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Abstract. Improving accuracy in Information Retrieval tasks via se-
mantic information is a complex problem characterized by three main
aspects: the document representation model, the similarity estimation
metric and the inductive algorithm. In this paper an original kernel func-
tion sensitive to external semantic knowledge is defined as a document
similarity model. This semantic kernel was tested over a text categoriza-
tion task, under critical learning conditions (i.e. poor training data). The
results of cross-validation experiments suggest that the proposed kernel
function can be used as a general model of document similarity for IR
tasks.

1 Introduction

Machine learning approaches to specific Information Retrieval (IR) tasks (e.g.
ad-hoc document retrieval, text classification, text clustering or question answer-
ing) are characterized by three main design choices: a document representation
model, a similarity estimation metric and an inductive algorithm that derives
the decision function (e.g. category membership).

First, the feature-based representations are modeled as bag of words made
by the terms (or lexical tokens) as they appear in the source documents. Data
sparseness usually affects this representation as no matching is possible when
semantically related but not identical tokens are used. This is particularly true
when only small training data sets are available. Attempts to overcome this lim-
itation have inspired several research lines that try to extend the bag of word
representation with more expressive information: term clusters [1], query expan-
sion via statistical corpus-driven (e.g. [2]) or thesauri-driven term expansion (e.g.
[3]).

Second, vector space models make use of document similarity metrics [4]
between information units (e.g. documents and queries) by mapping the latter
in feature vectors whose components are the weights associated with features.
The cosine similarity between normalized vectors is the most widely adopted
model.

Third, machine learning (ML) algorithms, e.g. K-Nearest Neighbor [5] and
Support Vector Machines [6], are widely used in supervised settings for text
categorization, filtering or in user-relevance feedback.



Any ML model for IR should thus benefit from all the three design choices.
Promising methods for one of the above choices are not sufficient alone to im-
prove the overall accuracy, when not adequately modeled along the other two
problem dimensions. For example, semantic information about lexical tokens is
expected to improve the similarity estimation as wider (e.g. by using term clus-
ters) or more precise (e.g. by using sense disambiguated words) feature matching
is supported. However, every large scale evaluation in IR (ad-hoc retrieval, e.g.
[7], or text categorization, e.g. [8]) has shown that this extended information
provides poor or no benefit at all (see [9] for a more recent and extensive inves-
tigation).

The main problem of term cluster based representations seems the unclear
nature of the relationship between the word level and the cluster level matching.
Even if (semantic) clusters tend to improve the Recall, lexical tokens are, on a
large scale, more accurate (e.g. [10]). When term clusters and simple words are
combined, the mixed statistical distributions of individual tokens and sets may
be inconsistent with the original ones.

In [3, 11] term clusters are obtained through the synonymy information deriv-
able from WordNet [12]. The empirical evidence is that the misleading informa-
tion due to the choice of wrong (local) senses causes the overall accuracy to
decrease. Word sense disambiguation (WSD) was thus applied beforehand by
indexing document by means of disambiguated senses, i.e. synset codes [11, 13,
3, 14, 10]. However, even the state-of-art methods for WSD do not improve ac-
curacy because of the inherent noise introduced by disambiguation mistakes.

Sense disambiguated corpora have been also used to study the relationship
between sense and topical information (e.g. IRSemcor, [15]). These benchmarks
suggest that there is no systematic correlation between semantic phenomena
(e.g. regular polisemy) and topical relatedness, as different domains (or queries)
are sensitive to different forms of semantic similarity. Word semantic similarity
cannot be directly adopted as a general criteria for computing document (i.e.
topical) similarity. Again, extended document representations are more danger-
ous than beneficial if it is not adequately modeled in the resulting metric space.
The semantic expansion of features seems to require a corresponding careful
adaptation of both the document similarity model and the adopted learning
paradigm.

In this paper, a model for document similarity based on the similarity among
words in WN is defined and its application to a supervised text classification
task is used for empirical assessment. The WN based word similarity provides
semantic expansions of lexical tokens traditionally used as features for a docu-
ment (Section 2). A corresponding novel vector space model is then proposed
where features are pairs of similar words (Section 3). Intuitively, every document
d is represented through the set of all pairs < t, t′ > originating by terms t ∈ d
and some words t′ enough similar to t. In this space the same pairs found in
different documents contribute to their similarity, even if originating tokens are
different. No sense is a priori pruned from a document representation but sense
matching is triggered only when document matching is carried out.



