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Abstract

Automatic detection of general relations
between short texts is a complex task that
cannot be carried out only relying on lan-
guage models and bag-of-words. There-
fore, learning methods to exploit syntax
and semantics are required. In this pa-
per, we present a new kernel for the repre-
sentation of shallow semantic information
along with a comprehensive study on ker-
nel methods for the exploitation of syntac-
tic/semantic structures for short text pair
categorization. Our experiments with Sup-
port Vector Machines on question/answer
classification show that our kernels can be
used to greatly improve system accuracy.

1 Introduction

Previous work on Text Categorization (TC) has
shown that advanced linguistic processing for doc-
ument representation is often ineffective for this
task, e.g. (Lewis, 1992; Furnkranz et al., 1998;
Allan, 2000; Moschitti and Basili, 2004). In con-
trast, work in question answering suggests that
syntactic and semantic structures help in solving
TC (Voorhees, 2004; Hickl et al., 2006). From
these studies, it emerges that when the categoriza-
tion task is linguistically complex, syntax and se-
mantics may play a relevant role. In this perspec-
tive, the study of the automatic detection of re-
lationships between short texts is particularly in-
teresting. Typical examples of such relations are
given in (Giampiccolo et al., 2007) or those hold-
ing between question and answer, e.g. (Hovy et
al., 2002; Punyakanok et al., 2004; Lin and Katz,
2003), i.e. if a text fragment correctly responds to
a question.

In Question Answering, the latter problem is
mostly tackled by using different heuristics and
classifiers, which aim at extracting the best an-
swers (Chen et al., 2006; Collins-Thompson et
al., 2004). However, for definitional questions, a
more effective approach would be to test if a cor-
rect relationship between the answer and the query
holds. This, in turns, depends on the structure of
the two text fragments. Designing language mod-
els to capture such relation is too complex since
probabilistic models suffer from (i) computational
complexity issues, e.g. for the processing of large
bayesian networks, (ii) problems in effectively es-
timating and smoothing probabilities and (iii) high
sensitiveness to irrelevant features and processing
errors. In contrast, discriminative models such as
Support Vector Machines (SVMs) have theoreti-
cally been shown to be robust to noise and irrele-
vant features (Vapnik, 1995). Thus, partially cor-
rect linguistic structures may still provide a rel-
evant contribution since only the relevant infor-
mation would be taken into account. Moreover,
such a learning approach supports the use of kernel
methods which allow for an efficient and effective
representation of structured data.
SVMs and Kernel Methods have recently been

applied to natural language tasks with promising
results, e.g. (Collins and Duffy, 2002; Kudo and
Matsumoto, 2003; Cumby and Roth, 2003; Shen
et al., 2003; Moschitti and Bejan, 2004; Culotta
and Sorensen, 2004; Kudo et al., 2005; Toutanova
et al., 2004; Kazama and Torisawa, 2005; Zhang
et al., 2006; Moschitti et al., 2006). In particular,
in question classification, tree kernels, e.g. (Zhang
and Lee, 2003), have shown accuracy comparable
to the best models, e.g. (Li and Roth, 2005).
Moreover, (Shen and Lapata, 2007; Moschitti

et al., 2007; Surdeanu et al., 2008; Chali and Joty,



2008) have shown that shallow semantic informa-
tion in the form of Predicate Argument Structures
(PASs) (Jackendoff, 1990; Johnson and Fillmore,
2000) improves the automatic detection of cor-
rect answers to a target question. In particular,
in (Moschitti et al., 2007) kernels for the process-
ing of PASs (in PropBank1 format (Kingsbury and
Palmer, 2002)) extracted from question/answer
pairs were proposed. However, the relatively high
kernel computational complexity and the limited
improvement on bag-of-words (BOW) produced
by this approach do not make the use of such tech-
nique practical for real world applications.
In this paper, we carry out a complete study on

