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Abstract— Kernel methods are effective approaches to the
modeling of structured objects in learning algorithms. Their
major drawback is the typically high computational complexity
of kernel functions. This prevents the application of computa-
tional demanding algorithms, e.g. Support Vector Machines,
on large datasets. Consequently, on-line learning approaches
are required. Moreover, to facilitate the application of kernel
methods on structured data, additional efficiency optimization
should be carried out.

In this paper, we propose Direct Acyclic Graphs to reduce
the computational burden and storage requirements by rep-
resenting common structures and feature vectors. We show
the benefit of our approach for the perceptron algorithm
using tree and polynomial kernels. The experiments on a quite
extensive dataset of about one million of instances show that
our model makes the use of kernels for trees practical. From
the accuracy point of view, the possibility of using large amount
of data has allowed us to reach the state-of-the-art on the
automatic detection of Semantic Role Labeling as defined in
the Conference on Natural Language Learning shared task.

I. INTRODUCTION

Many and different data mining applications involve the

processing of structured or semi-structured objects, e.g. pro-

teins and phylogenetic trees in Bioinformatics, molecular

graphs in Chemistry, hypertextual and XML documents

in Information Retrieval, parse trees in Natural Language

Processing. In all these areas, the huge amount of available

data jointly with a poor understanding of the processes for

its generation, typically enforces the use of machine learning

and/or data mining techniques.

Many researchers in data mining field have focused on

the task of finding frequent trees. For example, the prob-

lem of extracting patterns in massive databases representing

complex interactions among entities, usually known as the

Frequent Structure Mining (FSM) task, has been addressed

with rooted (ordered/unordered) labeled trees, e.g. [3], [23].

The major complexity of applying machine learning algo-

rithms to structured data is the design of effective features

for its representation. Kernel methods seem a valid approach

to alleviate such complexity since they allow to inject back-

ground knowledge into a learning algorithm and provide an

implicit object representation with the possibility to work in

very large feature spaces. Such interesting properties have

triggered several researches on kernel methods for struc-

tured data, e.g., Fisher kernels proposed in [10], convolution

kernels for discrete structures introduced in [8], kernels for

strings [24], kernels for Bioinformatics [13], [14], [20] and

so on.

One drawback of tree kernels (and kernels for structures

in general) is the time complexity required both in learning

and classification phases. Such complexity can sometimes

prevent the kernel application in scenarios involving large

amount of data. Two approaches have been pursued in order

to allow the use of kernels in data mining: (1) the use of fast

learning/classification algorithms, e.g. the perceptron; (2) the

reduction of the computational time required for computing

a kernel (see e.g. [22] and references therein).

Methods based on the maximization of the margin are the

state-of-the-art for classification algorithms and are supported

by a solid theory. However, it is well-known that the avail-

ability of very large collections of labeled examples increases

the generalization performance of a given algorithm. Such

increase fills the gap between the expected generalization

performance of simple on-line algorithms, which are not

designed to maximize the margin, and algorithms which

explicitly maximize it, as Support Vector Machines (SVMs)

for example. As a consequence, algorithms able to work with

very large collections of examples can outperform state-of-

the-art algorithms which cannot deal with such a number of

examples.

In a previous paper [2], we have shown that, when

substructures are shared among the training instances (and

this is usually the case for discrete structured objects), we

can provide a compact representation of the structures by

means of Direct Acyclic Graphs (DAGs).

Exploiting this idea has led to a significant reduction both

in model storage and kernel computational time require-

ments. This idea has been applied to the case of the per-

ceptron algorithm, obtaining the so called DAG-Perceptron

[2].

However, in [2], we focused on efficient representation of

structures, whereas in this paper, we introduce novel opti-

mizations which significantly reduce memory requirements

during computation of kernels. Moreover, we modified DAG

algorithm to compute generic kernels on feature vectors

extracted from structured data. In particular, we consider

standard features which are attached to trees. In the original

version of the DAG-Perceptron, we combined the linear

kernel over such features with tree kernels. In this paper,

we also give an algorithm for the efficient computation of

non-linear kernels for sparse feature vectors, with the aim to



boost the overall accuracy.

