
A Tree Kernel-based Shallow Semantic Parser

for Thematic Role Extraction

Daniele Pighin1,2 and Alessandro Moschitti1

1 University of Trento, DIT
2 FBK-irst - Trento, Italy

Abstract. We present a simple, two-steps supervised strategy for the
identification and classification of thematic roles in natural language
texts. We employ no external source of information but automatic parse
trees of the input sentences. We use a few attribute-value features and
tree kernel functions applied to specialized structured features. Differ-
ent configurations of our thematic role labeling system took part in 2
tasks of the SemEval 2007 evaluation campaign, namely the closed tasks
on semantic role labeling for the English and the Arabic languages. In
this paper we present and discuss the system configuration that partici-
pated in the English semantic role labeling task and present new results
obtained after the end of the evaluation campaign.

1 Introduction

The availability of large scale data sets of manually annotated predicate argu-
ment structures has recently favored the use of Machine Learning approaches to
the design of automated Semantic Role Labeling (SRL) systems.

Research in this area is largely focused in two directions, namely the decom-
position of the SRL task in a proper set of possibly disjoint problems and the
selection and design of the features that can provide an effective and accurate
model for the above learning problems. Though many different task decompo-
sitions have been attempted with more or less success, it is largely agreed that
full syntactic information about the input free text sentences provides relevant
clues about the position of an argument and the role it plays with respect to the
predicate [1].

In this paper we present a system for the labeling of semantic roles that pro-
duces VerbNet [2] like annotations of free text sentences using only full syntactic
parses of the input sentences. The labeling process is modeled as a cascade of
two distinct classification steps: (1) boundary detection (BD), in which the word
sequences that encode a thematic role for a given predicate are recognized, and
(2) role classification (RC), in which the thematic role label is assigned with
respect to the predicate. In order to be consistent with the underlying linguistic
model, at the end of the process a set of simple heuristics are applied to ensure
that only well formed annotations are output.

We use Support Vector Machines (SVMs) as our learning algorithm, and
combine 2 different views of the incoming syntactic data: a) an explicit repre-
sentation of a few relevant features in the form of attribute-value pairs, evaluated
by a polynomial kernel, and b) structural features derived by applying canonical
transformations to the sentence parse trees, evaluated by a tree kernel function.

All of this aspects will be discussed top-down in the remainder of this paper:
Section 2 describes the architecture of our labeling system; Section 3 discusses
the kernel function that we employ for the learning task; Section 4 discusses the
linear and structural features that we use to represent the classifier examples;
Section 5 describes the experimental setting and reports the accuracy of the
system on the SemEval2007 closed task on semantic role labeling, along with
the evaluation of different system configurations carried out after the end of the
challenge; finally, Section 6 discusses the results that we obtained and presents
our conclusions.

2 System Description

Given a target predicate word in a natural language sentence, a SRL system is
meant to correctly identify all the arguments of the predicate. This problem is
usually divided in two sub-tasks:

– the detection of the boundaries (i. e. the word span) of each argument, and
– the classification of the argument type, e.g. Arg0 or ArgM in PropBank or

Agent and Goal in FrameNet or VerbNet.

The standard approach to learn both the detection and the classification of
predicate arguments is summarized by the following steps:

1. Given a sentence from the training-set, generate a full syntactic parse-tree;
2. let P and A be the set of predicates and the set of parse-tree nodes (i.e. the

potential arguments), respectively;
3. for each pair 〈p, a〉 ∈ P ×A:

– extract the feature representation set, Fp,a;
– if the sub-tree rooted in a covers exactly the words of one argument of

p, put Fp,a in T + (positive examples), otherwise put it in T− (negative
examples).

For instance, in Figure 2.a, for each combination of the predicate approve with
any other tree node a that do not overlap with the predicate, a classifier example
Fapprove,a is generated. If a exactly covers one of the predicate arguments (in this
case: The charter, by the EC Commission or on Sept. 21) it is regarded as a
positive instance, otherwise it will be a negative one, e. g. Fapprove,(NN charter).