the use of syntactic/semantic structures for rela-
tional learning from questions and answers. We
designed sequence kernels for words and Part of
Speech Tags which capture basic lexical seman-
tics and basic syntactic information. Then, we de-
sign a novel shallow semantic kernel which is far
more efficient and also more accurate than the one
proposed in (Moschitti et al., 2007).
The extensive experiments carried out on two

different corpora of questions and answers, de-
rived from Web documents and the TREC corpus,
show that:
• Kernels based on PAS, POS-tag sequences and
syntactic parse trees improve the BOW approach
on both datasets. On the TREC data the improve-
ment is interestingly high, e.g. about 61%, making
its application worthwhile.
• The new kernel for processing PASs is more ef-
ficient and effective than previous models so that
it can be practically used in systems for short text
pair categorization, e.g. question/answer classifi-
cation.
In the remainder of this paper, Section 2

presents well-known kernel functions for struc-
tural information whereas Section 3 describes our
new shallow semantic kernel. Section 4 reports
on our experiments with the above models and, fi-
nally, a conclusion is drawn in Section 5.

2 String and Tree Kernels

Feature design, especially for modeling syntactic
and semantic structures, is one of the most dif-
ficult aspects in defining a learning system as it
requires efficient feature extraction from learning
objects. Kernel methods are an interesting rep-
resentation approach as they allow for the use of

1www.cis.upenn.edu/˜ace

all object substructures as features. In this per-
spective, String Kernel (SK) proposed in (Shawe-
Taylor and Cristianini, 2004) and the Syntactic
Tree Kernel (STK) (Collins and Duffy, 2002) al-
low for modeling structured data in high dimen-
sional spaces.

2.1 String Kernels
The String Kernels that we consider count the
number of substrings containing gaps shared by
two sequences, i.e. some of the symbols of the
original string are skipped. Gaps modify the
weight associated with the target substrings as
shown in the following.
LetΣ be a finite alphabet, Σ∗ =

⋃∞
n=0 Σn is the

set of all strings. Given a string s ∈ Σ∗, |s| denotes
the length of the strings and si its compounding
symbols, i.e s = s1..s|s|, whereas s[i : j] selects
the substring sisi+1..sj−1sj from the i-th to the
j-th character. u is a subsequence of s if there
is a sequence of indexes !I = (i1, ..., i|u|), with
1 ≤ i1 < ... < i|u| ≤ |s|, such that u = si1 ..si|u|

or u = s[!I] for short. d(!I) is the distance between
the first and last character of the subsequence u in
s, i.e. d(!I) = i|u| − i1 + 1. Finally, given s1, s2

∈ Σ∗, s1s2 indicates their concatenation.
The set of all substrings of a text corpus forms a

feature space denoted by F = {u1, u2, ..} ⊂ Σ∗.
To map a string s in R∞ space, we can use the
following functions: φu(s) =

P
!I:u=s[!I] λ

d(!I) for
some λ ≤ 1. These functions count the num-
ber of occurrences of u in the string s and assign
them a weight λd(!I) proportional to their lengths.
Hence, the inner product of the feature vectors for
two strings s1 and s2 returns the sum of all com-
mon subsequences weighted according to their
frequency of occurrences and lengths, i.e.

SK(s1, s2) =
X

u∈Σ∗

φu(s1) ·φu(s2) =
X

u∈Σ∗

X

!I1:u=s1[!I1]

λd( !I1)

X

!I2:u=t[!I2]

λd( !I2) =
X

u∈Σ∗

X

!I1:u=s1[!I1]

X

!I2:u=t[!I2]

λd( !I1)+d( !I2),

where d(.) counts the number of characters in the
substrings as well as the gaps that were skipped in
the original string.

2.2 Syntactic Tree Kernel (STK)
Tree kernels compute the number of common sub-
structures between two trees T1 and T2 without
explicitly considering the whole fragment space.
Let F = {f1, f2, . . . , f|F|} be the set of tree
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Figure 1: A tree for the sentence ”Anxiety is a disease” with some of its syntactic tree fragments.

fragments and χi(n) be an indicator function,
equal to 1 if the target fi is rooted at node n
and equal to 0 otherwise. A tree kernel func-
tion over T1 and T2 is defined as TK(T1, T2) =∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2), where NT1 and
NT2 are the sets of nodes in T1 and T2, respec-
tively and ∆(n1, n2) =

∑|F|
i=1 χi(n1)χi(n2).

