
Semantic Tree Kernels to classify Predicate Argument
Structures

Alessandro Moschitti 1 and Bonaventura Coppola2 and Daniele Pighin3 and Roberto Basili 4

Abstract. Recent work on Semantic Role Labeling (SRL) has
shown that syntactic information is critical to detect and extract pred-
icate argument structures. As syntax is expressed by means of struc-
tured data, i.e. parse trees, its encoding in learning algorithms is
rather complex.

In this paper, we apply tree kernels to encode the whole predi-
cate argument structure in Support Vector Machines (SVMs). We ex-
tract from the sentence syntactic parse the subtrees that span poten-
tial argument structures of the target predicate and classify them in
incorrect or correct structures by means of tree kernel based SVMs.
Experiments on the PropBank collection show that the classification
accuracy of correct/incorrect structures is remarkably high and helps
to improve the accuracy of the SRL task. This is a piece of evidence
that tree kernels provide a powerful mechanism to learn the complex
relation between syntax and semantics.

1 INTRODUCTION
The design of features for natural language processing tasks is, in
general, a critical problem. The inherent complexity of linguistic
phenomena, often characterized by structured data, makes difficult
to find effective attribute-value representations for the target learning
models.

In many cases, the traditional feature selection techniques [8] are
not very useful since the critical problem relates to feature genera-
tion rather than selection. For example, the design of features for a
natural language syntactic parse-tree re-ranking problem [2] cannot
be carried out without a deep knowledge about automatic syntac-
tic parsing. The modeling of syntax/semantics-based features should
take into account linguistic aspects to detect the interesting context,
e.g. ancestor nodes or semantic dependencies [15].

A viable alternative has been proposed in [3], where convolution
kernels were used to implicitly define a tree substructure space. The
selection of the relevant structural features was left to the voted per-
ceptron learning algorithm. Such successful experimentation shows
that tree kernels are very promising for automatic feature engineer-
ing, especially when the available knowledge about the phenomenon
is limited.

In a similar way, automatic learning tasks that rely on syntactic
information may take advantage of a tree kernel approach. One of
such tasks is the Semantic Role Labeling (SRL), as defined e.g. in
[1] over the PropBank corpus [7]. Most literature work models SRL
as the classification of tree nodes of the sentence parse containing
the target predicate. Indeed, a node can uniquely determine the set
of words that compose an argument (boundaries) and provide, along

1 University of Rome “Tor Vergata”, moschitti@info.uniroma2.it
2 ITC-Irst and University of Trento, coppolab@itc.it
3 University of Rome “Tor Vergata”, daniele.pighin@gmail.com
4 University of Rome “Tor Vergata”, basili@info.uniroma2.it

with the local tree structure, information useful to the classification
of the role. Accordingly, most SRL systems split the labeling pro-
cess into two different steps: Boundary Detection (i.e. determine the
text boundaries of predicate arguments) and Role Classification (i.e.
labeling such arguments with a semantic role, e.g. Arg0 or Arg1).

Both the above steps require the design and extraction of fea-
tures from the parse tree. Capturing the interconnected relationships
among a predicate and its arguments is a hard task. To decrease such
complexity we can design features considering a predicate with only
one argument at a time, but this limits our ability to capture the se-
mantics of the whole predicate structure. An alternative approach to
engineer syntactic features is the use of tree kernels as the substruc-
tures that they generate potentially correspond to relevant syntactic
clues.

In this paper we use tree kernels to model classifiers that decide if a
predicate argument structure is correct or not. We apply a traditional
boundary classifier (TBC) [11] to label all parse tree nodes that are
potential arguments, then we classify the syntactic subtrees which
span the predicate-argument dependencies, i.e. Predicate Argument
Spanning Trees (PASTs). Since the design of effective features to
encode such information is not simple, tree kernels are a very useful
method. To validate our approach we experimented tree kernels with
Support Vector Machines for the classification ofPASTs. The re-
sults show that this classification problem can be learned with high
accuracy (about 88% ofF1-measure5) and the impact on the overall
SRL labeling accuracy is also relevant.