The T + and T− sets are used to train the boundary classifier (BC). To train
the role multi-class classifier (RM), T + can be reorganized as positive T +

argi
and

negative T−
argi

examples for each argument i. In this way, an individual One-
vs-All classifier for each argument i can be trained. We adopted this solution,

according to [3], since it is simple and effective. In the classification phase, given
an unseen sentence, all its Fp,a are generated and classified by each individual
role classifier. The role label associated with the maximum among the scores
provided by the individual classifiers is eventually selected.

To make the annotations consistent with the underlying linguistic model, we
employ a few simple heuristics to resolve the overlap situations that may occur,
e. g. both charter and the charter in Figure 2 may be assigned a role:

– if more than two nodes are involved, i. e. a node d and two or more of its
descendants ni are classified as arguments, then assume that d is not an
argument. This choice is justified by previous studies [4] showing that the
accuracy of classification is higher for nodes located lower in the tree;

– if only two nodes are involved, i. e. they dominate each other, then keep the
one with the highest classification score.

More complex, and generally more accurate, solutions can be adopted to im-
prove the accuracy of the final annotation output by a SRL system3. Among
other interesting strategies, [6] used a probabilistic joint evaluation over the
whole predicate argument structure in order to establish a global relation be-
tween the local decisions of the role classifiers; [7] described a method based
on Levenshtein-distance to correct the inconsistencies in the output sequence of
role labels; [8] used a voting mechanism over multiple syntactic views in order
to reduce the effect of parsing errors on the labeling accuracy.

Many supervised learning algorithms have more or less successfully been
employed for SRL. We chose to use Support Vector Machines (SVMs) as our
learning algorithm as they provide both a state-of-the-art learning model (in
terms of accuracy) and the possibility of using kernel functions [9]. The kernels
that we employ are described in the next section, whereas Section 4 presents the
linear and structural features that we use to characterize the learning problem.

3 Kernel Functions for Semantic Role Labeling

In this study we adopted Support Vector Machines (SVMs) to exploit our new
kernel functions. SVMs are learning algorithms which take training examples
labeled with the class information as input and generate classification models.
Each example ei is represented in the feature space as a vector xi ∈ ℜn by means
of a feature function

φ : E → ℜn ,

where E is the set of examples.
The generated model is a hyperplane H(x) = w · x + b = 0 which separates

positive from negative examples, where w ∈ ℜn and b ∈ ℜ are parameters

3 Indeed, previous versions of our SRL system sported a joint-inference model and a
re-ranker mechanism based on tree kernels, as described in [5], which is currently
offline due to changes in the interface of our feature extraction software module.

learned from data by applying the Structural Risk Minimization principle [9].
An example ei is categorized in the target class only if H(xi) ≥ 0.

The kernel trick allows the evaluation of the similarity between example
pairs, K(e1, e2), to be carried out without an explicit representation of the whole
feature space, i.e. K(e1, e2) = φ(e1) · φ(e2) = x1 · x2.

A traditional example is given by the polynomial kernel:

KP (ei, ej) = (c + xi · xj)
d , (1)

where c is a constant and d is the degree of the polynomial. This kernel generates
the space of all conjunctions of feature groups up to d elements.

a) S

NP

NNP

Mary

VP

VBD

bought

NP

D

a

N

cat

b) VP

VBD

bought

NP

D

a

N

cat

NP

D

a

N

cat

NP

NNP

Mary

NNP

Mary

VBD

bought

D

a

N

cat

c) all those in (b) plus:

VP

VBD NP

D

a

N

cat

VP

VBD

bought

NP

VP

VBD

bought

NP

D N

VP

VBD

bought

NP

D

a

N

VP

VBD

bought

NP

D N

cat

. . .

