall (88.1%Fbj.

Using theP AST-Ord Classifier we removed from tleBC' out-

Table 2. Semantic Role Labeling performance on automatic trees WBih§T classifiers.

come the nodes that caused overlaps. To measure the impact on the

whereas, to achieve a very accurate role classifier, we trgidetl

P AST-Arg Classifiers on the output & BC andT RM over sec-
tions 09-20 for a total of 183,642 arguments, 30,2285T's and
28,143 incorrecP AST's.

boundary detection task, we compared it with three different bound- Section 21 Section 23
ary classification baselines: [PASTClass] P. [ R. [ Fi P TR [ R
1.TBC" overlaps are ignored and no decision is taken. This provides — 69.8| 77.9| 73.7| 622 | 77.1| 68.9
an upper bound for the recall as no potential argument is rejected for Ord 737|812 773 63.7]80.6 | 71.2
later labeling. Notice that, in presence of overlapping nodes, the sen- Arg 736|847 78.7] 642|823 72.1

tence cannot be annotated correctly.
2. RN D: one among the non-overlapping structures with maximal
number of arguments is randomly selected.
3. HEU (heuristic): one of théV.ST's which contains the nodes with
the lowest overlapping score is chosen. This score counts the num- First, to test th&'BC, TRM and theP AST classifiers, we used
ber of overlapping node pairs in ti€ST'. For example, in Figure Section 23 (17,429 arguments, 2,1PASTs and 3,461 incorrect
2.a we have ailPthat overlaps with two nodédPandPP, thus it is PASTSs) and Section 21 (12,495 arguments, 1,978S5T's and
assigned a score of 2. 2,220 incorrectP AST's). The performance derived on Section 21
The third row of Table 1 shows the results 6i3C, TBC + corresponds to an upper bound of our classifiers, i.e. the results using
RND,TBC + HEU andT BC+PAST-Ord in the columns 2,3,4  an ideal syntactic parser (Charniak’s parser was trained also on Sec-
and 5, respectively. We note that: First, R8C I is slightly higher  tion 21) and an ideal role classifier. They provide fAd ST family
than the result obtained in [11], i.e. 95.4% vs. 93.8% under the samelassifiers with accurate syntactic and semantic information. Table 3
training/testing conditions (i.e. same PropBank version, same trainrshows Precision, Recall anf, measures of th AST classifiers
ing and testing split and same machine learning algorithm). This i®ver the NSTs of sections 21 and 23. Rows 2, 3 and 4 report the
explained by the fact that we did not include continuations and coperformance ofPAST, PAST-Ord, and PAST-Arg Classifiers,
referring arguments that are more difficult to detect. Second, bothespectively. Several points should be remarked: (a) the general per-
RND and HEU do not improve thé' BC result. This can be ex- formance is lower than the one achieved on gold trees Ritt57-
plained by observing that in the 50% of the cases a correct node iSrd, i.e. 88.1% (see Section 4.1). The impact of parsing accuracy is
removed. Third, when th® AST-Ord Classifier is used to select the also confirmed by the gap of about 6% points between sections 21
correct node, thé", increases of 1.49%, i.e. (96.86 vs. 95.37). This and 23. (b) The ordinal numbering of argumer@s-¢) and the role
is a relevant result as it is difficult to increase the very high baselinaype information @rg) provide the tree kernel with more meaningful
given byT'BC. Finally, we tested the above classifiers on the over-fragments since they improve the basic model of about 4%. (c) The
lapping structures only, i.e. we measured dST-Ord Classifier  deeper semantic information generated by they labels provides
improvement on all and only the structures that required its applicauseful clues to select correct predicate argument structures, since it
tion. Such reduced test set contains 642 argument nodes and 15,4@8proves theDrd model on both sections.
non-argument nodes. The fourth row of Table 1 reports the classifier Second, we measured the impact of fid.ST classifiers on both
performance on such task. We note that thé ST-Ord Classifier ~ phases of semantic role labeling. Table 2 reports the results on the
improves the other heuristics of about 20%. sections 21 and 23. For each of them, the Precision, Recal'anfl
different approaches to the boundary identification (bnd) and to the
complete task, i.e. boundary and role classification (bnd+class), is
shown. Such approaches are based on different strategies to remove
In these experiments we used the automatic trees generated by Chére overlaps, i.ePAST, PAST-Ord, PAST-Arg and the baseline
niak's parser and the predicate argument annotations defined in tHé& /N D) which uses a random selection of non-overlapping struc-