To demonstrate the significance of this improvement, we

tested our algorithm against an interesting Natural Language

Processing task, namely Semantic Role Labeling (SRL) [7].

Given the parse tree of a natural language sentence, an SRL

system extracts all predicates along with their arguments. A

very large corpus of predicate argument structures associated

with syntactic trees has been made available by the PropBank

project [11]. The results of our experiments with kernel

algorithms on millions of items show that our approach

remarkably reduces both learning time and storage needs.

Moreover, on the SRL Conference Natural Language Learn-

ing (CoNLL) 2005 shared task dataset, we approached the

highest accuracy in detecting arguments. This is due to the

fact that for the first time tree kernels (along with traditional

feature vectors) could be used on such huge dataset. In

other words, our approach makes the use of tree kernels for

applications practical on real scenarios, where running more

complex algorithm, e.g. SVMs, would just have resulted

prohibitive.

Sections II and III introduce tree kernels and the percep-

tron algorithm, respectively. Section IV describes the basic

idea of the DAG-based algorithm, while in Section IV-C

our proposed algorithm together with further optimization

are described. Section VI empirically shows the benefits

of our approach and finally, Section VII summarizes the

conclusions.

II. KERNELS FOR TREES

One of the most used tree kernel for Natural Language

processing is the Subset Tree (SST) kernel [5]. It is based

on counting matching subset trees between two input trees.

A subset tree (SST) of a tree T is a tree which (a) is rooted

in a node of T and (b) satisfies the constraint that each of its

nodes contains either all its children or none of them. Note

that leaves do not need to be necessarily included in the SST.

We assume that each of the m SSTs in the whole

training data set is indexed by an integer between 1 and

m. Then hs(T ) is the number of times the subset tree

indexed with s occurs in tree T . We represent each tree

T as a feature vector φ(T ) = [h1(T ), h2(T ), . . . ]. The

inner product between two trees under the representation

φ(T ) = [h1(T ), h2(T ), . . . hm(T )] is:

K(T1, T2) = φ(T1) · φ(T2) =

m∑

s=1

hs(T1)hs(T2).

Thus this tree kernel defines a similarity measure between

trees which is proportional to the number of shared SSTs.

The SST can be efficiently calculated by a recursive

procedure defined as follows:

K(T1, T2) =
∑

ti∈NT1

∑

t2∈NT2

m∑

s=1

hs(t1)hs(t2) (1)

=
∑

t1∈NT1

∑

t2∈NT2

C(t1, t2)

where NT1
and NT2

are the sets of nodes of trees T1 and

T2, respectively, and C(t1, t2) =
∑m

s=1 hs(t1)hs(t2). Let a

production at node t be the SST constituted by t and only its

direct children, then C(t1, t2) can be recursively computed

according to the following rules:

1) if the productions at t1 and t2 are different then

C(t1, t2) = 0;

2) if the productions at t1 and t2 are the same, and t1 and

t2 have only leaf children (i.e. they are pre-terminals

symbols) then C(t1, t2) = 1;

3) if the productions at t1 and t2 are the same, and t1 and

t2 are not pre-terminals, then

C(t1, t2) =

nc(t1)∏

j=1

(1 + C(chj [t1], chj [t2])) (2)

where nc(t1) is the number of children of t1 and chj [t]
is the j-th child of node t.

The computational complexity in time of the above kernel

is O(|NT1
| × |NT2

|). An improvement1 to the procedure

can be introduced by observing that when the productions

associated with t1 and t2 are different, we can avoid to

compute C(t1, t2) since it is 0. The resulting Fast Tree Kernel

algorithm (FTK) [17] has the same worst case complexity but

in practical applications it provides a quite relevant speed-up.

III. ON-LINE LEARNING, PERCEPTRON, AND TREE

FORESTS

In on-line learning, as opposed to batch learning, data

arrives sequentially while learning takes place. Many algo-

rithms tailored to this setting exist, the most popular being

the perceptron algorithm [19]. In the original formulation the

perceptron was meant to process data encoded by real vectors

and the decision function is linear (a hyperplane). It is well

known that this algorithm can be easily extended to generate

a non-linear decision function and/or to treat structured data

by using kernels (see for example [12]).