Fig. 1. Fragment space generated by an ST (b) and an SST (c) kernel from an example
sub-tree (a).

A more abstract class of kernel functions evaluate the similarity between two
discrete structures in terms of their overlap, generally measured as a function
of the number of common substructures [10]. The kernels that we consider here
represent trees in terms of their substructures (fragments). The kernel function
detects if a tree sub-part (common to both trees) belongs to the feature space
that we intend to generate. For such purpose, the desired fragments need to
be described. As we consider syntactic parse trees, each node with its children
is associated with a grammar production rule, where the symbol at the left-
hand side corresponds to the parent and the symbols at the right-hand side are
associated with the children. The terminal symbols of the grammar are always
associated with tree leaves.

We define a SubTree (ST) [11] as a tree rooted in any non-terminal node
along with all its descendants. For example, Figure 1 shows the parse tree of
the sentence Mary brought a cat (a) together with its 7 STs (b). A SubSet

Tree (SST) [10] is a more general structure since its leaves can be non-terminal
symbols. Figure 1(c) shows some of the SSTs for the same example sentence.
The SSTs satisfy the constraint that grammatical rules cannot be broken. For
example, [VP [V NP]] is an SST which has two non-terminal symbols, V and NP,
as leaves. On the contrary, [VP [V]] is not an SST as it violates the production
VP→V NP.

The main idea underlying tree kernels is to compute the number of common
substructures between two trees t1 and t2 without explicitly considering the
whole fragment space. Let {f1, f2, ..} = F be the set of fragments and let the
indicator function Ii(n) be equal to 1 if the target fi is rooted at node n and 0
otherwise. A tree kernel function KT (·) over two trees is defined as:

KT (t1, t2) =
∑

n1∈Nt1

∑

n2∈Nt2

∆(n1, n2) (2)

where Nt1 and Nt2 are the sets of nodes of t1 and t2, respectively. The function
∆(·) evaluates the number of common fragments rooted in n1 and n2:

∆(n1, n2) =

|F|
∑

i=1

Ii(n1)Ii(n2) (3)

We can compute ∆ as follows:

1. if the productions at n1 and n2 are different then ∆(n1, n2) = 0;
2. if the productions at n1 and n2 are the same, and n1 and n2 have only leaf

children (i. e. they are pre-terminal symbols) then ∆(n1, n2) = 1;
3. if the productions at n1 and n2 are the same, and n1 and n2 are not pre-

terminals then

∆(n1, n2) =

nc(n1)
∏

j=1

(σ + ∆(cj
n1

, cj
n2

)) (4)

where σ ∈ {0, 1}, nc(n1) is the number of the children of n1 and cj
n is the j-th

child of node n. Note that, since the productions are the same, nc(n1) = nc(n2).
When σ = 0, ∆(n1, n2) is equal to 1 only if ∀j ∆(cj

n1
, cj

n2
) = 1, i. e. all the

productions associated with the children are identical. By recursively applying
this property, it follows that the sub-trees in n1 and n2 are identical. Thus, Eq. 2
evaluates the subtree (ST) kernel. When σ = 1, ∆(n1, n2) evaluates the number
of SSTs common to n1 and n2 as shown in [10].

In our case, each classifier example ei is represented by a set of attribute-value
features Li and a structural feature ti. The similarity between to examples ei

and ej is evaluated by applying a polynomial kernel KP (·) of degree d = 3 to the
attribute-value features and an SST kernel KSST (·) to the structured represen-
tation of the examples. The contribution of each kernel function is individually
normalized and the tree kernel output is weighted by the wk factor, which is set
to 0.3. The resulting kernel function is the following:

K(ei, ej) =
KP (Li,Lj)

‖KP (Lj ,Lj)‖
+ wk ×

KSST (ti, tj)

‖KSST (ti, tj)‖
, (5)

a) S

NP

DT

The

NN

charter

VP

AUX

was

VP

VBN

approved

PP

IN

by

NP

DT

the

NNP

EC

NNP

Commission

PP

IN

on

NP

NNP

Sept.

