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Abstract

This article describes a robust seman-
tic parser that uses a broad knowledge
base created by interconnecting three ma-
jor resources: FrameNet, VerbNet and
PropBank. The FrameNet corpus con-
tains the examples annotated with seman-
tic roles whereas the VerbNet lexicon pro-
vides the knowledge about the syntac-
tic behavior of the verbs. We connect
VerbNet and FrameNet by mapping the
FrameNet frames to the VerbNet Intersec-
tive Levin classes. The PropBank corpus,
which is tightly connected to the VerbNet
lexicon, is used to increase the verb cov-
erage and also to test the effectiveness of
our approach. The results indicate that our
model is an interesting step towards the
design of more robust semantic parsers.

1 Introduction

During the last years a noticeable effort has been
devoted to the design of lexical resources that
can provide the training ground for automatic se-
mantic role labelers. Unfortunately, most of the
systems developed until now are confined to the
scope of the resource used for training. A very
recent example in this sense was provided by the
CONLL 2005 shared task (Carreras and Màrquez,
2005) on PropBank (PB) (Kingsbury and Palmer,
2002) role labeling. The systems that participated
in the task were trained on the Wall Street Jour-
nal corpus (WSJ) and tested on portions of WSJ
and Brown corpora. While the best F-measure
recorded on WSJ was 80%, on the Brown cor-
pus, the F-measure dropped below 70%. The
most significant causes for this performance decay

were highly ambiguous and unseen predicates (i.e.
predicates that do not have training examples).

The same problem was again highlighted by the
results obtained with and without the frame infor-
mation in the Senseval-3 competition (Litkowski,
2004) of FrameNet (Johnson et al., 2003) role la-
beling task. When such information is not used
by the systems, the performance decreases by 10
percent points. This is quite intuitive as the se-
mantics of many roles strongly depends on the fo-
cused frame. Thus, we cannot expect a good per-
formance on new domains in which this informa-
tion is not available.

A solution to this problem is the automatic
frame detection. Unfortunately, our preliminary
experiments showed that given a FrameNet (FN)
predicate-argument structure, the task of identify-
ing the associated frame can be performed with
very good results when the verb predicates have
enough training examples, but becomes very chal-
lenging otherwise. The predicates belonging to
new application domains (i.e. not yet included in
FN) are especially problematic since there is no
training data available.

Therefore, we should rely on a semantic context
alternative to the frame (Giuglea and Moschitti,
2004). Such context should have a wide coverage
and should be easily derivable from FN data. A
very good candidate seems to be the Intersective
Levin class (ILC) (Dang et al., 1998) that can be
found as well in other predicate resources like PB
and VerbNet (VN) (Kipper et al., 2000).

In this paper we have investigated the above
claim by designing a semi-automatic algorithm
that assigns ILCs to FN verb predicates and by
carrying out several semantic role labeling (SRL)
experiments in which we replace the frame with
the ILC information. We used support vector ma-



chines (Vapnik, 1995) with (a) polynomial ker-
nels to learn the semantic role classification and
(b) Tree Kernels (Moschitti, 2004) for learning
both frame and ILC classification. Tree kernels
were applied to the syntactic trees that encode the
subcategorization structures of verbs. This means
that, although FN contains three types of predi-
cates (nouns, adjectives and verbs), we only con-
centrated on the verb predicates and their roles.

The results show that: (1) ILC can be derived
with high accuracy for both FN and Probank and
(2) ILC can replace the frame feature with almost
no loss in the accuracy of the SRL systems. At the
same time, ILC provides better predicate coverage
as it can also be learned from other corpora (e.g.
PB).

In the remainder of this paper, Section 2 sum-
marizes previous work done on FN automatic role
detection. It also explains in more detail why mod-
els based exclusively on this corpus are not suit-
able for free-text parsing. Section 3 focuses on VN
and PB and how they can enhance the robustness
of our semantic parser. Section 4 describes the
mapping between frames and ILCs whereas Sec-
tion 5 presents the experiments that support our
thesis. Finally, Section 6 summarizes the conclu-
sions.