The on-line kernel-perceptron algorithm, adapted to tree-

kernels, requires to maintain an implicit representation of

the weight vector in the feature space. Specifically, this

corresponds to keep in memory the set of the already seen

examples for which the perceptron prediction was erroneous.

In fact, let T be a stream of example pairs (Ti, yi), yi ∈
{−1,+1}, then, at iteration t, the scoring function of the

perceptron for a new tree T is defined by

St(T ) =

t−1∑

j=1

αjK(Tj , Ti),

where αj ∈ {−1, 0,+1} is 0 whenever sign(Sj(Tj)) = yj ,

and yj otherwise.

Thus we can consider the set of trees M = {(Ti, yi) ∈ T :
αi ∈ {−1,+1}} as the model of the perceptron and slightly

1Another improvement from an accuracy point of view is carried out by
downweighting larger subtrees. This is obtained by modifying the kernel as

follows: K(T1, T2) =
∑m

s=1 λsize(s)hs(T1)hs(T2) where 0 < λ ≤ 1 is
a weighting parameter and size(s) is the number of nodes of the subtree s.



redefine the kernel-perceptron algorithm as in the following.

Let M = ∅ be an initial empty model, a new input tree Ti

is added to the model M whenever its score

S(Ti) =
∑

(Tj ,yj)∈M

yjK(Ti, Tj)

has different sign from its classification yi. Thus the update

and the insertion of the new example follow the rule:

if (yiS(Ti) ≤ 0) then M ← M ∪ {(Ti, yi)}

It is trivial to show that the cardinality of M , and con-

sequently the memory required for its storage, grows up

linearly with the number of tree presentations. Moreover the

efficiency in the evaluation of the function S(T ) decreases

super-linearly. Clearly, this seems not satisfactory for on-line

applications.

In [2], it has been shown that, in the case of discrete

structures as trees and DAGs, where many sub-structures

are shared, we can compact the representation of the model

thus making the computation faster and reducing the storage

requirement remarkably.

IV. THE DAG-PERCEPTRON

The perceptron algorithm maintains a tree forest including

all the trees that have been misclassified until that moment.

The computational burden is thus concentrated in computing

the score which involves the computation of kernels between

the input tree and each tree of the forest. This computation,

however, can be eased when trees belonging to the forest

share common subtrees (see Figure 1). The addition of node

annotations concerning the frequency of shared subtrees is

sufficient to maintain all the information to re-construct the

original forest.

This section is organized as follows: subsections IV-A

and IV-B recall the optimizations described in [2], while

subsection IV-C discusses further optimizations carried out

in this paper.

A. From a Forest to a Directed Acyclic Graph

Given a tree forest F , if there are trees T1, T2 ∈ F which

share a common subtree T̂ , then we can explicitly represent

T̂ only once. Thus, we define a procedure that merges all
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Fig. 1. Example of Forest optimization.

the trees in F into a single minimal DAG, i.e., a DAG with

a minimal number of vertices. We will refer to this DAG as

µD = µDAG(F ).

In Figure 2, we give an algorithm to efficiently compute

shared subtrees, and how to exploit this information to

efficiently represent a forest as an annotated DAG (ADAG).

More formally, with annotated DAG, we refer to a DAG

where each node is annotated with a pair (label,frequency).

label represents the structure associated with the node, while

frequency is used to count how many repetitions of the same

subtree rooted in that node are present in the tree forest. The

exact use of frequency will become clearer in the following.

MinimalDAG

Input: A tree forest F = {T1, . . . , Tk}
/* l ≡ label, f ≡ frequency, dag ≡ dag rooted at */
Initialize: µD ← void DAG;

for j ← 1 to N do
vertex list ← InvTopologOrder(Tj);
while vertex list �= ∅ do

v = pop(vertex list);
if ∃u ∈ µD s.t. dag(u) ≡ dag(v)

then f(u) ← f(u) + f(v)
else

add to µD a node w where
l(w) = l(v) and f(w) = f(v)

forall children chi[v] of v
add arc (w, ci) to µD where

ci ∈ Nodes(µD) and
dag(ci) ≡ dag(chi[v])

return µD

Fig. 2. The algorithm to transform a tree-forest into a minimal DAG.