CD

21

.

.

b) S

NP-B

DT

The

NN

charter

VP

VP

VBN-P

approved

VP

VBN-P

approved

PP-B

IN

by

NP

DT

the

NNP

EC

NNP

Commission

Cause

Experiencer ARGM-TMP

Fig. 2. A sentence parse tree (a) and two example ASTm
1 structures relative to the

predicate approve (b).

where
‖KSST (ti, tj)‖ =

√

KSST (ti, ti) × KSST (tj , tj) ,

‖KP (Lj ,Lj)‖ =
√

KP (Lj ,Lj) × KP (Lj ,Lj) .

4 Features for Semantic Role Labeling

We explicitly represent as attribute-value pairs the following features of each
Fp,a pair:

– Phrase Type, Predicate Word, Head Word, Position and Voice as defined in
[12];

– Partial Path, No Direction Path, Head Word POS, First and Last Word/POS
in Constituent and SubCategorization as proposed in [3];

– Syntactic Frame as designed in [13].

We also employ structured features derived by the full parses in an attempt
to capture relevant aspects that may not be emphasized by the explicit feature
representation.

We indicate with structured features the basic syntactic structures extracted
or derived from the sentence-parse tree by means of some canonical transfor-
mation. [14] and [4] defined several classes of structured features that were suc-
cessfully employed with tree kernels for the different stages of an SRL process.

Set Props T T+ T−

Train 15,838 793,104 45,157 747,947
Dev 1,606 75,302 4,291 71,011

Train - Dev 14,232 717,802 40,866 676,936

Test 3,094 144,965 6,931 138,034

Table 1. Composition of the dataset in terms of: number of annotations (Props);
number of candidate argument nodes (T); positive (T+) and negative (T−) bound-
ary classifier examples. The annotated test set has been released after the end of the
evaluation period.

Figure 2 shows an example of the ASTm
1 structures that we used for both the

boundary detection and the argument classification stages.

5 Experiments

In this section we discuss the setup and the results of the experiments carried
out on the dataset of the SemEval2007 closed task on SRL.

5.1 Setup

The training set comprises 15,8384 training annotations organized on a per-verb
basis. In order to build a development set (Dev), we sampled about one tenth,
i. e. 1,606 annotations, of the original training set. For the final evaluation on the
test set (Test), consisting of 3,094 annotations, we trained our classifiers on the
whole training data. Statistics on the dataset composition are shown in Table 1.

The evaluations were carried out with the SVMLight-TK5 software [15] which
extends the SVMLight6 package [16] with tree kernel functions. We used the
default polynomial kernel (degree=3) for the linear features and a SubSet Tree
(SST) kernel [10] for the comparison of ASTm

1 structured features. The kernels
are normalized and summed by assigning a weight of 0.3 to the TK, as explained
in Section 3.

5.2 SemEval2007 Evaluation

The configuration presented at the SemEval2007 closed task on SRL comprised
50 boundary classifiers (BC), and 619 distinct role classifiers combined into 50
role multi-classifiers (RM) with an One-vs-All strategy, i. e. one BC and a RM
per predicate word. The whole training took about 4 hours on a 64 bits machine
(2.2GHz, 1GB RAM)7.

4 A bunch of unaligned annotations were removed from the dataset.
5
http://ai-nlp.info.uniroma2.it/moschitti/

6
http://svmlight.joachims.org/

7 In order to have a faster development cycle, we limited to 60 thousands the training
examples of the boundary classifier for the verb say. The accuracy on this relation

Task Kernel(s) Precision Recall Fβ=1

BD
poly 94.34% 71.26% 81.19

poly + TK 92.89% 76.09% 83.65

BD + RC
poly 88.72% 68.76% 77.47

poly + TK 86.60% 72.40% 78.86

Table 2. SRL accuracy on the development test for the boundary detection (BD) and
the complete SRL task (BD+RC) using the polynomial kernel alone (poly) or combined
with a tree kernel function (poly + TK).