2 Automatic Semantic Role Labeling

One of the goals of the FN project is to design a
linguistic ontology that can be used for the auto-
matic processing of semantic information. The as-
sociated hierarchy contains an extensive semantic
analysis of verbs, nouns, adjectives and situations
in which they are used, calledframes. The basic
assumption on which the frames are built is that
each word evokes a particular situation with spe-
cific participants (Fillmore, 1968). The word that
evokes a particular frame is calledtarget wordor
predicateand can be an adjective, noun or verb.
The participant entities are defined using semantic
roles and they are calledframe elements.

Several models have been developed for the
automatic detection of the frame elements based
on the FN corpus (Gildea and Jurafsky, 2002;
Thompson et al., 2003; Litkowski, 2004). While
the algorithms used vary, almost all the previous
studies divide the task into: 1) the identification of
the verb arguments to be labeled and 2) the tag-
ging of each argument with a role. Also, most
of the models agree on the core features as be-

ing: Predicate, Headword, Phrase Type, Govern-
ing Category, Position, VoiceandPath. These are
the initial features adopted by Gildea and Jurafsky
(2002) (henceforth G&J) for both frame element
identification and role classification.

One difference among previous machine-
learning models is whether they used the frame in-
formation or not. The impact of the frame feature
over unseen predicates and words is particularly
interesting for us. The results obtained by G&J
provide some interesting insights in this direction.
In one of their experiments, they used the frame to
generalize from predicates seen in the training data
to unseen predicates, which belonged to the same
frame. The overall performance increased show-
ing that when no training data is available for a
target word we can use data from the same frame.

Other studies suggest that the frame is cru-
cial when trying to eliminate the major sources
of errors. In their error analysis, (Thompson et
al., 2003) pinpoints that the verb arguments with
headwords that are rare in a particular frame but
not rare over the whole corpus are especially hard
to classify. For these cases the frame is very im-
portant because it provides the context informa-
tion needed to distinguish between different word
senses.

Overall, the experiments presented in G&J’s
study correlated with the results obtained in the
Senseval-3 competition show that the frame fea-
ture increases the performance and decreases the
amount of annotated examples needed in training
(i.e. frame usage improves the generalization abil-
ity of the learning algorithm). On the other hand,
the results obtained without the frame information
are very poor.

These results show that having broader frame
coverage is very important for robust semantic
parsing. Unfortunately, the 321 frames that con-
tain at least one verb predicate cover only a small
fraction of the English verb lexicon and of the
possible domains. Also from these 321 frames
only 100 were considered to have enough training
data and were used in Senseval-3 (see (Litkowski,
2004) for more details).

Our approach for solving such problems in-
volves the usage of a frame-like feature, namely
the Intersective Levin class (ILC). We show that
the ILC can replace the frame with almost no loss
in performance. At the same time, ILC provides
better coverage as it can be learned also from other



corpora (e.g. PB).
The next section provides the theoretical sup-

port for the unified usage of FN, VN and PB, ex-
plaining why and how it is possible to link them.

3 Linking FrameNet to VerbNet and
PropBank

In general, predicates belonging to the same FN
frame have a coherent syntactic behavior that is
also different from predicates pertaining to other
frames (G&J). This finding is consistent with the-
ories of linking that claim that the syntactic behav-
ior of a verb can be predicted from its semantics
(Levin, 1993). This insight justifies the attempt to
use ILCs instead of the frame feature when clas-
sifying FN semantic roles (Giuglea and Moschitti,
2004).

The main advantage of using Levin classes
comes from the fact that other resources like PB
and the VN lexicon contain this kind of informa-
tion. Thus, we can train an ILC classifier also on
the PB corpus, considerably increasing the verb
knowledge base at our disposal. Another advan-
tage derives from the syntactic criteria that were
applied in defining the Levin’s clusters. As shown
later in this article, the syntactic nature of these
classes makes them easier to classify than frames
when using only syntactic and lexical features.

More precisely, Levin’s clusters are formed ac-
cording to diathesis alternation criteria which are
variations in the way verbal arguments are gram-
matically expressed when a specific semantic phe-
nomenon arises. For example, two different types
of diathesis alternations are the following:

(a) Middle Alternation
[Subject, Agent The butcher] cuts [Direct

Object, Patient the meat].
[Subject, Patient The meat] cuts easily.

(b) Causative/inchoative Alternation
[Subject, Agent Janet] broke [Direct Object,

Patient the cup].
[Subject, Patient The cup] broke.