The paper is organized as follows: Section 2 introduces the Seman-
tic Role Labeling based on SVMs and the tree kernel spaces; Section
3 formally defines thePASTs and the algorithm to classify them;
Section 4 shows the comparative results between our approach and
the traditional one; Section 5 presents the related work; and finally,
Section 6 summarizes the conclusions.

2 SEMANTIC ROLE LABELING
In the last years, several machine learning approaches have been
developed for automatic role labeling, e.g. [5, 11]. Their common
characteristic is the adoption of attribute-value representations for
predicate-argument structures. Accordingly, our basic system is sim-
ilar to the one proposed in [11] and is hereby described.

We use a boundary detection classifier (for any role type) to derive
the words compounding an argument and a multiclassifier to assign
the role (e.g.ARG0or ARGM) described in PropBank [7]). To prepare
the training data for both classifiers, we used the following algorithm:

1. Given a sentence from thetraining-set, generate a full syntactic
parse tree;

5 F1 assigns equal importance to PrecisionP and RecallR, i.e. F1 =
2P×R
P+R

.

S

NP VP

PRP

John

VP CC VP

VB NP

and

VB NP

took

DT NN

the book read

PRP$ NN

its title

Sentence Parse-Tree

S

NP VP

PRP

John

VP

VB NP

took

DT NN

the book

took{ARG0, ARG1}

S

NP VP

PRP

John

VP

VB NP

read

PRP$ NN

its title

read{ARG0, ARG1}

Figure 1. A sentence parse tree with two predicative subtree structures (PASTs)

2. Let P andA be respectively the set of predicates and the set of
parse-tree nodes;
3. For each pair<p, a> ∈ P ×A:
- extract the feature representation set,Fp,a;
- if the subtree rooted ina covers exactly the words of one argument

of p, putFp,a in theT+ set (positive examples), otherwise put it
in theT− set (negative examples).

The outputs of the above algorithm are theT+ andT− sets. For the
subtask of Boundary Detection these can be directly used to train a
boundary classifier (e.g. an SVM). Concerning the subtask of Role
Classification, the generic binary role labeler for roler (e.g. an SVM)
can be trained on theT+

r
, i.e. its positive examples andT−r , i.e. its

negative examples, whereT+ = T+
r ∪ T−r , according to the ONE-

vs-ALL scheme. The binary classifiers are then used to build a gen-
eral role multiclassifier by simply selecting the argument associated
with the maximum among the classification scores resulting from the
individual binary SVM classifiers.

Regarding the design of features for predicate-argument pairs, we
can use the attribute-values defined in [5] or tree structures [10]. Al-
though we focus on the latter approach, a short description of the
former is still relevant as they are used byTBC. They include the
Phrase Type, Predicate Word, Head Word, Governing Category, Po-
sitionandVoicefeatures. For example, thePhrase Typeindicates the
syntactic type of the phrase labeled as a predicate argument and the
Parse Tree Pathcontains the path in the parse tree between the predi-
cate and the argument phrase, expressed as a sequence of nonterminal
labels linked by direction (up or down) symbols, e.g.V ↑ VP↓ NP.

A viable alternative to manual design of syntactic features is the
use of tree-kernel functions. These implicitly define a feature space
based on all possible tree substructures. Given two treesT1 andT2,
instead of representing them with the whole fragment space, we can
apply the kernel function to evaluate the number of common frag-
ments.