All the evaluations were carried out using the CoNLL2005 evaluator tool
available at http://www.lsi.upc.es/∼srlconll/soft.html.

Table 2 shows the aggregate results on boundary detection (BD) and the
complete SRL task (BD+RC) on the development set using the polynomial ker-
nel alone (poly) or in conjunction with the tree kernel and structured features
(poly+TK). For both tasks, tree kernel functions do trigger automatic feature
selection and improve the polynomial kernel by 2.46 and 1.39 F1 points, respec-
tively.

The SRL accuracy for each of the 47 distinct role labels is shown in Table
3 under Column Split. Column #TI lists the number of instances of each role
in the test set. Many roles have very few positive examples both in the training
and the test sets, and therefore have little or no impact on the overall accuracy
which is dominated by the few roles which are very frequent, such as Theme,
Agent, Topic and ARGM-TMP which account for almost 80% of all the test
roles.

Table 4 shows the results of the two systems that participated in the SemEval
2007 closed task on English SRL. The winning system (labeled UBC-UPC, [17])
uses a sequential approach to role labeling and unlike our own exploits a) verb-
sense information to restrict the possibile sequences of output roles, and b)
WordNet-based selectional preferences on the potential arguments. The result is
a much more accurate SRL system, i. e. 83.66 vs 75.44 F1 points in the official
evaluation.

5.3 Further Evaluation

After the official evaluation was over we run another series of experiments in
order to evaluate the effect of different configurations of the SRL system. We
did not change any parameter in the setup of the SVMs but used the poly+TK
kernel to compare different strategies for training the BC and the RM. These
strategies are:

– training both the BC and the RM by splitting the data on a per-predicate
basis, i. e. the configuration that participated in the SemEval evaluation;

is still very high, as we measured an overall F1 of 87.18 on the development set and
of 85.13 on the test set