∆ function counts the number of subtrees
rooted in n1 and n2 and can be evaluated as fol-
lows (Collins and Duffy, 2002):
1. if the productions at n1 and n2 are different then
∆(n1, n2) = 0;
2. if the productions at n1 and n2 are the same,
and n1 and n2 have only leaf children (i.e. they
are pre-terminal symbols) then ∆(n1, n2) = λ;
3. if the productions at n1 and n2 are the same, and
n1 and n2 are not pre-terminals then ∆(n1, n2) =

λ
Ql(n1)

j=1 (1 + ∆(cn1(j), cn2(j))), where l(n1) is the
number of children of n1, cn(j) is the j-th child
of node n and λ is a decay factor penalizing larger
structures.
Figure 1 shows some fragments of the subtree

on the left part. These satisfy the constraint that
grammatical rules cannot be broken. For exam-
ple, [VP [VBZ NP]] is a valid fragment which has
two non-terminal symbols, VBZ and NP, as leaves
whereas [VP [VBZ]] is not a valid feature.

3 Shallow Semantic Kernels

The extraction of semantic representations from
text is a very complex task. For it, tradition-
ally used models are based on lexical similarity
and tends to neglect lexical dependencies. Re-
cently, work such as (Shen and Lapata, 2007; Sur-
deanu et al., 2008; Moschitti et al., 2007; Mos-
chitti and Quarteroni, 2008; Chali and Joty, 2008),
uses PAS to consider such dependencies but only
the latter three researches attempt to completely
exploit PAS with Shallow Semantic Tree Kernels
(SSTKs). Unfortunately, these kernels result com-
putational expensive for real world applications.
In the remainder of this section, we present our
new kernel for PASs and compare it with the pre-
vious SSTK.
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Figure 2: Predicate Argument Structure trees associated
with the sentence: ”Panic disorder is characterized by unex-
pected and intense fear that causes anxiety.”.
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Figure 3: Some of the tree substructures useful to capture
shallow semantic properties.

3.1 Shallow Semantic Structures
Shallow approaches to semantic processing are
making large strides in the direction of efficiently
and effectively deriving tacit semantic informa-
tion from text. Large data resources annotated
with levels of semantic information, such as in the
FrameNet (Johnson and Fillmore, 2000) and Prop-
Bank (PB) (Kingsbury and Palmer, 2002) projects,
make it possible to design systems for the auto-
matic extraction of predicate argument structures
(PASs) (Carreras and Màrquez, 2005). PB-based
systems produce sentence annotations like:
[A1 Panic disorder] is [rel characterized] [A0 by unexpected
and intense fear] [R−A0 that] [relcauses] [A1 anxiety].
A tree representation of the above semantic in-
formation is given by the two PAS trees in Fig-
ure 2, where the argument words are replaced by
the head word to reduce data sparseness. Hence,
the semantic similarity between sentences can be
measured in terms of the number of substructures
between the two trees. The required substructures
violate the STK constraint (about breaking pro-
duction rules), i.e. since we need any set of nodes
linked by edges of the initial tree. For example,
interesting semantic fragments of Figure 2.a are
shown in Figure 3.
Unfortunately, STK applied to PAS trees cannot

generate such fragments. To overcome this prob-
lem, a Shallow Semantic Tree Kernel (SSTK) was
designed in (Moschitti et al., 2007).