Formally, given a tree fragment spaceF = {f1, f2, . . . , f|F|}, the
indicator functionIi(n) is defined, which is equal to 1 if the targetfi

is rooted at noden and equal to 0 otherwise. A tree-kernel function
over T1 andT2 is K(T1, T2) =

∑
n1∈NT1

∑
n2∈NT2

∆(n1, n2),

whereNT1 and NT2 are the sets of theT1’s and T2’s nodes, re-
spectively. In turn∆(n1, n2) =

∑|F|
i=1

λl(fi)Ii(n1)Ii(n2), where
0 ≤ λ ≤ 1 andl(fi) is the number of levels of the subtreefi. Thus
λl(fi) assigns a lower weight to larger fragments. Whenλ = 1, ∆
is equal to the number of common fragments rooted at nodesn1 and
n2. As described in [3],∆ can be computed inO(|NT1 | × |NT2 |).

3 AUTOMATIC CLASSIFICATION OF
PREDICATE ARGUMENT STRUCTURES

Most semantic role labeling models rely only on the features ex-
tracted from the current candidate argument node. To consider a com-
plete predicate argument structure, the classifier should formulate a

hypothesis on the potential parse-tree node subsets which include
the argument nodes of the target predicate. Without the boundary in-
formation, we should consider all possible tree node subsets, i.e. an
exponential number.

To solve such problems we apply a traditional boundary classifier
(TBC) to select the set of potential argumentsPA. Such a subset can
be associated with a subtree which in turn can be classified by means
of a tree kernel function. Intuitively, such a function measures to what
extent a given candidate subtree iscompatiblewith the subtree of a
correct predicate argument structure.

3.1 The Predicate Argument Spanning Trees
(PASTs)

We consider the predicate argument structures annotated in Prop-
Bank along with the corresponding TreeBank data as our object
space. Given the target predicatep in a sentence parse treeT and
a subsets = {n1, .., nk} of its nodes,NT , we define as the spanning
tree rootr the lowest common ancestor ofn1, .., nk. The node set
spanning treeps is the subtree rooted inr from which the nodes that
are neither ancestors nor descendants of anyni are removed.

Since predicate arguments are associated with tree nodes (i.e.
they exactly fit into syntactic constituents), we can define thePred-
icate Argument Spanning Tree(PAST) of a predicate argument
set, {a1, .., an}, as the node set spanning tree (NST) over such
nodes, i.e.p{a1,..,an}. A PAST corresponds to theminimal sub-
parse tree whose leaves are all and only the words compounding
the arguments. For example, Figure 1 shows the parse tree of the
sentence"John took the book and read its title" .
took{ARG0,ARG1} and read{ARG0,ARG1} are twoPAST struc-
tures associated with the two predicatestookandread, respectively.
All the other possibleNSTs are not validPASTs for these pred-
icates. Note that labelingps,∀s ⊆ NT with a PAST Classifier is
equivalent to solve the boundary detection problem.

The critical points for the application ofPASTs are: (1) how
to design suitable features for the characterization ofPASTs. This
new structure requires a careful linguistic investigation about its sig-
nificant properties. (2) How to deal with the exponential number of
NSTs.

For the first problem, the use of tree kernels over thePASTs can
be an alternative to the manual feature design as the learning ma-
chine, (e.g. SVMs) can select the most relevant features from a high
dimensional feature space. In other words, we can use a tree kernel
function to estimate the similarity between twoPASTs (see Section
2), hence avoiding to define explicit features.

For the second problem there are two main approaches: (1) We
can consider the classification confidence provided byTBC [11] and
evaluate them most probable argument node sequences{n1, .., nk}.
On them NSTs derived from such sequences, we can apply a re-
ranking approach based on SVMs with tree kernel. (2) We can use
only the set of nodesPA decided byTBC (i.e. those classified as

S

NP VP

VB NP

read

John

DT NN

the title

NP PP

DT NN

the book

NP IN

of

Arg. 1

Arg. 0

S

NP VP

VB NP

read

John

DT NN

the title

NP PP

DT NN

the book

NP IN

of

S

NP VP

VB NP

read

John

DT NN

the title

NP PP

DT NN

the book

NP IN

of

S

NP-0 VP

John

PP

DT NN

the book

NP IN

of

S

NP-0 VP

VB NP

read

John

DT NN

the title

NP-1 PP-2

DT NN

the book

IN

of

NP

(a) (b) (c)