Table 3. PAST, PAST-Ord, andP AST-Arg performances on
sections 21 and 23.

4.2 Automatic Tree Evaluations



tures. We needed to remove the overlaps from the baseline in ordsystems trained using different syntactic views. Again, our approach
to apply the CoNLL evaluator. may be used in conjunction with this model to provide a further syn-
We note that: (a) for any model, the boundary detectipon Section  tactic view related to the whole predicate argument structure.

21is about 10 points higher than thge on Section 23 (e.g. 87.0% vs.

77.9% forRN D). As expected, the parse tree quality is very impor- Acknowledgments

tant to detect argument boundaries. (b) On the real test (Section 23hjs research is partially supported by the PrestoSpace EU Project#:
the classification introduces labeling errors which decrease the accypg-507336.

racy of about 5% (77.9 vs 72.9 f®& N D). (c) TheOrd and Arg

approaches constantly improve the baseliheof about 1%. Sucha 6 CONCLUSIONS

I’esult does not Surprise as |t iS Similar to the one Obtained on Golq'he feature design for new natural |anguage |earning tasks is diffi-
Trees: the overlapping structures are a small percentage of the tegit. We can take advantage of the kernel methods to model our intu-
set thus the overall impact cannot be very high. itive knowledge about the target linguistic phenomenon. In this paper
Third, the comparison with the CoNLL 2005 results [1] can only we have shown that we can exploit the properties of tree kernels to
be carried out with respect to the whole SRL task (bnd+class in tagngineer syntactic features for the semantic role labeling task.
ble 2) since boundary detection versus role classification is generally The experiments on gold standard trees as well as on automatic
not provided in CoNLL 2005. Moreover, our best global result, i.e. trees suggest that (1) the information related to the whole predicate
73.9%, was obtained under two severe experimental factors: a) thgrgument structure is important and (2) tree kernels can be used to
use of just 1/3 of the available training data, and b) the usage of thgenerate syntactic/semantic features. The remarkable result is that

linear SVM model for the TBC classifier, which is much faster than gych structures are robust with respect to parse tree errors.
the polynomial SVMs but also less accurate. However, we note the | the future, we would like to use an approach similar to the

promising results of thé>AST meta-classifier, which can be used pAST classifier to select the best predicate argument annotation

with any of the best figure CoNLL systems.

from those carried out on several parse trees provided by one or more

Finally, kernel outcome suggests that: (a) it is robust to parse tregarsing models.

errors since it preserves the same improvement across trees derived
with different accuracy, i.e. the gold trees of Penn TreeBank and th

automatic trees of Section 21 and Section 23. (b) It shows a higﬁQEFERENCES

accuracy for the classification of correct and incorrect predicate ar-1]
gument structures. This last property is quite interesting considering
the important findings of a recent paper [13]. The winning strategy 2]
to improve semantic role labeling relates to the exploiting of differ-
ent labeling hypotheses, i.e. seveRall; sets derived from different  [3]
parsing alternatives. A joint inference procedure was used to select
the most likely ses C U;P.A;. In our opinion, thePAST Classi-
fiers seem very well suited to select such set. ]
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5 RELATED WORK
Recently, many kernels for natural language applications have beer[uﬁ]
designed. In what follows, we highlight their difference and proper-
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