3.2 Shallow Semantic Tree Kernel (SSTK)
SSTK is obtained by applying two different steps:
first, the PAS tree is transformed by adding a layer



of SLOT nodes as many as the number of possi-
ble argument types, where each slot is assigned to
an argument following a fixed ordering (e.g. rel,
A0, A1, A2, . . . ). For example, if an A1 is found
in the sentence annotation it will be always posi-
tioned under the third slot. This is needed to “arti-
ficially” allow SSTK to generate structures con-
taining subsets of arguments. For example, the
tree in Figure 2.a is transformed into the first tree
of Fig. 4, where ”null” just states that there is no
corresponding argument type.
Second, to discard fragments only containing

slot nodes, in the STK algorithm, a new step 0 is
added and the step 3 is modified (see Sec. 2.2):
0. if n1 (or n2) is a pre-terminal node and its child
label is null, ∆(n1, n2) = 0;
3. ∆(n1, n2) =

Ql(n1)
j=1 (1 + ∆(cn1(j), cn2(j))) − 1.

For example, Fig. 4 shows the fragments gen-
erated by SSTK. The comparison with the ideal
fragments in Fig. 3 shows that SSTK well approx-
imates the semantic features needed for the PAS
representation. The computational complexity of
SSTK is O(n2), where n is the number of the PAS
nodes (leaves excluded). Considering that the tree
including all the PB arguments contains 52 slot
nodes, the computation becomes very expensive.
To overcome this drawback, in the next section,
we propose a new kernel to efficiently process PAS
trees with no addition of slot nodes.

3.3 Semantic Role Kernel (SRK)

The idea of SRK is to produce all child subse-
quences of a PAS tree, which correspond to se-
quences of predicate arguments. For this purpose,
we can use a string kernel (SK) (see Section 2.1)
for which efficient algorithms have been devel-
oped. Once a sequence of arguments is output by
SK, for each argument, we account for the poten-
tial matches of its children, i.e. the head of the
argument (or more in general the argument word
sequence).
More formally, given two sequences of argu-

ment nodes, s1 and s2, in two PAS trees and
considering the string kernel in Sec 2.1, the
SRK(s1, s2) is defined as:

X

!I1:u=s1[ !I1]
!I2:u=s2[!I2]

Y

l=1..|u|

(1 + σ(s1[$I1l], s2[$I2l]))λ
d( !I1)+d(!I2), (1)

where u is any subsequence of argument nodes,
!Il is the index of the l-th argument node, s[!Il] is
the corresponding argument node in the sequence

s and σ(s1[!I1l], s2[!I2l]) is 1 if the heads of the ar-
guments are identical, otherwise is 0.
Proposition 1 SRK computes the number of all
possible tree substructures shared by the two eval-
uating PAS trees, where the considered substruc-
tures of a tree T are constituted by any set of nodes
(at least two) linked by edges of T .
Proof The PAS trees only contain three node lev-
els and, according to the proposition’s thesis, sub-
structures contain at least two nodes. The num-
ber of substructures shared by two trees, T1 and
T2, constituted by the root node (PAS) and the
subsequences of argument nodes is evaluated by∑

!I1:u=s1[!I1],!I2:u=s2[!I2]
λd(!I1)+d(!I2) (when λ = 1).

Given a node in a shared subsequence u, its child
(i.e. the head word) can be both in T1 and T2,
originating two different shared structures (with
or without such head node). The matches on the
heads (for each shared node of u) are combined
together generating different substructures. Thus
the number of substructures originating from u is
the product,

∏
l=1..|u|(1+σ(s1[!I1l], s2[!I2l])). This

number multiplied by all shared subsequences
leads to Eq. 1. !
We can efficiently compute SRK by following a
similar approach to the string kernel evaluation in
(Shawe-Taylor and Cristianini, 2004) by defining
the following dynamic matrix:

Dp(k, l) =
kX

i=1

lX

r=1

λk−i+l−r × γp−1(s1[1 : i], s2[1 : r]),

(2)

where γp(s1, s2) counts the number of shared sub-
structures of exactly p argument nodes between s1
and s2 and again, s[1 : i] indicates the sequence
portion from argument 1 to i. The above matrix is
then used to evaluate γp(s1a, s2b) =

(
λ2(1 + σ(h(a), h(b)))Dp(|s1|, |s2|) if a = b;