In both cases, what is alternating is the grammati-
cal function that the Patient role takes when chang-
ing from the transitive use of the verb to the intran-
sitive one. The semantic phenomenon accompa-
nying these types of alternations is the change of
focus from the entity performing the action to the
theme of the event.

Levin documented 79 alternations which con-
stitute the building blocks for the verb classes.
Although alternations are chosen as the primary
means for identifying the classes, additional prop-
erties related to subcategorization, morphology
and extended meanings of verbs are taken into ac-
count as well. Thus, from a syntactic point of
view, the verbs in one Levin class have a regu-
lar behavior, different from the verbs pertaining to
other classes. Also, the classes are semantically
coherent and all verbs belonging to one class share
the same participant roles.

This constraint of having the same semantic
roles is further ensured inside the VN lexicon
which is constructed based on a more refined ver-
sion of the Levin’s classification, called Intersec-
tive Levin classes (ILCs) (Dang et al., 1998). The
lexicon provides a regular association between the
syntactic and semantic properties of each of the
described classes. It also provides information
about the syntactic frames (alternations) in which
the verbs participate and the set of possible seman-
tic roles.

One corpus associated with the VN lexicon is
PB. The annotation scheme of PB ensures that
the verbs belonging to the same Levin class share
similarly labeled arguments. Inside one ILC, to
one argument corresponds one semantic role num-
bered sequentially from ARG0 to ARG5. The ad-
junct roles are labeled ARGM.

Levin classes were constructed based on regu-
larities exhibited at grammatical level and the re-
sulting clusters were shown to be semantically co-
herent. As opposed, the FN frames were built on
semantic bases, by putting together verbs, nouns
and adjectives that evoke the same situations. Al-
though different in conception, the FN verb clus-
ters and VN verb clusters have common proper-
ties1:

1. Different syntactic properties between dis-
tinct verb clusters (as proven by the experi-
ments in G&J)

2. A shared set of possible semantic roles for all
verbs pertaining to the same cluster.

Having these insights, we have assigned a corre-
spondent VN class not to each verb predicate but
rather to each frame. In doing this we have ap-
plied the simplifying assumption that a frame has a

1See section 4.4 for more details



unique corresponding Levin class. Thus, we have
created a one-to-many mapping between the ILCs
and the frames. In order to create a pair〈FN frame,
VN class〉, our mapping algorithm checks both the
syntactic and semantic consistency by comparing
the role frequency distributions on different syn-
tactic positions for the two candidates. The algo-
rithm is described in detail in the next section.

4 Mapping FrameNet frames to VerbNet
classes

The mapping algorithm consists of three steps: (a)
we link the frames and ILCs that have the largest
number of verbs in common and we create a set of
pairs〈FN frame, VN class〉 (see Table 1); (b) we
refine the pairs obtained in the previous step based
on diathesis alternation criteria, i.e. the verbs per-
taining to the FN frame have to undergo the same
diathesis alternation that characterize the corre-
sponding VN class (see Table 2) and (c) we man-
ually check the resulting mapping.

4.1 The mapping algorithm

Given a frame,F , we choose as candidate for the
mapping the ILC,C, that has the largest number of
verbs in common with it (see Table 1, line (I)). If
the number is greater or equal than three we form
a pair〈F , C〉 that will be tested in the second step
of the algorithm. Only the frames that have more
than 3 verb lexical units are candidates for this step
(frames with less than 3 members cannot pass con-
dition (II)). This excludes a number of 60 frames
that will be subsequently manually mapped.

In order to assign a VN class to a frame, we
have to verify that the verbs belonging to the FN
frame participate in the same diathesis alternation
criteria used to define the VN class. Thus, the
pairs〈F,C〉 formed in step 1 of the mapping al-
gorithm have to undergo a validation step that ver-
ifies the similarity between the enclosed FN frame
and VN class. This validation process has several
sub-steps:

First, we make use of the property (2) of the
Levin classes and FN frames presented in the pre-
vious section. According to this property, all verbs
pertaining to one frame or ILC have the same par-
ticipant roles. Thus, a first test of compatibility
between a frame and a Levin class is that they
share the same participant roles. As FN is anno-
tated with frame-specific semantic roles, we man-
ually mapped these roles into the VN set of the-

INPUT
V N = {C|C is a V erbNet class}
V N Class C = {v|c is a verb of C}
FN = {F |F is a FrameNet frame}
FN frame F = {v|v is a verb of F}
OUTPUT
Pairs = {〈F, C〉 |F ∈ FN, C ∈ V N : F maps to C }
COMPUTE PAIRS:
Let Pairs = ∅
for each F ∈ FN

(I) compute C∗ = arg maxC∈V N |F ∩ C|
(II) if |F ∩ C∗| ≥ 3 then Pairs = Pairs ∪ 〈F, C∗〉

Table 1: Linking FrameNet frames and VerbNet
classes.