Correct PAST

Incorrect PAST

Correct PAST

Incorrect PAST

DT NN

the title

NP

NP-1 VB

read

Figure 2. Two-step boundary classification. a) Sentence tree; b) Two candidatePASTs; c) ExtendedPAST -Ord labeling

arguments). Thus we need to classify only the setP of NSTs asso-
ciated with any subset ofPA, i.e.P = {ps : s ⊆ PA}.

As a re-ranking task would not give an explicit and clear indica-
tion of the classifier ability to distinguish between correct and incor-
rect predicate argument structures, we preferred to apply the second
approach. However, also the classification ofP may be computation-
ally problematic, since theoretically there are|P| = 2|PA| members.

In order to develop a very efficient procedure, we applied the
PAST Classifier only to structures that we know that are incorrect.
A simple way to detect them is to look for node pairs<n1, n2>∈
PA×PA that overlap, i.e. eithern1 is ancestor ofn2 or vice versa.
Note that structures that contain overlapping nodes often also con-
tain correct substructures, i.e. subsets ofPA can be associated with
correctPAST . Assuming the above hypothesis, we create two node
setsPA1 = PA − {n1} andPA2 = PA − {n2} and classify
them with thePAST Classifier to select the correct set of argument
boundaries. This procedure can be generalized to a set of overlapping
nodes greater than 2 by selecting a maximal set of non-overlapping
nodes. Additionally, as the Precision ofTBC is generally high, the
number of overlapping nodes is very small. Thus we can explore the
whole space.

Figure 2 shows a working example of the multi-stage classifier.
In Frame (a),TBC labels as potential arguments (gray color) three
overlapping nodes related toARG1. This leads to two possible solu-
tions (Frame (b)) of which only the first is correct. In fact, accord-
ing to the second one, the propositional phraseof the bookwould
be incorrectly attached to the verbal predicate, i.e. in contrast with
the parse tree. ThePAST Classifier, applied to the twoNSTs, is
expected to detect this inconsistency and provide the correct output.

3.2 Designing Features with Tree Fragments

The Frame (b) of Figure 2 shows two perfectly identicalNSTs.
Therefore, it is not possible to discern between them using only
their fragments. To solve the problem we can enrich theNSTs
by marking their argument nodes with a progressive number, start-
ing from the leftmost argument. For example, in the firstNST of
Frame (c), we mark asNP-0 andNP-1 the first and second argu-
ment nodes whereas in the secondNST we transform the three ar-
gument node labels inNP-0 , NP-1 andPP-2 . We will refer to the
resulting structure as aPAST -Ord (ordinal number). This simple
modification allows the tree kernel to generate different argument
structures for the aboveNSTs. For example, from the firstNST in
Figure 2.c, the fragments[NP-1 [NP][PP]] , [NP [DT][NN]]
and [PP [IN][NP]] are generated. They do not match anymore
with the [NP-0 [NP][PP]] , [NP-1 [DT][NN]] and [PP-2
[IN][NP]] fragments generated from the secondNST in Figure

2.c.
We also explored another relevant direction in enriching the fea-

ture space. It should be noted that the semantic information provided
by the role type can remarkably help the detection of correct or in-
correct predicate argument structures. Thus, we enrich the argument
node label with the role type, e.g. theNP-0 andNP-1 of the cor-
rect PAST of Figure 2.c becomesNP-Arg0 andNP-Arg1 (not
shown). We refer to this structure asPAST -Arg. Of course, to apply
thePAST -Arg Classifier, we need a traditional role multiclassifier
(TRM) which labels the arguments detected byTBC.