Such space may be composed by O(|V |2) dimensions, where V is the corpus
vocabulary. If we consider only the WN nouns, the space may contain about 1010

features. This critical complexity impacts on the learning algorithm. However,
kernel methods can be applied as they can represent feature spaces implicitly.
Among kernel-based learners, Support Vector Machines (SVMs) [16] have shown
to achieve high accuracy by dealing effectively with many irrelevant features.
Here, the selection of the suitable pairs is left to the SVM learning. Therefore,
no sense disambiguation is imposed a priori, but sense selection is carried out
on the fly. The overall model is thus distinct from most of the previous work in
language-oriented IR.

The improvements in the overall accuracy observed over a TC task (Section
4) make this model a promising document similarity model for general IR tasks:
unlike previous attempts, it makes sense of the adoption of semantic external
resources (i.e. WN) in IR.

2 A semantic similarity measure

Semantic generalizations overcome data sparseness problems in IR as contribu-
tions from different but semantically similar words are still available.

Methods for corpus-driven induction of semantically inspired word classes
have been widely used on language modeling and lexical acquisition tasks (e.g.
[17]). The main resource employed in most works is WordNet [12]. The WordNet
noun hierarchy represents lexicalized concepts (or senses) organized according
to an ”is-a-kind-of ” relation. A concept s, labeled with words w used to denote
it, is thus called a synset, syn(s). Words w are synonyms under the specific
dimension captured by s and every synset s is a (lexical) sense for all the members
w ∈ syn(s).

The noun hierarchy is a direct acyclic graph1. The direct isa relation defined
by edges in the graph can be extended via a transitive closure to determine the
overall isa relation between pairs of synsets. In line with [17] we denote by s̄
the set of nodes in the hierarchy dominated by s, i.e. {c|c isa s}. By definition
∀s ∈ s̄.

The automatic usage of WordNet for NLP and IR tasks has proved to be very
complex. First, how the topological distance between senses is related to their
corresponding conceptual distance is unclear. The pervasive lexical ambiguity is
also problematic as it impacts on the measure of conceptual distances between
word pairs. Moreover, the approximation of concepts by means of their shared
generalizations in the hierarchy implies a conceptual loss that impacts on the
target IR (or NLP) tasks. Similar words play different roles in IR tasks, so that
equivalence cannot be imposed in general. This depends on the lack of semantic
properties needed to select the word topical roles. It is thus difficult to decide
the degree of generalization at which the conflation of senses into single features
can be effective for IR. Attempts to automatically determine suitable levels (as
1 As only the 1% of its nodes own more than one parent in the graph, most of the

techniques assume the hierarchy to be a tree, and treat the few exceptions heuristi-
cally.



’cuts’ in the hierarchy) has been proposed in [18] with justifications derived from
corpus statistics. For several tasks (e.g. in TC) this is unsatisfactory: different
contexts (e.g. documents) may require different generalizations of the same word
as they independently impact on the suitable document similarity. This is one
of the limitations of corpus-driven metrics, like the one proposed by [19].

A flexible notion of semantic similarity is the Conceptual Density (CD) mea-
sure, early introduced in [20]. It depends on the generalizations of word senses
not referring to any fixed level of the hierarchy. The measure used in this paper
corresponds to the CD variant defined in [21], applied to semantic tagging and
lexical alignment for ontology engineering. CD defines a distance between lexi-
calized concepts according to the topological structure of WordNet and can be
seemingly applied to two or more words.

Conceptual Density (CD) makes a guess about the proximity of senses, s1

and s2, of two words u1 and u2, according to the information expressed by the
(minimal, i.e. maximally dense) subhierarchy, s̄, that includes them. Let Si be
the set of generalizations for at least one sense si for the word ui, i.e. {s|si ∈ s̄}.
Given two words u1 and u2, their CD is formally defined as:

CD(u1, u2) =





0 iff S1 ∩ S2 = ∅
maxs∈S1∩S2

∑h
i=0 µ(s̄)i

|s̄| otherwise
(1)

where:
– S1∩S2 is the set of WN shared generalizations (i.e. the common hypernyms)

for u1 and u2

– µ(s̄) is the average number of children per node (i.e. the branching factor)
in the actual sub-hierarchy s̄. µ(s̄) depends on WordNet and in some cases
its value can approach 1.