TR = {θi : θi is thei− th theta role of VerbNet}
for each 〈F, C〉 ∈ Pairs
−→
A

F
= 〈o1, .., on〉, oi = #〈θi, F, pos =adjacent〉

−→
D

F
= 〈o1, .., on〉, oi = #〈θi, F, pos =distant〉

−→
A

C
= 〈o1, .., on〉, oi = #〈θi, C, pos =adjacent〉

−→
D

C
= 〈o1, .., on〉, oi = #〈θi, C, pos =distant〉

ScoreF,C =2
3
×

−→
A

F
·
−→
A

C

∣∣∣
∣∣∣−→AF

∣∣∣
∣∣∣×

∣∣∣
∣∣∣−→AC

∣∣∣
∣∣∣

+ 1
3
×

−→
D

F
·
−→
D

C

∣∣∣
∣∣∣−→DF

∣∣∣
∣∣∣×

∣∣∣
∣∣∣−→DC

∣∣∣
∣∣∣

Table 2: Mapping algorithm - refining step.

matic roles. Given a frame, we assigned thematic
roles to all frame elements that are associated with
verbal predicates. For example theSpeaker, Ad-
dressee, MessageandTopicroles from theTelling
frame were respectively mapped into theAgent,
Recipient, ThemeandTopictheta roles.

Second, we build a frequency distribution of
VN thematic roles on different syntactic positions.
Based on our observation and previous studies
(Merlo and Stevenson, 2001), we assume that each
ILC has a distinct frequency distribution of roles
on different grammatical slots. As we do not have
matching grammatical functions in FN and VN,
we approximate thatsubjectsand direct objects
are more likely to appear on positions adjacent
to the predicate, whileindirect objectsappear on
more distant positions. The same intuition is suc-
cessfully used by G&J to design thePositionfea-
ture.

For each thematic roleθi we acquired from VN
and FN data the frequencies with whichθi appears
on an adjacentA or distantD positions in a given
frame or VN class (i.e. #〈θi , class, position〉).
Therefore, for each frame and class, we obtain two
vectors with thematic role frequencies correspond-
ing respectively to the adjacent and distant posi-
tions (see Table 2). We compute a score for each



 

Score 
No. of 

Frames 
Not 

mapped 
Correct 

Overall 
Correct 

[0,0.5] 118 48.3% 82.5% 
(0.5,0.75] 69 0 84% 
(0.75,1] 72 0 100% 

89.6% 

 

Table 3: Results of the mapping algorithm.

pair 〈F, C〉 using the normalized scalar product.
The core arguments, which tend to occupy adja-

cent positions, show a minor syntactic variability
and are more reliable than adjunct roles. To ac-
count for this in the overall score, we multiply the
adjacent and the distant scores by 2/3 and 1/3, re-
spectively. This limits the impact of adjunct roles
like Temporal and Location.

The above frequency vectors are computed for
FN directly from the corpus of predicate-argument
structure examples associated with each frame.
The examples associated with the VN lexicon are
extracted from the PB corpus. In order to do this
we apply a preprocessing step in which each la-
bel Arg0..5 is replaced with its corresponding the-
matic role given the ILC of the predicate. We
assign the same roles to the adjuncts all over PB
as they are general for all verb classes. The only
exception is ARGM-DIR that can correspond to
Source, Goal or Path. We assign different roles to
this adjunct based on the prepositions. We ignore
some adjuncts like ARGM-ADV or ARGM-DIS
because they cannot bear a thematic role.

4.2 Mapping Results

We found that only 133 VN classes have corre-
spondents among FN frames. Moreover, from the
frames mapped with an automatic score smaller
than 0.5 almost a half did not match any of the
existing VN classes2. A summary of the results
is depicted in Table 3. The first column contains
the automatic score provided by the mapping al-
gorithm when comparing frames with ILCs. The
second column contains the number of frames for
each score interval. The third column contains the
percentage of frames that did not have a corre-
sponding VN class and finally the fourth and fifth
columns contain the accuracy of the mapping al-
gorithm for each interval score and for the whole
task, respectively.