4 THE EXPERIMENTS
The experiments were carried out within the setting defined in the
CoNLL-2005 Shared Task [1]. We used the PropBank corpus avail-
able atwww.cis.upenn.edu/ ∼ace , along with the Penn Tree-
Bank 2 for the gold trees (www.cis.upenn.edu/ ∼treebank)
[9], which includes about 53,700 sentences.

Since the experiments over gold parse trees inherently over-
estimate the accuracy in the semantic role labeling task,
e.g. 93% vs. 79% [11], we also adopted Charniak parse
trees from the CoNLL 2005 Shared Task data (available at
www.lsi.upc.edu/ ∼srlconll/) along with the official per-
formance evaluator.

All the experiments were performed with the SVM-light soft-
ware [6] available atsvmlight.joachims.org . ForTBC and
TRM , we used the linear kernel with a regularization parameter (op-
tion -c) equal to 1. A cost factor (option-j) of 10 was adopted for
TBC to have a higher Recall, whereas forTRM , the cost factor
was parameterized according to the maximal accuracy of each argu-
ment class on the validation set. For thePAST Classifier, we imple-
mented the tree kernel defined [3] inside SVM-light with aλ equal
to 0.4 (see [10]).

4.1 Gold Standard Tree Evaluations
In these experiments, we used the sections from 02 to 08 of the
TreeBank/PropBank (54,443 argument nodes and 1,343,046 non-
argument nodes) to train the traditional boundary classifier (TBC).
Then, we applied it to classify the sections from 09 to 21 (125,443
argument nodes vs. 3,010,673 non-argument nodes). We obtained
2,988NSTs containing at least one overlapping node pair out of the
total 65,212 predicate structures (according to theTBC decisions).
From the 2,988 overlapping structures, we derived 3,624 positive and
4,461 negativeNSTs, that we used to train thePAST -Ord Classi-
fier.

The performance was evaluated through theF1 measure over Sec-
tion 23, which includes 10,406 argument nodes out of 249,879 parse

TBC TBC+RND TBC+HEU TBC+PAST -Ord
P. R. F1 P. R. F1 P. R. F1 P. R. F1

All Struct. 92.2 98.8 95.4 93.6 97.3 95.4 93.0 97.3 95.1 94.4 98.4 96.4
Overl. Struct. 98.3 65.8 78.8 74.0 72.3 73.1 68.1 75.2 71.5 89.6 92.7 91.1

Table 1. Two-step boundary classification performance using theTBC, RND andHEU baselines, and thePAST -Ord classifier.

Section 21 Section 23
bnd bnd+class bnd bnd+class

PAST Classifier
RND

PAST Classifier
RND

PAST Classifier
RND

PAST Classifier
RND- Ord Arg - Ord Arg - Ord Arg - Ord Arg

P. 87.5 88.3 88.3 86.9 85.5 86.3 86.4 85.0 78.6 79.0 79.3 77.8 73.1 73.5 73.4 72.3
R. 87.3 88.1 88.3 87.1 85.7 86.5 86.8 85.6 78.1 78.4 78.7 77.9 73.8 74.1 74.4 73.6
F1 87.4 88.2 88.3 87.0 85.6 86.4 86.6 85.3 78.3 78.7 79.0 77.9 73.4 73.8 73.9 72.9

Table 2. Semantic Role Labeling performance on automatic trees usingPAST classifiers.

tree nodes. After applying theTBC classifier, we detected 235 over-
lappingNSTs, from which we extracted 204 correctPASTs and
385 incorrect ones. On such gold standard trees, we measured only
the performance of thePAST -Arg Classifier which was very high,
i.e. 87.1% in Precision and 89.2% in Recall (88.1% ofF1).