0 otherwise.
(3)

where s1a and s2b indicate the concatenation of
the sequences s and t with the argument nodes, a
and b, respectively and σ(h(a), h(b)) is 1 if the
children of a and b are identical (e.g. same head).
The interesting property is that:
Dp(k, l) = γp−1(s1[1 : k], s2[1 : l]) + λDp(k, l − 1)

+ λDp(k − 1, l) − λ2Dp(k − 1, l − 1).
(4)

To obtain the final kernel, we need to con-
sider all possible subsequence lengths. Let
m be the minimum between |s1| and |s2|,
SRK(s1, s2) =

mX

p=1

γp(s1, s2).
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Figure 4: Fragments of Fig. 2.a produced by the SSTK (similar to those of Fig. 3).

Regarding the processing time, if ρ is the max-
imum number of arguments in a predicate struc-
ture, the worst case computational complexity of
SRK is O(ρ3).

3.4 SRK vs. SSTK
A comparison between SSTK and SRK suggests
the following points: first, although the computa-
tional complexity of SRK is larger than the one
of SSTK, we will show in the experiment section
that the running time (for both training and test-
ing) is much lower. The worse case is not really
informative since as shown in (Moschitti, 2006),
we can design fast algorithm with a linear average
running time (we use such algorithm for SSTK).
Second, although SRK uses trees with only

three levels, in Eq.1, the function σ (defined to
give 1 or 0 if the heads match or not) can be sub-
stituted by any kernel function. Thus, σ can re-
cursively be an SRK (and evaluate Nested PASs
(Moschitti et al., 2007)) or any other potential ker-
nel (over the arguments). The very interesting as-
pect is that the efficient algorithm that we provide
(Eqs 2, 3 and 4) can be accordingly modified to
efficiently evaluate new kernels obtained with the
σ substitution2.
Third, the interesting difference between SRK

and SSTK (in addition to efficiency) is that SSTK
requires an ordered sequence of arguments to eval-
uate the number of argument subgroups (argu-
ments are sorted before running the kernel). This
means that the natural order is lost. SRK instead is
based on subsequence kernels so it naturally takes
into account the order which is very important:
without it, syntactic/semantic properties of pred-
icates cannot be captured, e.g. passive and active
forms have the same argument order for SSTK.
Finally, SRK gives a weight to the predicate

substructures by considering their length, which
also includes gaps, e.g. the sequence (A0, A1) is
more similar to (A0, A1) than (A0, A-LOC, A1),
in turn, the latter produces a heavier match than
(A0, A-LOC, A2, A1) (please see Section 2.1).

2For space reasons we cannot discuss it here.

This is another important property for modeling
shallow semantics similarity.

4 Experiments

Our experiments aim at studying the impact of our
kernels applied to syntactic/semantic structures for
the detection of relations between short texts. In
particular, we first show that our SRK is far more
efficient and effective than SSTK. Then, we study
the impact of the above kernels as well as se-
quence kernels based on words and Part of Speech
Tags and tree kernels for the classification of ques-
tion/answer text pairs.

4.1 Experimental Setup
The task used to test our kernels is the classifi-
cation of the correctness of 〈q, a〉 pairs, where a
is an answer for the query q. The text pair ker-
nel operates by comparing the content of ques-
tions and the content of answers in a separate fash-
ion. Thus, given two pairs p1 = 〈q1, a1〉 and
p2 = 〈q2, a2〉, a kernel function is defined as
K(p1, p2) =

∑
τ Kτ (q1, q2) +

∑
τ Kτ (a1, a2),

where τ varies across different kernel functions
described hereafter.
As a basic kernel machine, we used our