– |s̄| is the number of nodes in the sub-hierarchy s̄. This value is statically
estimated from WN and it is a negative bias for higher level generalizations
(i.e. larger s̄).

– h is the depth of the ideal WN subtree able to represent the lexical senses
s1 and s2 of the two words. This value is actually estimated by:

h =
{ blogµ(s̄)2c iff µ(s̄) 6= 1

2 otherwise
(2)

where h expresses, given the average branching factor µ(s̄) at s̄, the mini-
mal number of levels needed to have s1, s2 represented in the leaves. Eq. 2
prevents the logarithm to assume an infinite value in cases µ(s) is exactly 1.

Conceptual density models the semantic distance as the density of the most
dense generalization s̄ such that s ∈ S1 ∩ S2. The density of s̄, is the ratio
between the number of its useful nodes and |s̄|. Useful nodes are those referring
to senses of the involved words, i.e. s1 and s2. The density accounts for the
branching factor local to s̄: the higher is µ(s̄), the lower is the hierarchy height
(h) sufficient to represent lexical senses (s1 and s2) with the highest density. If u1

and u2 are synonyms, the similarity measure gives 1, i.e. the highest similarity.
Notice that for each pair, CD(u1, u2) determines the similarity according to the



closest lexical senses, s1, s2 ∈ s̄: the remaining senses of u1 and u2 are irrelevant,
with a resulting semantic disambiguation side effect. It must be noticed that Eq.
1 is the binary version of the general model defined in [21].

3 A WordNet Kernel for document similarity
Term similarity is used in the design of the document similarity which is the core
function of most learning algorithms for TC. Document similarity models based
on string matching do not support functions much different from the (inner)
products between weights (of matching terms). The term similarity proposed
in Eq. 1 is defined for all term pairs of a target vocabulary and has two main
advantages: (1) the relatedness of each term occurring in the first document can
be computed against all terms in the second document, i.e. all different pairs of
similar (not just identical) tokens can contribute and (2) if we use all term pair
contributions in the document similarity we obtain a measure consistent with
the term probability distributions, i.e. the sum of all term contributions does
not penalize or emphasize arbitrarily any subset of terms.

In order to model all pair contributions, we will still define a document simi-
larity function as an inner product but in a new vector space where, intuitively,
the dimensions are all possible pairs in the initial vocabulary and the weights
of such components depend on the term similarity function. The next section
presents more formally the above idea.

3.1 A semantic vector space
Given two documents d1 and d2 ∈ D (the document-set) we define their similarity
as:

K(d1, d2) =
∑

w1∈d1,w2∈d2

(λ1λ2)× σ(w1, w2) (3)

where λ1 and λ2 are the weights of the words (features) w1 and w2 in the
documents d1 and d2, respectively and σ is a term similarity function, e.g. the
conceptual density defined in Section 2.

To prove that Eq. 3 is a valid kernel2 is enough to show that it is a specializa-
tion of the general definition of convolution kernels formalized in [23]. Hereafter,
we report such definition: let X, X1, .., Xm be separable metric spaces, x ∈ X a
structure and x = x1, ..., xm its parts, where xi ∈ Xi∀i = 1, .., m. Let R be a
relation on the set X × X1 × .. × Xm such that R(x, x) is ”true” if x are the
parts of x. We indicate with R−1(x) the set {x : R(x, x)}. Given two objects x
and y ∈ X their similarity K(x, y) is defined as:

K(x, y) =
∑

x∈R−1(x)

∑

y∈R−1(y)

m∏

i=1

Ki(xi, yi) (4)

2 An alternative way to prove the validity of the Mercer’s conditions was shown in [22].
It is enough to observe that the kernel K(d1, d2) can be written as λ1W ·W ′λ2, where
λ1 and λ2 are the vectors of weights associated with d1 and d2, and W and W ′ are
the matrix and its transposed of the WordNet term similarities. Clearly, P = W ·W ′

is positive semi-definite, thus K(d1, d2) = λ1Pλ2 satisfies the Mercer’s conditions.
Note that this proof does not show that our kernel is a convolution kernel.



If we consider X as the document set (i.e. D = X), m = 1 and X1 = V
(i.e. the vocabulary of our target document corpus) we derive that: x = d (i.e. a
document), x = x1 = w ∈ V (i.e. a word which is a part of the document d) and
R−1(d) is the set of words in the document d. As

∏m
i=1 Ki(xi, yi) = K1(x1, y1),

we can define K1(x1, y1) = K(w1, w2) = (λ1λ2) × σ(w1, w2) to obtain exactly
the Eq. 3.