Using thePAST -Ord Classifier we removed from theTBC out-
come the nodes that caused overlaps. To measure the impact on the
boundary detection task, we compared it with three different bound-
ary classification baselines:
1.TBC: overlaps are ignored and no decision is taken. This provides
an upper bound for the recall as no potential argument is rejected for
later labeling. Notice that, in presence of overlapping nodes, the sen-
tence cannot be annotated correctly.
2. RND: one among the non-overlapping structures with maximal
number of arguments is randomly selected.
3.HEU (heuristic): one of theNSTs which contains the nodes with
the lowest overlapping score is chosen. This score counts the num-
ber of overlapping node pairs in theNST . For example, in Figure
2.a we have anNPthat overlaps with two nodesNPandPP, thus it is
assigned a score of 2.

The third row of Table 1 shows the results ofTBC, TBC +
RND, TBC + HEU andTBC+PAST -Ord in the columns 2,3,4
and 5, respectively. We note that: First, theTBC F1 is slightly higher
than the result obtained in [11], i.e. 95.4% vs. 93.8% under the same
training/testing conditions (i.e. same PropBank version, same train-
ing and testing split and same machine learning algorithm). This is
explained by the fact that we did not include continuations and co-
referring arguments that are more difficult to detect. Second, both
RND andHEU do not improve theTBC result. This can be ex-
plained by observing that in the 50% of the cases a correct node is
removed. Third, when thePAST -Ord Classifier is used to select the
correct node, theF1 increases of 1.49%, i.e. (96.86 vs. 95.37). This
is a relevant result as it is difficult to increase the very high baseline
given byTBC. Finally, we tested the above classifiers on the over-
lapping structures only, i.e. we measured thePAST -Ord Classifier
improvement on all and only the structures that required its applica-
tion. Such reduced test set contains 642 argument nodes and 15,408
non-argument nodes. The fourth row of Table 1 reports the classifier
performance on such task. We note that thePAST -Ord Classifier
improves the other heuristics of about 20%.

4.2 Automatic Tree Evaluations

In these experiments we used the automatic trees generated by Char-
niak’s parser and the predicate argument annotations defined in the

CoNLL 2005 shared task. Again, we trainedTBC on sections 02-08
whereas, to achieve a very accurate role classifier, we trainedTRM
on all sections 02-21. Then, we trained thePAST , PAST -Ord, and
PAST -Arg Classifiers on the output ofTBC andTRM over sec-
tions 09-20 for a total of 183,642 arguments, 30,220PASTs and
28,143 incorrectPASTs.

Section 21 Section 23
PAST Class. P. R. F1 P. R. F1

− 69.8 77.9 73.7 62.2 77.1 68.9
Ord 73.7 81.2 77.3 63.7 80.6 71.2
Arg 73.6 84.7 78.7 64.2 82.3 72.1

Table 3. PAST , PAST -Ord, andPAST -Arg performances on
sections 21 and 23.

First, to test theTBC, TRM and thePAST classifiers, we used
Section 23 (17,429 arguments, 2,159PASTs and 3,461 incorrect
PASTs) and Section 21 (12,495 arguments, 1,975PASTs and
2,220 incorrectPASTs). The performance derived on Section 21
corresponds to an upper bound of our classifiers, i.e. the results using
an ideal syntactic parser (Charniak’s parser was trained also on Sec-
tion 21) and an ideal role classifier. They provide thePAST family
classifiers with accurate syntactic and semantic information. Table 3
shows Precision, Recall andF1 measures of thePAST classifiers
over the NSTs of sections 21 and 23. Rows 2, 3 and 4 report the
performance ofPAST , PAST -Ord, andPAST -Arg Classifiers,
respectively. Several points should be remarked: (a) the general per-
formance is lower than the one achieved on gold trees withPAST -
Ord, i.e. 88.1% (see Section 4.1). The impact of parsing accuracy is
also confirmed by the gap of about 6% points between sections 21
and 23. (b) The ordinal numbering of arguments (Ord) and the role
type information (Arg) provide the tree kernel with more meaningful
fragments since they improve the basic model of about 4%. (c) The
deeper semantic information generated by theArg labels provides
useful clues to select correct predicate argument structures, since it
improves theOrd model on both sections.