SVM-Light-TK toolkit, available at disi.unitn.
it/moschitti (which is based on SVM-Light
(Joachims, 1999) software). In it, we imple-
mented: the String Kernel (SK), the Syntactic Tree
Kernel (STK), the Shallow Semantic Tree Kernel
(SSTK) and the Semantic Role Kernel (SRK) de-
scribed in sections 2 and 3. Each kernel is associ-
ated with the above linguistic objects: (i) the linear
kernel is used with the bag-of-words (BOW) or the
bag-of-POS-tags (POS) features. (ii) SK is used
with word sequences (i.e. the Word Sequence Ker-
nel, WSK) and POS sequences (i.e. the POS Se-
quence Kernel, PSK). (iii) STK is used with syn-
tactic parse trees automatically derived with Char-
niak’s parser; (iv) SSTK and SRK are applied to
two different PAS trees (see Section 3.1), automat-
ically derived with our SRL system.
It is worth noting that, since answers often con-
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Figure 5: Efficiency of SRK and SSTK

tain more than one PAS, we applied SRK or SSTK
to all pairs P1 × P2 and sum the obtained contri-
bution, where P1 and P2 are the set of PASs of the
first and second answer3. Although different ker-
nels can be used for questions and for answers, we
used (and summed together) the same kernels ex-
cept for those based on PASs, which are only used
on answers.

4.1.1 Datasets
To train and test our text QA classifiers, we
adopted the two datasets of question/answer pairs
available at disi.unitn.it/˜silviaq, contain-
ing answers to only definitional questions. The
datasets are based on the 138 TREC 2001 test
questions labeled as “description” in (Li and Roth,
2005). Each question is paired with all the top
20 answer paragraphs extracted by two basic QA
systems: one trained with the web documents and
the other trained with the AQUAINT data used in
TREC’07.
The WEB corpus (Moschitti et al., 2007) of QA

pairs contains 1,309 sentences, 416 of which are
positive4 answers whereas the TREC corpus con-
tains 2,256 sentences, 261 of which are positive.

4.1.2 Measures and Parameterization
The accuracy of the classifiers is provided by the
average F1 over 5 different samples using 5-fold
cross-validation whereas each plot refers to a sin-
gle fold. We carried out some preliminary experi-
ments of the basic kernels on a validation set and

3More formally, let Pt and Pt′ be the sets of PASs ex-
tracted from text fragments t and t′; the resulting kernel will
beKall(Pt, Pt′) =

P
p∈Pt

P
p′∈Pt′

SRK(p, p′).
4For instance, given the question “What are inverte-

brates?”, the sentence “At least 99% of all animal species
are invertebrates, comprising . . . ” was labeled “-1” , while
“Invertebrates are animals without backbones.” was labeled
“+1”.

we noted that the F1 was maximized by using the
default cost parameters (option -c of SVM-Light),
λ = 0.04 (see Section 2). The trade-off parame-
ter varied according to different kernels on WEB
data (so it needed an ad-hoc estimation) whereas
a value of 10 was optimal for any kernel on the
TREC corpus.

4.2 Shallow Semantic Kernel Efficiency
Section 2 has illustrated that SRK is applied to
more compact PAS trees than SSTK, which runs
on large structures containing as many slots as
the number of possible predicate argument types.
This impacts on the memory occupancy as well
as on the kernel computation speed. To empiri-
cally verify our analytical findings (Section 3.3),
we divided the training (TREC) data in 9 bins of
increasing size (200 instances between two con-
tiguous bins) and we measured the learning and
test time5 for each bin. Figure 5 shows that in
both the classification and learning phases, SRK
is much faster than SSTK. With all training data,
SSTK employs 487.15 seconds whereas SRK only
uses 12.46 seconds, i.e. it is about 40 times faster,
making the experimentation of SVMs with large
datasets feasible. It is worth noting that to imple-
ment SSTK we used the fast version of STK and
that, although the PAS trees are smaller than syn-
tactic trees, they may still contain more than half
million of substructures (when they are formed by
seven arguments).

4.3 Results for Question/Answer
Classification

In these experiments, we tested different kernels
and some of their most promising combinations,
which are simply obtained by adding the different
kernel contributions6 (this yields the joint feature
space of the individual kernels).
Table 1 shows the average F1± the standard de-

viation7 over 5-folds on Web (and TREC) data of
SVMs using different kernels. We note that: (a)
BOW achieves very high accuracy, comparable to
the one produced by STK, i.e. 65.3 vs 65.1; (b)
the BOW+STK combination achieves 66.0, im-

5Processing time in seconds of a Mac-Book Pro 2.4 Ghz.
6All adding kernels are normalized to have a sim-

ilarity score between 0 and 1, i.e. K′(X1, X2) =
K(X1,X2)√

K(X1,X1)×K(X2,X2)
.