Split Monolithic

Role #TI Precision Recall Fβ=1 Precision Recall Fβ=1

Overall 6931 81.58% 70.16% 75.44 81.25% 74.42% 77.69
ARG2 4 100.00% 25.00% 40.00 50.00% 25.00% 33.33
ARG3 17 61.11% 64.71% 62.86 52.63% 58.82% 55.56
ARG4 4 0.00% 0.00% 0.00 0.00% 0.00% 0.00
ARGM-ADV 188 55.14% 31.38% 40.00 52.45% 39.89% 45.32
ARGM-CAU 13 50.00% 23.08% 31.58 66.67% 30.77% 42.11
ARGM-DIR 4 100.00% 25.00% 40.00 100.00% 25.00% 40.00
ARGM-EXT 3 0.00% 0.00% 0.00 0.00% 0.00% 0.00
ARGM-LOC 151 51.66% 51.66% 51.66 59.12% 62.25% 60.65
ARGM-MNR 85 41.94% 15.29% 22.41 46.81% 25.88% 33.33
ARGM-PNC 28 38.46% 17.86% 24.39 53.33% 28.57% 37.21
ARGM-PRD 9 83.33% 55.56% 66.67 83.33% 55.56% 66.67
ARGM-REC 1 0.00% 0.00% 0.00 0.00% 0.00% 0.00
ARGM-TMP 386 55.65% 35.75% 43.53 64.79% 59.59% 62.08
Actor1 12 85.71% 50.00% 63.16 90.91% 83.33% 86.96
Actor2 1 100.00% 100.00% 100.00 100.00% 100.00% 100.00
Agent 2551 91.38% 77.34% 83.78 90.42% 81.81% 85.90
Asset 21 42.42% 66.67% 51.85 48.39% 71.43% 57.69
Attribute 17 60.00% 70.59% 64.86 63.16% 70.59% 66.67
Beneficiary 24 65.00% 54.17% 59.09 66.67% 50.00% 57.14
Cause 48 75.56% 70.83% 73.12 71.11% 66.67% 68.82
Experiencer 132 86.49% 72.73% 79.01 83.33% 68.18% 75.00
Location 12 83.33% 41.67% 55.56 80.00% 33.33% 47.06
Material 7 100.00% 14.29% 25.00 100.00% 28.57% 44.44
Patient 37 76.67% 62.16% 68.66 88.89% 64.86% 75.00
Patient1 20 72.73% 40.00% 51.61 78.57% 55.00% 64.71
Predicate 181 63.75% 56.35% 59.82 64.12% 60.22% 62.11
Product 106 70.79% 59.43% 64.62 69.79% 63.21% 66.34
R-ARGM-LOC 2 0.00% 0.00% 0.00 0.00% 0.00% 0.00
R-ARGM-MNR 2 0.00% 0.00% 0.00 0.00% 0.00% 0.00
R-ARGM-TMP 4 0.00% 0.00% 0.00 0.00% 0.00% 0.00
R-Agent 74 70.15% 63.51% 66.67 65.93% 81.08% 72.73
R-Experiencer 5 100.00% 20.00% 33.33 0.00% 0.00% 0.00
R-Patient 2 0.00% 0.00% 0.00 0.00% 0.00% 0.00
R-Predicate 1 0.00% 0.00% 0.00 0.00% 0.00% 0.00
R-Product 2 0.00% 0.00% 0.00 0.00% 0.00% 0.00
R-Recipient 8 100.00% 87.50% 93.33 100.00% 87.50% 93.33
R-Theme 7 75.00% 42.86% 54.55 42.86% 42.86% 42.86
R-Theme1 7 100.00% 85.71% 92.31 100.00% 85.71% 92.31
R-Theme2 1 50.00% 100.00% 66.67 0.00% 0.00% 0.00
R-Topic 14 66.67% 42.86% 52.17 70.00% 50.00% 58.33
Recipient 48 75.51% 77.08% 76.29 76.00% 79.17% 77.55
Source 25 65.22% 60.00% 62.50 62.50% 60.00% 61.22
Stimulus 21 33.33% 19.05% 24.24 46.67% 33.33% 38.89
Theme 650 79.22% 68.62% 73.54 79.04% 70.77% 74.68
Theme1 69 77.42% 69.57% 73.28 81.36% 69.57% 75.00
Theme2 60 74.55% 68.33% 71.30 76.47% 65.00% 70.27
Topic 1867 84.26% 82.27% 83.25 84.12% 82.59% 83.35

Table 3. Evaluation of the semantic role labeling accuracy on the SemEval2007 - Task
17 test set. Column #TI reports the number of instances of each role label in the test
set. The results under Column Split are relative to the configuration that participated
in the official evaluation (one BC and one RM per predicate word); the results under
Column Monolithic are those of the most accurate configuration that we tried (one
BC, one RM).

– training a monolithic BC and an RM for each predicate, i.e. BC is trained
with the data of all predicates;

– training a split BC and a monolithic RM, i.e. the latter classifier is trained
putting together all different predicates. This means that there is only one

Rank Team P R Fβ=1

1 UBC-UPC 85.31% 82.08% 83.66
2 RTV 81.58% 70.16% 75.44

Table 4. Results of the two teams that took part in the closed task on English SRL.
Our system (labeled RTV) ranked second out of two.

Task
Classifier

Precision Recall Fβ=1bnd role

BD
s - 87.09% 72.96% 79.40
m - 87.42% 77.36% 82.09

BD + RC

s s 81.58% 70.16% 75.44
s m 81.72% 70.57% 75.74
m s 81.05% 73.64% 77.17
m m 81.25% 74.42% 77.69

Table 5. Accuracy comparison between the split (s) and the monolithic (m) boundary
(bnd) and role (role) classifiers on the boundary detection (BD) and the complete
SRL task (BD + RC) on the test set. Of course, no role classifier is employed for the
boundary detection task.

classifier for each role type. For example, the Agent role classifier will be
unique for all predicates.