The above equation can be used in the learning algorithm of support vector
machines as illustrated by the next section.

3.2 Support Vector Machines and Kernel methods

Given the vector space in Rη and a set of positive and negative points, SVMs
classify vectors according to a separating hyperplane, H(x) = ω · x + b = 0,
where x and ω ∈ Rη and b ∈ R are learned by applying the Structural Risk
Minimization principle [16]. From the kernel theory we have that:

H(x) =
( ∑

h=1..l

αhxh

)
· x + b =

∑

h=1..l

αhxh · x + b =

=
∑

h=1..l

αhφ(dh) · φ(d) + b. (5)

where, d is a classifying document and dh are all the l training instances, pro-
jected in x and xh respectively. The product K(d, dh) =<φ(d) · φ(dh)> is the
Semantic WN-based Kernel (SK) function associated with the mapping φ.

Eq. 5 shows that to evaluate the separating hyperplane in Rη we do not need
to evaluate the entire vector xh or x. Actually, we do not know even the mapping
φ and the number of dimensions, η. As it is sufficient to compute K(d, dh), we
can carry out the learning with Eq. 3 in the Rn, avoiding to use the explicit
representation in the Rη space. The real advantage of the Eq. 3 is that we can
consider only the word pairs associated with non-zero weight, i.e. we can use a
sparse vector computation. Additionally, to have a uniform score across different
document size, the kernel function can be normalized as follows:

SK ′(d1, d2) =
SK(d1, d2)√

SK(d1, d1) · SK(d2, d2)
(6)

It should be noted that, the sparse evaluation also has a quadratic time com-
plexity which is much less efficient than the linear complexity of the traditional
document similarity. This, prevents the use of large document sets in the ex-
periments. Moreover, as we claim that the general prior knowledge provided by
WordNet can be effective only in poor training data conditions, we carried out
cross-validation experiments on small subsets of the well known TC corpus 20
NewsGroups (20NG). It is available at www.ai.mit.edu/ people/jrennie/20Newsgroups/
and contains a general terminology which is mostly covered by in WN.



4 Experiments

The use of WordNet (WN) in the term similarity function introduces a prior
knowledge whose impact on the Semantic Kernel (SK) should be assessed ex-
perimentally. The main goal is to compare the traditional Vector Space Model
kernel against SK, both within the Support Vector learning algorithm.

The high complexity of the SK is due to the large dimension of the similarity
matrix, i.e. in principle any pair of WN words have a non null similarity score.
However, it has to be evaluated only once. Moreover, we are not interested to
large collections of training documents as simple bag-of-words models are in
general very effective [9], i.e. they seems to model well the document similarity
needed by the learning algorithm. For any test document, in fact, a set of support
vectors can be found able to suggest similarity according to a simple string
matching model. In other words, training documents are available including a
large number of terms found in the target test document. We selected small
subsets from the 20NewGroups collection, instead, and, in order to simulate
critical learning conditions, experiments were run on training sets of increasing
size.

4.1 Experimental set-up
In order to get statistically significant results, 10 different samples of 40 docu-
ments were randomly extracted, from 8 out of the 20 categories of the Usenet
newsgroups collection. The training was carried out over the 10 distinct sam-
ples. For each learning phase, one sample was used as a validation set and the
remaining 8 as test-set. This means that we run 80 different experiments for
each model.

The classifier runs were carried out by using the SVM-light software [6] (avail-
able at svmlight.joachims.org) with the default linear kernel on the token space
adopted as the baseline evaluations. The semantic kernel SK was implemented
inside SVM-light.

The SK kernel (in Eq. 3) was applied with σ(·, ·) = CD(·, ·) (Eq. 1), i.e. it
is sensitive only to noun information. Accordingly, part of speech tagging was
applied. However, verbs, adjectives and numerical features were used in all the
experiments: in the space of lexical pairs, they have a null similarity with respect
to any other word.

The classification performances were evaluated using the f1 measure3 for
single arguments and the MicroAverage for the final classifier pool [24]. The
performance are expressed as the mean and the standard deviation over 80 eval-
uations.

Given the small number of documents careful SVM parameterization was
applied. Preliminary investigation suggested that the trade-off (between the
training-set error and margin) parameter, (i.e. c option in SVM-light) optimizes
the f1 measure for values in the range [0.02,0.32]4. We noted also that the cost-
factor parameter (i.e. j option) is not critical, i.e. a value of 10 always optimizes
3 f1 assigns equal importance to Precision P and Recall R, i.e. f1 = 2P ·R

P+R
.