7The Std. Dev. of the difference between two classifier
F1s is much lower making statistically significant almost all
our system ranking in terms of performance.



WEB Corpus
BOW POS PSK WSK STK SSTK SRK BOW+POS BOW+STK PSK+STK WSK+STK STK+SSTK STK+SRK

65.3±2.9 56.8±0.8 62.5±2.3 65.7±6.0 65.1±3.9 52.9±1.7 50.8±1.2 63.7±1.6 66.0±2.7 65.3±2.4 66.6±3.0 (+WSK) 68.0±2.7 (+WSK) 68.2±4.3
TREC Corpus

24.2±5.0 26.5±7.9 31.6±6.8 14.0±4.2 33.1±3.8 21.8±3.7 23.6±4.7 31.9±7.1 30.3±4.1 36.4±7.0 23.7±3.9 (+PSK) 37.2±6.9 (+PSK) 39.1±7.3

Table 1: F1 ± Std. Dev. of the question/answer classifier according to several kernels on the WEB and
TREC corpora.

proving both BOW and STK; (c) WSK (65.7) im-
proves BOW and it is enhanced by WSK+STK
(66.6), demonstrating that word sequences and
STKs are very relevant for this task; and fi-
nally, WSK+STK+SSTK is slightly improved by
WSK+STK+SRK, 68.0% vs 68.2% (not signifi-
cantly) and both improve on WSK+STK.
The above findings are interesting as the syntac-

tic information provided by STK and the semantic
information brought by WSK and SRK improve
on BOW. The high accuracy of BOW is surprising
if we consider that at classification time, instances
of the training models (e.g. support vectors) are
compared with different test examples since ques-
tions cannot be shared between training and test
set8. Therefore the answer words should be dif-
ferent and useless to generalize rules for answer
classification. However, error analysis reveals that
although questions are not shared between train-
ing and test set, there are common words in the
answers due to typical Web page patterns which
indicate if a retrieved passage is an incorrect an-
swer, e.g. Learn more about X.
Although the ability to detect these patterns is

beneficial for a QA system as it improves its over-
all accuracy, it is slightly misleading for the study
that we are carrying out. Thus, we experimented
with the TREC corpus which does not contain
Web extra-linguistic texts and it is more complex
from a QA task viewpoint (it is more difficult to
find a correct answer).
Table 1 also shows the classification results on

the TREC dataset. A comparative analysis sug-
gests that: (a) the F1 of all models is much lower
than for the Web dataset; (b) BOW shows the low-
est accuracy (24.2) and also the accuracy of its
combination with STK (30.3) is lower than the
one of STK alone (33.1); (c) PSK (31.6) improves
POS (26.5) information and PSK+STK (36.4) im-
proves on PSK and STK; and (d) PAS adds further

8Sharing questions between test and training sets would
be an error from a machine learning viewpoint as we cannot
expect new questions to be identical to those in the training
set.

information as the best model is PSK+STK+SRK,
which improves BOW from 24.2 to 39.1, i.e. 61%.
Finally, it is worth noting that SRK provides a
higher improvement (39.1-36.4) than SSTK (37.2-
36.4).
4.4 Precision/Recall Curves
To better study the benefit of the proposed linguis-
tic structures, we also plotted the Precision/Recall
curves (one fold for each corpus). Figure 6 shows
the curve of some interesting kernels applied to
the Web dataset. As expected, BOW shows the
lowest curves, although, its relevant contribution
is evident. STK improves BOW since it pro-
vides a better model generalization by exploit-
ing syntactic structures. Also, WSK can gener-
ate a more accurate model than BOW since it uses
n-grams (with gaps) and when it is summed to
STK, a very accurate model is obtained9. Finally,
WSK+STK+SRK improves all the models show-
ing the potentiality of PASs.
Such curves show that there is no superior