The procedure InvTopologOrder(Tj) used in the al-

gorithm returns a total order of vertexes of Tj which is

compatible with the (inverted) partial order defined by the

arcs of Tj . Thus, the first vertexes of the list will be vertexes

with zero outdegree, followed by vertexes which have only

children with zero outdegree, and so on. Using this order

guarantees the (unique) existence of vertexes ci ∈ µD s.t.

dag rooted at(ci) ≡ dag rooted at(chi[v]). In fact, for

each i, the vertex chi[v] is processed before vertex v and

is either inserted in µD or recognized as a duplicated of a

vertex already present in µD.

It should be noted that the function dag rooted at(·) can

be implemented quite efficiently by an indexing mechanism,

where a unique code is defined for a void child, and a unique

code for the root of each different DAG is generated by

recursively considering the label of the root and the (unique)

codes computed for its children.

In our implementation we have realized an indexing mech-

anism by using Adelson-Velsky Landis (AVL) trees [1]. Let t

be a vertex of a tree T and l the length of the longest path in

T starting from t and reaching a vertex of T with 0 outdegree.

Then an AVL tree for each possible value of l is defined,

i.e. AV L(l). When a vertex s ∈ T with 0 outdegree is

processed, there is an attempt to insert it in AV L(0) using as



key the label associated with s. If the key is already present,

it means that a vertex s′ with 0 outdegree and same label has

already been inserted in AV L(0). In that case, s is marked,

the frequency for s′ is incremented by 1, and the pointer to

s′ is associated with it, so that, when the parents of s are

processed, their pointers to s are substituted by the pointer

to s′. When all the vertexes with 0 outdegree are processed,

vertexes with l = 1 are considered and the same process is

repeated with the following two differences: i) the children

of q are checked and for each marked child, its pointer is

substituted by the associated pointer; ii) the key used for

the insertion in AV L(1) is given by the concatenation of the

label associated with q with the ordered sequence of (revised)

pointers to its children. If the insertion of q fails, i.e., an

“equivalent” vertex is already present, the same operations

described for s are executed. The treatment of vertexes with

l > 1 is the same described for the case l = 1. Both insertion

and lookup into an AVL tree take O(log(n)), where n is the

number of items contained into the AVL tree.

Notice that using a different AVL tree for each value of

l allows us to reduce the number of vertexes inserted in the

AVL, thus reducing the searching time for the key.

The advantage of having a minimal DAG leads to a

considerable reduction in space complexity. In some cases,

such reduction can even be exponential.

TreeIns

Input: An ADAG µD and a tree (T, α) to be inserted
/* l ≡ label, f ≡ frequency, dag ≡ dag rooted at */

vertex list ← InvTopologOrder(T );
while vertex list �= ∅ do

v = pop(vertex list);
if ∃u ∈ µD s.t. dag(u) ≡ dag(v)

then f(u) ← f(u) + α · f(v)
else

add to µD a node w where
l(w) = l(v) and f(w) = α·f(v)

forall children chi[v] of v
add arc (w, ci) to µD where

ci ∈ Nodes(µD) and
dag(ci) ≡ dag(chi[v])

return µD

Fig. 3. The algorithm to insert a weighted ADAG in a larger ADAG.

B. Efficient Score Computation

In the previous section we showed how to transform a tree

forest into an annotated DAG with no loss of information.

In this section we show a way to compact the necessary

information to be used in the computation of a pretty general

score function.

The general idea of our approach is to compute an an-

notated minimum DAG for the original tree forest in a way

that it will be possible to perform the computation of the

perceptron score function efficiently. For this, it is useful

to notice that the core of the computation of kernels is the

computation of the C(ti, tj) and that these values can be

computed just once for the shared substructures and re-used

when needed.