4 We used all the values from 0.02 to 0.32 with step 0.02.



the accuracy. Finally, feature selection techniques and weighting schemes were
not applied in our experiments, as they cannot be accurately estimated from the
small training data available.

4.2 Cross validation results
The SK (Eq. 3) was compared with the linear kernel which obtained the best f1

measure in [6]. Table 1 reports the first comparative results for three categories
(about 15 training documents each). Global results were obtained by averaging
over 80 runs of the same size. The Mean and the Std. Dev. of f1 are reported in
Column 2 (for linear kernel SVMs), Column 3 (SK as in Eq. 3 without applying
POS information, i.e. no noun selection applied) and Column 4 (SK with the
use of POS information). The last row shows the Microaverage performance for
the above three models.

Category Bow SK SK-POS

Atheism 59.6±11.2 63.7±10.7 63.0±9.6
Talk.Relig. 63.5±10.6 66.0±7.8 64.9±8.5
Comp.Graph. 85.3±8.3 86.7±7.4 85.7±9.8

MicroAvg. f1 68.6±5.0 72.2±5.4 71.4±5.5

Table 1. SVM performance using the linear and the Semantic Kernel over 3 categories
of 20NewsGroups with 40 documents of training data.

In order to asses these findings we repeated the evaluation over 8 20New-
Groups categories (about 5 documents each). The results are reported in Table
2.

Category bow SK SK-POS

Atheism 29.5±19.8 32.0±16.3 25.2±17.2
Comp.Graph 39.2±20.7 39.3±20.8 29.3±21.8
Misc.Forsale 61.3±17.7 51.3±18.7 49.5±20.4
Autos 26.2±22.7 26.0±20.6 33.5±26.8
Sport.Baseb. 32.7±20.1 36.9±22.5 41.8±19.2
Sci.Med 26.1±17.2 18.5±17.4 16.6±17.2
Talk.Relig. 23.5±11.6 28.4±19.0 27.6±17.0
Talk.Polit. 28.3±17.5 30.7±15.5 30.3±14.3

MicroAvg. f1 31.5±4.8 34.3±5.8 33.5±6.4

Table 2. Performance of the linear and Semantic Kernel with 40 training documents
over 8 categories of 20NewsGroups collection.

All the results confirm that SK outperforms the best bow linear kernel of
about 4% as in critical learning conditions the semantic contribution of the SK
recovers with useful information. In particular, during the similarity estimation,
a word in a document activates 60.05 pairs (i.e. the other words in the matching
document), on average. This is particularly useful to increase the amount of



information available to the SVM. Noise due to semantic ambiguity seems not
harmful to the SVM learner.

First, only the useful information seems to be made available by the training
examples: similar words according to the correct senses appear in the positive
examples so that only the useful pairs are amplified. Moreover, noisy informa-
tion seems to be tolerated by the robustness of the learning SVM algorithm.
Irrelevant pairs (senses emerging by mistakes) have a smoother distribution and
are neglected by the SVM algorithm.

Second, the Standard Deviations tend to assume high values. However, given
the high number of samples the results are statistically reliable. To verify such
hypothesis, we carried out the Normal Distribution confidence test on the 80
samples. The stochastic variable observed in each sample was the differences
between the Microaverage of SK and bow models. The result shows that SK
reaches higher Microaverage than the baseline at 99% of confidence level.

Third, a study on the impact of training data set size on the learning accuracy
has been carried out for the three above models: bag-of-words (bow), SK and
SK-POS. Figure 1 shows the derived leaning curves over training data set of
increasing size (5,10 and 15 documents for each category).
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Fig. 1. MicroAverage f1 of SVMs using bow, SK and SK-POS kernels over the 8
categories of 20NewsGroups.

As expected the advantage of SK tends to reduce when more training data
is available. However, the improvements keep not negligible. The SK model
(without POS information) still preserves about 3% improvement. The similar-
ity matching possibly allowed between noun-verb pairs still captures semantic
information useful for topical similarity.

Finally, an experiment with 3 categories (compare with Table 1) was made
by discarding all string matchings from SK. Only words having different surface
forms were allowed to give contributions to Eq. 3. An important outcome is that
the SK converges to an f1 value of 50.2%. This shows that the word similarity
provided by WN is consistent and effective to TC.