– Using both a monolithic BC and a monolithic RM.

The whole training set was used to learn the models and the evaluation was
carried out on the test set. Training the monolithic BC and role classifiers took
almost one week on the same hardware platform. Table 5 shows the results of
this comparison with respect to the boundary detection (BD) and the complete
SRL task. The flags “s” and “m” in column 2 and 3 indicate the strategy (“split”
or “monolithic”) employed to train the BC and the RM, respectively.

For the boundary detection task, the data show that the accuracy of the
monolithic approach is much higher than the split one, i. e. 82.09 vs 79.40. While
the precision is almost the same, the monolithic BC improves by almost 4.5
percent points, i. e. 77.36% vs 72.96%, the recall over the split configuration.
A similar trend can be observed on the complete SRL task. Here the overall
accuracy improves by 2.25 F1 points if an all-monolithic configuration is used
instead of an all-split configuration. And also in this case, while there is little
or no difference in terms of precision (the precision values measured for the four
combinations range from 81.05% to 81.72%), the recall of the RM improves by
3-4 percent points when a monolithic boundary classifier is used, i. e. 73.64% vs
70.16% and 74.42% vs 70.57% for the split and the monolithic RM, respectively.
The right side of Table 3 (Column Monolithic) details the accuracy of the all-
monolithic configuration on the classification of each thematic role label from
the SemEval test set.

6 Final Remarks

In this paper we presented a system that employs tree kernels and a basic set of
flat features for the classification of thematic roles.

The basic approach that we adopted is meant to be as general and fast as
possible. The issue of generality is addressed by training the boundary and role
classifiers on a per-predicate basis and by employing tree kernels and structured
features in the learning algorithm. The resulting architecture can also be used
to learn the classification of roles of non-verbal predicates since the automatic
feature selection triggered by the tree kernel compensate for the lack of ad-hoc,
well established explicit features for some classes of non-verbal predicates, such
as adverbial or prepositional ones.

Splitting the learning problem also has the clear advantage of noticeably
improving the efficiency of the classifiers, thus reducing training and classification
time. On the other hand, this split results in some classifiers having too few
training instances and therefore being very inaccurate. This is especially true
for the boundary classifiers, which conversely need to be very accurate in order
to positively support the following stages of the SRL process. The solution of
a monolithic boundary classifier that we previously employed [4] is noticeably
more accurate though much less efficient, especially for training.

Indeed, after the SemEval2007 evaluation period was over, we ran another
series of experiments comparing the split and the monolithic approaches both
for boundary detection and the complete SRL task. The results show that the
monolithic approach always outperforms the split one, especially for cases like
this in which the training instances of some split may be too few and too sparse
to generalize properly. In particular, the monolithic boundary classifier grants a
noticeable improvement in accuracy, both for the boundary detection and the
complete labeling task. Nevertheless, training and classification time with the
split configuration is much lower. This issue should be taken into account when
we need to: (a) carry out an extensive experimentation with different feature sets;
(b) design time-constrained applications, e. g. on-line services; or (c) annotate
very large datasets.

Although it was provided as part of both the training and test data, we chose
not to use the verb sense information. This choice is motivated by our intention
to depend on as less external resources as possible in order to be able to port our
SRL system to other linguistic models and languages, for which such resources
may not exist. Still, identifying the predicate sense is a key issue especially for
role classification, as the argument structure of a predicate is largely determined
by its sense. Indeed, the results of the UBC-UPC system clearly show that
semantic information can boost the accuracy of SRL, and that it should be
employed when dealing with languages, domains or tasks for which it is available
and dependable. In the near feature we plan to use larger structured features,
i. e. spanning all the potential arguments of a predicate, to improve the accuracy
of our role classifiers. We also plan to reintroduce the joint-model evaluation and
the TK-based re-ranking mechanism that we presented in [5], which is currently
offline due to changes in our feature extraction software component.