The score function is generally given in the form

S(T ) =
∑

Ti∈F

αiK(Ti, T )

where αi ∈ R are weights. This can be efficiently computed

by keeping in memory a weighted annotated DAG which

is built incrementally during the learning and where the

frequencies are computed by weighting the frequency of the

minimal DAG associated with the tree which is added to the

model.

The algorithm used to insert a new tree into the model

is depicted in Figure 3. Note that it is very similar to the

generation of a minimum DAG with the difference being

that in this case the frequency associated with the model

is updated with the frequency of the subtree to be added

weighted by the quantity α.

The following theorem shows that the weighted subtree

frequencies maintained in the model, as an annotated mini-

mal DAG, allow us to compute the score S(T) without mak-

ing explicit reference to the trees in the standard perceptron

model.

Theorem: Let M0 = φ the void initial DAG. After n inser-

tions Mi = DAGIns(Mi−1, (Ti, αi)), where i = 1, . . . , n.

Defining

SµDAG(Mn, T ) =
∑

ti∈Mn

∑

tk∈T

fiC(ti, tk),

with fi the weighted frequency in Mn, then the following

holds:

S(T ) = SµDAG(Mn, T ).

Proof: The proof of this theorem trivially follows from the

theorem presented in [2] and is not reported due to space

limitations.

C. The Algorithm

In this section, we describe an implementation of the

Perceptron algorithm where the model, i.e. the forest of

misclassified trees with their labels, is maintained as an

annotated DAG.

The algorithm is presented in Figure 4. The model is

represented as a annotated minimal DAG. Whenever an input

tree is misclassified the model is updated by adding it to the

model. In doing that, the weight of each node of the input

tree is set to the target label (i.e. αi = yi).

The soundness of the algorithm is guaranteed by the

theorem given in the previous section which is however valid

for a larger class of algorithms.

In the following, we discuss other complexity issues which

were not considered in [2], but are important when dealing

with a large amount of data.

The computation of the tree kernel is based on the recur-

sive computation of the C(t1, t2) values. When considering
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DAG-Perceptron Algorithm

Input: stream of pairs (Ti, yi), where yi ∈ {−1,+1}
Initialize: Model M ← void DAG;

Repeat forever

read (Ti, yi) from the stream;

Compute Perceptron score:

S(Ti) ← SµDAG(M,Ti);

if yiS(Ti) ≤ 0 then

M ← TreeIns(M, (Ti, yi))

Fig. 4. The DAG-Perceptron algorithm.

a model represented as a tree forest, storing all the C(t1, t2)
values is not a problem since the computation of the total

kernel is done by summing the values of the kernels between

each tree in the forest and the input tree. Since the same

storage space can be reused for different trees in the forest,

the storage requirement is dominated by the largest tree in the

forest. In [2], the above approach is used to compute kernels

between an input tree and a DAG. Since the number of

DAG vertexes grows with training size a significant storage

requirement is expected, especially when considering data

mining applications, where the number of input items could

be more than a million.

For this reason, it is important to limit storage require-

ments. In this respect, two observations can be done: i) when

considering a vertex v belonging to the input tree, it is readily

evident that when all the C(u, v) entries, with u belonging

to the DAG, are computed, the entries referring to children

of v can be removed, since no other tree vertex will refer to

them; ii) an entry C(u, v) is computed (and thus stored) only

if production(u)=production(v), thus the “name” of a vertex

u belonging to the DAG, can be defined as the composition

of production(u) plus a progressive numerical id assigned

to the vertexes of the DAG bearing the same production(u).

Equivalently this means that, given a vertex v in the input

tree, the elements of the row C(·, v) can be enumerated

progressively, disregarding the 0 valued elements, which

correspond to vertexes in the DAG that do not bear the same

production as v.