model. This is caused by the high contribution
of BOW, which de-emphasize all the other mod-
els’s result. In this perspective, the results on
TREC are more interesting as shown by Figure 7
since the contribution of BOW is very low making
the difference in accuracy with the other linguis-
tic models more evident. PSK+STK+SRK, which
encodes the most advanced syntactic and semantic
information, shows a very high curve which out-
performs all the others.
The analysis of the above results suggests that:

first as expected, BOW does not prove very rel-
evant to capture the relations between short texts
from examples. In the QA classification, while
BOW is useful to establish the initial ranking by
measuring the similarity between question and an-
swer, it is almost irrelevant to capture typical rules
suggesting if a description is valid or not. Indeed,
since test questions are not in the training set, their
words as well as those of candidate answers will
be different, penalizing BOW models. In these

9Some of the kernels have been removed from the figures
so that the plots result more visible.



0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

30 40 50 60 70 80 90 100 

P
r
e
c
is

io
n
 

Recall 

STK 

WSK+STK 

WSK+STK+SRK 

BOW 

WSK 

Figure 6: Precision/Recall curves of some kernel
combinations on the WEB dataset.
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Figure 7: Precision/Recall curves of some kernel
combinations on the TREC dataset.

conditions, we need to rely on syntactic structures
which at least allow for detecting well formed de-
scriptions.
Second, the results show that STK is important

to detect typical description patterns but also POS
sequences provide additional information since
they are less sparse than tree fragments. Such pat-
terns improve on the bag of POS-tags by about 6%
(see POS vs PSK). This is a relevant result consid-
ering that in standard text classification bigrams or
trigrams are usually ineffective.
Third, although PSK+STK generates a very rich

feature set, SRK significantly improves the classi-
fication F1 by about 3%, suggesting that shallow
semantics can be very useful to detect if an an-
swer is well formed and is related to a question.
Error analysis revealed that PAS can provide pat-
terns like:
- A0(X) R-A0(that) rel(result) A1(Y)

- A1(X) rel(characterize) A0(Y),
where X and Y need not necessarily be matched.
Finally, the best model, PSK+STK+SRK, im-

proves on BOW by 61%. This is strong evidence
that complex natural language tasks require ad-
vanced linguistic information that should be ex-
ploited by powerful algorithms such as SVMs
and using effective feature engineering techniques
such as kernel methods.

5 Conclusion
In this paper, we have studied several types
of syntactic/semantic information: bag-of-words
(BOW), bag-of-POS tags, syntactic parse trees
and predicate argument structures (PASs), for the
design of short text pair classifiers. Our learn-
ing framework is constituted by Support Vector
Machines (SVMs) and kernel methods applied
to automatically generated syntactic and semantic
structures.
In particular, we designed (i) a new Semantic

Role Kernel (SRK) based on a very fast algorithm;
(ii) a new sequence kernel over POS tags to en-
code shallow syntactic information; (iii) many ker-
nel combinations (to our knowledge no previous
work uses so many different kernels) which allow
for the study of the role of several linguistic levels
in a well defined statistical framework.
The results on two different question/answer

classification corpora suggest that (a) SRK for pro-
cessing PASs is more efficient and effective than
previous models, (b) kernels based on PAS, POS-
tag sequences and syntactic parse trees improve on
BOW on both datasets and (c) on the TREC data
the improvement is remarkably high, e.g. about
61%.
Promising future work concerns the definition

of a kernel on the entire argument information
(e.g. by means of lexical similarity between all the
words of two arguments) and the design of a dis-
course kernel to exploit the relational information
gathered from different sentence pairs. A closer
relationship between questions and answers can be
exploited with models presented in (Moschitti and
Zanzotto, 2007; Zanzotto and Moschitti, 2006).
Also the use of PAS derived from FrameNet and
PropBank (Giuglea and Moschitti, 2006) appears
to be an interesting research line.
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