Second, we measured the impact of thePAST classifiers on both
phases of semantic role labeling. Table 2 reports the results on the
sections 21 and 23. For each of them, the Precision, Recall andF1 of
different approaches to the boundary identification (bnd) and to the
complete task, i.e. boundary and role classification (bnd+class), is
shown. Such approaches are based on different strategies to remove
the overlaps, i.e.PAST , PAST -Ord,PAST -Arg and the baseline
(RND) which uses a random selection of non-overlapping struc-

tures. We needed to remove the overlaps from the baseline in order
to apply the CoNLL evaluator.
We note that: (a) for any model, the boundary detectionF1 on Section
21 is about 10 points higher than theF1 on Section 23 (e.g. 87.0% vs.
77.9% forRND). As expected, the parse tree quality is very impor-
tant to detect argument boundaries. (b) On the real test (Section 23)
the classification introduces labeling errors which decrease the accu-
racy of about 5% (77.9 vs 72.9 forRND). (c) TheOrd andArg
approaches constantly improve the baselineF1 of about 1%. Such a
result does not surprise as it is similar to the one obtained on Gold
Trees: the overlapping structures are a small percentage of the test
set thus the overall impact cannot be very high.

Third, the comparison with the CoNLL 2005 results [1] can only
be carried out with respect to the whole SRL task (bnd+class in ta-
ble 2) since boundary detection versus role classification is generally
not provided in CoNLL 2005. Moreover, our best global result, i.e.
73.9%, was obtained under two severe experimental factors: a) the
use of just 1/3 of the available training data, and b) the usage of the
linear SVM model for the TBC classifier, which is much faster than
the polynomial SVMs but also less accurate. However, we note the
promising results of thePAST meta-classifier, which can be used
with any of the best figure CoNLL systems.

Finally, kernel outcome suggests that: (a) it is robust to parse tree
errors since it preserves the same improvement across trees derived
with different accuracy, i.e. the gold trees of Penn TreeBank and the
automatic trees of Section 21 and Section 23. (b) It shows a high
accuracy for the classification of correct and incorrect predicate ar-
gument structures. This last property is quite interesting considering
the important findings of a recent paper [13]. The winning strategy
to improve semantic role labeling relates to the exploiting of differ-
ent labeling hypotheses, i.e. severalPAi sets derived from different
parsing alternatives. A joint inference procedure was used to select
the most likely sets ⊆ ∪iPAi. In our opinion, thePAST Classi-
fiers seem very well suited to select such set.

5 RELATED WORK
Recently, many kernels for natural language applications have been
designed. In what follows, we highlight their difference and proper-
ties.

The tree kernel used in this article was proposed in [3] for syntac-
tic parsing reranking. It was experimented with the Voted Perceptron
and was shown to improve the syntactic parsing. In [4], a feature de-
scription language was used to extract structural features from the
syntactic shallow parse trees associated with named entities. The ex-
periments on the named entity categorization showed that when the
description language selects an adequate set of tree fragments the
Voted Perceptron algorithm increases its classification accuracy. The
explanation was that the complete tree fragment set contains many
irrelevant features and may cause overfitting. In [13], a set of differ-
ent syntactic parse trees, e.g. Charniakn best parse trees, were used
to improve the SRL accuracy. These different sources of syntactic
information were used to generate a set of different SRL outputs. A
joint inference stage was applied to resolve the inconsistency of the
different outputs. This approach may be applied to our tree kernel
strategies to design a joint tree kernel model. In [14], it was observed
that there are strong dependencies among the labels of the seman-
tic argument nodes of a verb. Thus, to approach the problem as the
classification of an overall role sequences, a re-ranking method is ap-
plied to the assignments generated by aTRM . This approach is in
line with our PAST Classifier that can be used to refine such re-
ranking strategy. In [12], some experiments were conducted on SRL

systems trained using different syntactic views. Again, our approach
may be used in conjunction with this model to provide a further syn-
tactic view related to the whole predicate argument structure.