On the basis of these observations, the following joint

strategies can be adopted to reduce the storage requirements:

i) the input tree is read using a depth-first visit and as soon

as a vertex completes the computation of its C(u, v) entries,

the storage space for the C(u, v) entries referring to its

children is deallocated; ii) for each distinct production, a

list of matching vertexes in the DAG is maintained with the

aim of both speeding up the search for a production match,

and also to assign a progressive numerical id to the matching

vertexes as well as the total number of matching vertexes to

the production; in this way, when a new vertex in the input

tree is visited, it is possible to know how much storage space

must be dynamically allocated for that vertex. It should be

noticed that each list associated with a production can be

maintained very efficiently by just: (1) using a counter c

recording the current total number of vertexes belonging to

the list; (2) assigning as id to a new vertex the current value

of c; (3) inserting the new vertex at the beginning of each

list and incrementing c by 1. All the above operations can be

done in constant time. Adopting the above strategies reduces

the storage need from O(NdagNtree), where Ndag is the

number of nodes in the DAG, and Ntree is the number of

nodes in the input tree, to O(Pmaxhtreebtree), where Pmax is

the length of the longest list of matching vertexes associated

with productions, htree is the depth of the input tree, and

btree is the branching factor of the input tree. Of course,

when considering more than 1 production, Ndag > Pmax

and if there are q productions with the same probability

to be associated with a vertex, Pmax =
Ndag

q
. Moreover,

Ntree ≥ htreebtree.

Another efficiency issue is related to the possibility to

exploit additional numerical features ξ ≡ [ξ1, . . . , ξd] associ-

ated with each tree. In that case, the score can be obtained as

a combination of the score obtained by the tree kernel with

the score obtained by these numerical features. For example,

if the combination is the sum, the score can be computed as

S(Ti) = SµDAG(M,Ti) + SF (MF , ξi),

where MF is the set of feature vectors plus labels corre-

sponding to errors. When using a nonlinear kernel for the

computation of the feature score, a proper treatment is due.

In fact, let consider the generic computation of the score for

the features

SF (ξi) =
∑

(ξ
j
,yj)∈MF

yjK(ξi, ξj)



If d is large, assuming that the computation of the kernel

is O(d), the computational complexity for the score is

O(d|MF |).
If the ξ vectors are sparse, let say that no more that k � d

components are nonzero, then a more efficient computation

can be performed. In fact, nonzero features of ξ vectors can

be organized for fast access by feature id. Assuming that

the probability for a feature to be nonzero is l = k
d

, this

means that each feature will be associated with an inverted

list with expected length equal to l|MF |. Thus, given an

input feature, for each j a match in its inverted list should be

found, which can be done in no less than O(log(l|MF |)) by

exploiting the sorting of the items by vector index. This leads

to a total complexity of O(|MF |k log(l|MF |)). However,

we can do better than this. In fact, we know that all the

items contained into the inverted lists of matching features

are used for computing the score. The only problem is to

recognize for each j which are the features that match the

input. This can be done using the following procedure. We

assume that the inverted lists are sorted by decreasing vector

index. First of all the inverted lists corresponding to matching

input features are recovered and their heads are inserted into

a max heap. Then the maximum value is extracted by the

heap and its successor in the corresponding inverted list is

inserted into the heap. This process is repeated giving origin

to a stream of indexes extracted by the heap where equal

indexes are clustered together, allowing the computation of

the kernel for that index. This procedure has a complexity

that is dominated by the insertion into the heap of all the

items into the matching inverted lists. Since the heap will

never contain more than k items, insertion costs log(k),
while the total number of items is kl|MF |. Thus the total

complexity is O(kl|MF | log(k)), which is better than the

previous one only if l log(k) < log(l|MF |), i.e., kl < l|MF |.
Noticing that l ∈ [0, 1], it is not difficult to realize that

when k � |MF | a significant savings in computation can

be obtained. For example, assuming binary data structures

are used, if |MF | = 214, l = 10−4, and k = 25, we have

l log2(k) = 0.0005 versus log2(l|MF |) = 0.71228762, with

a speedup of more than 1424.

V. A SEMANTIC APPLICATION OF PARSE TREE KERNELS

One of the ultimate goals of Natural Language Processing

is to automatically derive semantic information from texts.

Given the complexity of such task, most of the current

studies focus on shallow approaches to semantic parsing.

Among others, the PropBank project [11] proposes predicate

argument structures to encode shallow semantics from texts.