References

1. Carreras, X., Màrquez, L.: Introduction to the CoNLL-2005 Shared Task: Semantic
Role Labeling. In: Proceedings of CoNLL-2005. (2005)

2. Kipper, K., Dang, H.T., Palmer, M.: Class-based construction of a verb lexicon.
In: Proceedings of AAAI-2000 Seventeenth National Conference on Artificial In-
telligence, Austin, TX. (2000)

3. Pradhan, S., Hacioglu, K., Krugler, V., Ward, W., Martin, J.H., Jurafsky, D.:
Support vector learning for semantic argument classification. to appear in Machine
Learning Journal (2005)

4. Moschitti, A., Pighin, D., Basili, R.: Tree kernel engineering in semantic role label-
ing systems. In: Proceedings of the Workshop on Learning Structured Information
in Natural Language Applications, EACL 2006, Trento, Italy, European Chapter
of the Association for Computational Linguistics (2006) 49–56

5. Moschitti, A., Pighin, D., Basili, R.: Tree kernel engineering for proposition rerank-
ing. In: Proceedings of the International Workshop on Mining and Learning with
Graphs, ECML/PKDD 2006. (2006)

6. Toutanova, K., Haghighi, A., Manning, C.: Joint learning improves semantic role
labeling. In: Proceedings of the 43rd Annual Meeting of the Association for Com-
putational Linguistics (ACL’05), Ann Arbor, Michigan, Association for Computa-
tional Linguistics (2005) 589–596

7. Sang, E.T.K., Canisius, S., van den Bosch, A., Bogers, T.: Applying spelling error
correction techniques for improving semantic role labelling. In: In Proceedings of
the Ninth Conference on Natural Language Learning, CoNLL-2005, Ann Arbor,
MI (2005)

8. Punyakanok, V., Koomen, P., Roth, D., Yih, W.t.: Generalized inference with
multiple semantic role labeling systems. In: Proceedings of the Ninth Conference on
Computational Natural Language Learning (CoNLL-2005), Ann Arbor, Michigan,
Association for Computational Linguistics (2005) 181–184

9. Vapnik, V.N.: Statistical Learning Theory. John Wiley and Sons (1998)
10. Collins, M., Duffy, N.: New ranking algorithms for parsing and tagging: Kernels

over discrete structures, and the voted perceptron. In: ACL02. (2002)
11. Vishwanathan, S., Smola, A.: Fast kernels on strings and trees. In: Proceedings of

Neural Information Processing Systems. (2002)
12. Gildea, D., Jurasfky, D.: Automatic labeling of semantic roles. Computational

Linguistic 28(3) (2002) 496–530
13. Xue, N., Palmer, M.: Calibrating features for semantic role labeling. In: Proceed-

ings of EMNLP 2004, Barcelona, Spain (2004) 88–94
14. Moschitti, A., Pighin, D., Basili, R.: Semantic role labeling via tree kernel joint

inference. In: Proceedings of the Tenth Conference on Computational Natural
Language Learning, CoNLL-X. (2006)

15. Moschitti, A.: A study on convolution kernel for shallow semantic parsing. In:
proceedings of ACL-2004, Barcelona, Spain (2004)

16. Joachims, T.: Making large-scale SVM learning practical. In Schölkopf, B., Burges,
C., Smola, A., eds.: Advances in Kernel Methods - Support Vector Learning. (1999)

17. Zapirain, B., Agirre, E., Márquez, L.: UBC-UPC: Sequential SRL Using Selectional
Preferences. An approach with Maximum Entropy Markov Models. In: Proceedings
of the Fourth International Workshop on Semantic Evaluations (SemEval 2007),
Prague, Czech Republic, Association for Computational Linguistics (2007)