Acknowledgments
This research is partially supported by the PrestoSpace EU Project#:
FP6-507336.

6 CONCLUSIONS
The feature design for new natural language learning tasks is diffi-
cult. We can take advantage of the kernel methods to model our intu-
itive knowledge about the target linguistic phenomenon. In this paper
we have shown that we can exploit the properties of tree kernels to
engineer syntactic features for the semantic role labeling task.

The experiments on gold standard trees as well as on automatic
trees suggest that (1) the information related to the whole predicate
argument structure is important and (2) tree kernels can be used to
generate syntactic/semantic features. The remarkable result is that
such structures are robust with respect to parse tree errors.

In the future, we would like to use an approach similar to the
PAST classifier to select the best predicate argument annotation
from those carried out on several parse trees provided by one or more
parsing models.

REFERENCES
[1] Xavier Carreras and Llúıs Màrquez, ‘Introduction to the CoNLL-2005

shared task: Semantic role labeling’, inProceedings of CoNLL-2005,
(2005).

[2] Michael Collins, ‘Discriminative reranking for natural language pars-
ing’, in In Proceedings of ICML 2000, (2000).

[3] Michael Collins and Nigel Duffy, ‘New ranking algorithms for parsing
and tagging: Kernels over discrete structures, and the voted perceptron’,
in ACL02, (2002).

[4] Chad Cumby and Dan Roth, ‘Kernel methods for relational learning’,
in Proceedings of ICML 2003, Washington, DC, USA, (2003).

[5] Daniel Gildea and Daniel Jurasfky, ‘Automatic labeling of semantic
roles’,Computational Linguistic, 28(3), 496–530, (2002).

[6] T. Joachims, ‘Making large-scale SVM learning practical.’, inAdvances
in Kernel Methods - Support Vector Learning, eds., B. Scḧolkopf,
C. Burges, and A. Smola, (1999).

[7] Paul Kingsbury and Martha Palmer, ‘From Treebank to PropBank’, in
Proceedings of LREC’02), Las Palmas, Spain, (2002).

[8] Ron Kohavi and Dan Sommerfield, ‘Feature subset selection using the
wrapper model: Overfitting and dynamic search space topology’, in1st
KDD Conference, (1995).

[9] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz, ‘Building a large
annotated corpus of english: The Penn Treebank’,Computational Lin-
guistics, 19, 313–330, (1993).

[10] Alessandro Moschitti, ‘A study on convolution kernel for shallow se-
mantic parsing’, inProceedings of ACL’04, Barcelona, Spain, (2004).

[11] Sameer Pradhan, Kadri Hacioglu, Valeri Krugler, Wayne Ward,
James H. Martin, and Daniel Jurafsky, ‘Support vector learning for se-
mantic argument classification’,Machine Learning Journal, (2005).

[12] Sameer Pradhan, Wayne Ward, Kadri Hacioglu, James Martin, and
Daniel Jurafsky, ‘Semantic role labeling using different syntactic
views’, in Proceedings of ACL’05, (2005).

[13] V. Punyakanok, D. Roth, and W. Yih, ‘The necessity of syntactic pars-
ing for semantic role labeling’, inProceedings of IJCAI 2005, (2005).

[14] Kristina Toutanova, Aria Haghighi, and Christopher Manning, ‘Joint
learning improves semantic role labeling’, inProceedings of ACL’05,
(2005).

[15] Kristina Toutanova, Penka Markova, and Christopher D. Manning, ‘The
leaf projection path view of parse trees: Exploring string kernels for
hpsg parse selection’, inIn Proceedings of EMNLP 2004, (2004).

[16] Nianwen Xue and Martha Palmer, ‘Calibrating features for semantic
role labeling’, inProceedings of EMNLP 2004, (2004).