The basic assumption is that such predicative structures are

strictly connected to the syntax of the textual sentences.

Figure 5 exemplifies such idea by showing the parse tree of

the sentence: "Mary brought a cat to school" along

with the predicate argument annotation proposed by the

PropBank project. Only verbs are considered as predicates

whereas arguments are labeled sequentially from Arg0 to

Arg5 plus ArgMs including several type of adjuncts.

Previous work has shown that the automatic PropBank

argument annotation, i.e. Semantic Role Labeling (SRL),

can be carried out by applying machine learning techniques,

e.g. [7], [18]. These latter represent predicate argument

relationships with vectors of features extracted from the

syntactic parse tree of the target sentence. Such standard

features, firstly proposed in [7], refer to flat information

derived from parse trees, i.e. Phrase Type, Predicate Word,

Head Word, Governing Category, Position and Voice.

For example, Phrase Type is the label of the argument

node, i.e. the node that dominates all and only the argument

words. In Figure 5 the values of such feature are N, NP and

PP for Arg0, Arg1 and ArgM, respectively. The Parse Tree

Path, instead, represents the path in the parse-tree between a

predicate node and one of its argument nodes. It is expressed

as a sequence of nonterminal labels linked by direction

symbols (up or down), e.g. V↑VP↓NP is the path between

the predicate and Arg1.

An alternative representation proposed in [16], is based

on the application of tree kernels to subtrees encoding

the predicate/argument relation. More precisely, each predi-

cate/argument pair is associated with the minimal subtree that

includes the word sequences of them both, hereafter called

PAF. For example, in Figure 5, the substructures inside the

three frames are the semantic/syntactic structures associated

with the three arguments of the verb to bring, i.e. SArg0,

SArg1 and SArgM .

It is worth to note that PAF aims to capture all the

information between a predicate and one of its arguments.

PAF is quite intuitive and, to conceive it, the designer

requires much less linguistic knowledge about semantic roles

than those necessary to manually define effective features.

The main drawback of its use is that important structural

information, i.e. inter-argument dependencies, is neglected.

The large PropBank corpus makes the learning via tree

kernels quite time consuming. Consequently, the algorithms

presented in the previous section are very useful to speed

up the learning/classification processes and make the kernel

based approaches more applicable. The next section empiri-

cally shows the benefit of our DAG-based algorithms.

VI. EXPERIMENTS

These experiments aim to show that our approach based

on DAGs provides two kinds of benefits to the perceptron

algorithms: a much faster computational time and a much

lesser memory requirement.

For such purpose, we measured the computation time and

the memory allocation for both the traditional Perceptron

algorithm and the one based on DAGs. The target learning

tasks were those involved in SRL. This is usually divided

in two classification steps: argument boundary detection and

argument classification. In the former step, all the nodes of

the sentence parse tree are classified in correct or incorrect

boundaries. The correct label means that the leaves (i.e.

words) of the tree rooted in the target node are all and only

those constituting an argument. In the latter step, given a
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correct boundary node (i.e. an argument node), its type, i.e.

Arg0, Arg1,..,Arg5, ArgA and ArgM, is determined.

As a referring dataset, we used PropBank

(www.cis.upenn.edu/∼ace) along with PennTree

bank 2 [15]. This large corpus contains about 53,700

sentences annotated with predicative information.

In our experiments, we concentrated on boundary de-

tection as the number of classifying instances is much

larger. Indeed, they include all parse-tree nodes. For these

experiments, we used the first 7 sections of PennTree bank

for training and Section 24 for testing (in line with many

systems of CoNLL SRL shared task 2005) for a total of

71,523 positive and 921,296 negative examples in training

and 7,705 positive and 108,104 negative examples in testing.

As the DAG performance is affected by node distribution

within trees along with their maximum and average outde-

gree, we have studied such characteristics in our data sets.

Table I reports statistics about the data derived from the

boundary detection dataset. We note that there is a large

number of relatively small trees which however can have

a large out-degree. Globally, the amount of nodes that have

to be processed is very large, thus, the dataset is suitable to

demonstrate the computational efficiency of our approach.