5 Related Work

The IR work related to this study focus on similarity (clustering) models for
embedding statistical and external knowledge in document similarity.

In [25] a Latent Semantic Indexing analysis was used for term clustering.
The algorithm, as described in [26], assumes that values xij in the transformed
term-term matrix represents the similarity (> 0) and anti-similarity between
terms i and j. Evaluation of query expansion techniques showed that positive
clusters can improve Recall of about 18% for the CISI collection, 2.9% for MED
and 3.4% for CRAN. Furthermore, the negative clusters, when used to prune
the result set, improve the precision.

In [1], a feature selection technique that clusters similar features/words,
called the Information Bottleneck (IB), is applied to TC. Support Vector Ma-
chines trained over clusters were experimented on three different corpora: Reuters-
21578, WebKB and 20NewsGroups. Controversial results are obtained as the
cluster based representation outperformed the simple bag-of-words only on the
latter collection (>3%).

The use of external semantic knowledge seems to be more problematic in IR
as the negative impact of semantic ambiguity [11]. A WN-based semantic similar-
ity function between noun pairs is used to improve indexing and document-query
matching. However, the WSD algorithm had a performance ranging between 60-
70%, and this made the overall semantic similarity not effective.

Other studies using semantic information for improving IR were carried out
in [13] and [3, 14]. Word semantic information was here used for text indexing
and query expansion, respectively. In [14] it is shown that semantic information
derived directly from WN without a priori WSD produces poor results.

The above methods are even more problematic in TC [9]. Word senses tend to
systematically correlate with the positive examples of a category. Different cat-
egories are better characterized by different words rather than different senses.
Patterns of lexical co-occurrences in the training data seems to suffice for auto-
matic disambiguation. [27] uses WN senses to replace simple words without word
sense disambiguation and small improvements are derived only for a small cor-
pus. The scale and assessment provided in [10] (3 corpora using cross-validation
techniques) showed that even accurate disambiguation of WN senses (about 80%
accuracy on nouns) does not improve TC.

An approach similar to the one proposed in this article, is the use of term
proximity to define a semantic kernel [28]. Such semantic kernel was designed
as a combination of the Radial Basis Function kernel with the term proximity
matrix. Entries in this matrix are inversely proportional to the length of the
WN hierarchy path linking the two terms. The performance, measured over the
20NewsGroups corpus, showed an improvement of 2% over the bag-of-words. The
main difference with our approach are the following: first, the term proximity is
not fully sensitive to the information of the WN hierarchy. For example, if we
consider pairs of equidistant terms, the nearer to the WN top level a pair is the
lower similarity it should receive, e.g. Sky and Location (hyponyms of Entity)
should not accumulate similarity like knife and gun (hyponyms of weapon).



Measures, like CD, that deal with this problem have been widely proposed in
literature (e.g. [19]) and should be always applied. Second, the description of the
resulting space is not given and the choice of the kernel is not justified in terms
of document similarity. The proximity matrix is a way to smooth the similarity
between two terms but its impact on learning is unclear. Finally, experiments
were carried out by using only 200 features (selected via Mutual Information
statistics). In this way the contribution of rare or non statistically significant
terms is neglected. In our view, the latter features may give, instead, a relevant
contribution once we move in the SK space generated by the WN similarities.

Other work using corpus statistc knowledge, e.g. latent semantic indexing,
for retrieval was carried out in [29, 30].

6 Conclusions

The introduction of semantic prior knowledge in IR has always been an inter-
esting subject as the examined literature suggests. In this paper, we used the
conceptual density function on the WordNet hierarchy to define a document
similarity metric. Accordingly, we defined a semantic kernel to train a Sup-
port Vector Machine classifiers. Cross-validation experiments over 8 categories
of 20NewsGroups over multiple samples have shown that in critical training
data conditions, such prior knowledge can be effectively used to improve (about
3 absolute percent points, i.e. 10%) the TC accuracy.

These promising results enable a number of future researches: (1) larger scale
experiments with different measures and semantic similarity models (e.g. [19]);
(2) domain-driven specialization of the term similarity, by selectively tuning
WordNet to the target categories, (3) optimization driven by prior feature selec-
tion, and (4) extension of the semantic similarity by a general (i.e. non binary)
application of the conceptual density model, e.g. use the most important cate-
gory terms as prior bias for the similarity score.
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