Training Test

Number of trees 992,819 115,809
Total number of nodes 14,365,253 1,686,167

Average number nodes in a tree 14.47 14.56
Average maximum outdegree 2.32 2.33
Max outdegree 15 15

TABLE I

FEATURES OF SYNTACTIC TREES IN THE BOUNDARY DETECTION

DATASET.

The experiments were carried out with our implementation

of the models proposed in sections III and IV. These were

applied to the PAF trees as well as the standard feature

vectors described in Section V.
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A. Results

In these tests the DAG approach was applied to a very

complex task from an efficiency point of view. Indeed, the

number of instances of the boundary dataset was about one

million. Such dataset has been prohibitive for computational

expensive approaches like Support Vector Machines (see

[4]): only using a polynomial kernel on standard features

(in general much faster than tree kernels), they required 10

days to converge. On the contrary, as it can be seen in figure

6 for three different choice of kernels, the execution time

never exceeds 4 hours on a common PC (Intel Core 2 Duo

E6400 2.13GHz), and allowed us to experiment with (a)

different kernel combinations, i.e. a tree kernel on PAF trees

and polynomial kernels on standard features and (b) different

values of λ hyperparameter.

Concerning storage requirements, no more than 450MB of

memory has been allocated by any of our experiment.

Figures 7 and 8 report the plots of the F1-measure of



Polynomial kernel of degree q (POLYq), tree kernel (TK)

and their combination (TK+POLYq) according to different λ

values. We note that:

• POLY, in line with [16] reaches the highest F1, with

degree 3. Also there is a large gap between linear and

a degree larger than 1. This because the combination of

standard features is quite important [16].

• TK shows a much lower F1 than POLYq (for any

degree). This is due to some limits of the used PAF,

i.e. as the boundary of an argument can be associated

with several PAFs, the generalization task of a learning

machine2 increases.

• TK+POLY3 achieves the very high F1 of 84.5 (λ = .7)

which is close to the F1 reached by the most accurate

(among 20 participants) systems in the SRL shared task

of CoNLL 2005. For example, by applying SVMs on the

same dataset (on standard features), we obtained (after

10 days of processing) an F1 of 86.7.

In summary, given the high efficiency of the DAG algo-

rithm, we could apply TK+POLY model to a very large

dataset and correctly parameterize our system whereas the

time required by SVMs (with just a polynomial kernel) is

unaffordable. Moreover, the gap in accuracy between SVMs

and DAGs can be reduced if we re-apply the latter to the

training data. For example, using λ = 0.7 and iterating two

times the DAG-Perceptron algorithm, we obtained an F1 of

85.7, i.e. only 1 percent point less.

VII. CONCLUSIONS

Kernel methods are effective approaches to the modeling

of structured objects in learning algorithms. The major

drawback is their typically high computational complexity.

To alleviate such problem, we have proposed Direct

Acyclic Graphs to reduce the computational burden and

storage requirements by representing common structures and

feature vectors. This paper shows that substantial computa-

tional savings can be obtained for the perceptron algorithm

using tree and polynomial kernels over a quite extensive

dataset made available by the PropBank project.

The experiments on one million of instances show that

our model makes use of kernels for trees practical for real

applications. From the accuracy point of view, the possibility

of using large amount of data allowed us to reach the state-

of-the-art on automatic detection of Semantic Role Labeling

as defined in the CoNLL shared task.

It is important to stress that the basic idea of DAGs

can be exploited in all the learning algorithms where the

decision function is computed as a linear combination of

kernel evaluations, such as perceptron with margin, Support

Vector Machines [6], boosting [21] and Bayes point machines

[9].

2Accuracy similar to the one reached by linear kernel can be obtained by
marking the argument node in the structure.

Moreover, it is possible to improve the basic perceptron

algorithm when multiple trees, fed from several input stream

of examples, are available simultaneously. For this situation,

a simple variant of the basic perceptron which updates the

model in parallel can be applied. Finally, there are ways

to further exploit the shared sub-structures when gathering

testing trees.
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