We mention that there are 3,672 distinct verb
senses in PB and 2,351 distinct verb senses in

2The automatic mapping is improved by manually assign-
ing the FN frames of the pairs that receive a score lower than
0.5.

FN. Only 501 verb senses are in common between
the two corpora which means 13.64% of PB and
21.31% of FN. Thus, by training an ILC classifier
on both PB and FN we extend the number of avail-
able verb senses to 5,522.

4.3 Discussion

In the literature, other studies compared the Levin
classes with the FN frames, e.g. (Baker and Rup-
penhofer, 2002; Giuglea and Moschitti, 2004; Shi
and Mihalcea, 2005). Their findings suggest that
although the two set of clusters are roughly equiv-
alent there are also several types of mismatches:

1. Levin classes that are narrower than the cor-
responding frames,

2. Levin classes that are broader that the corre-
sponding frames and

3. Overlapping groups.

For our task, point 2 does not pose a problem.
Points 1 and 3 however suggest that there are cases
in which to one FN frame corresponds more than
one Levin class. By investigating such cases, we
noted that the mapping algorithm consistently as-
signs scores below 75% to cases that match prob-
lem 1 (two Levin classes inside one frame) and
below 50% to cases that match problem 3 (more
than two Levin classes inside one frame). Thus,
to increase the accuracy of our results, a first step
should be to assign independently an ILC to each
of the verbs pertaining to frames with score lower
than 0.75%.

Nevertheless the current results are encourag-
ing as they show that the algorithm is achieving its
purpose by successfully detecting syntactic inco-
herences that can be subsequently corrected man-
ually. Also, in the next section we will show that
our current mapping achieves very good results,
giving evidence for the effectiveness of the Levin
class feature.

5 Experiments

In the previous sections we have presented the
algorithm for annotating the verb predicates of
FrameNet (FN) with Intersective Levin classes
(ILCs). In order to show the effectiveness of this
annotation and of the ILCs in general we have per-
formed several experiments.

First, we trained (1) an ILC multiclassifier from
FN, (2) an ILC multiclassifier from PB and (3) a



 

 

 Run 
51.3.2 

Cooking 
45.3 

Characterize 
29.2 

Other_cos 
45.4 

Say 
37.7 

Correspond 
36.1 

Multiclassifier 

PB #Train Instances 
PB #Test Instances 

262 
5 

6 
5 

2,945 
134 

2,207 
149 

9,707 
608 

259 
20 

52,172 
2,742 

PB Results 75 33.33 96.3 97.24 100 88.89 92.96 
FN #Train Instances 
FN #Test Instances 

5,381 
1,343 

138 
35 

765 
40 

721 
184 

1,860 
1,343 

557 
111 

46,734 
11,650 

FN Results 96.36 72.73 95.73 92.43 94.43 78.23 92.63 

Table 4: F1s of some individual ILC classifiers and the overall multiclassifier accuracy (180 classes on
PB and 133 on FN).

 
 Body_part Crime Degree Agent Multiclassifier 
FN #Train Instances 
FN #Test Instances 

1,511 
356 

39 
5 

765 
187 

6,441 
1,643 

102,724 
25,615 

LF+Gold Frame 90.91 88.89 70.51 93.87 90.8 
LF+Gold ILC 90.80 88.89 71.52 92.01 88.23 
LF+Automatic Frame 84.87 88.89 70.10 87.73 85.64 
LF+Automatic ILC 85.08 88.89 69.62 87.74 84.45 
LF 79.76 75.00 64.17 80.82 80.99 

 

Table 5: F1s of some individual FN role classifiers and the overall multiclassifier accuracy (454 roles).

frame multiclassifier from FN. We compared the
results obtained when trying to classify the VN
class with the results obtained when classifying
frame. We show that ILCs are easier to detect than
FN frames.

Our second set of experiments regards the auto-
matic labeling of FN semantic roles on FN corpus
when using as features: gold frame, gold ILC, au-
tomatically detected frame and automatically de-
tected ILC. We show that in all situations in which
the VN class feature is used, the accuracy loss,
compared to the usage of the frame feature, is neg-
ligible. This suggests that the ILC can success-
fully replace the frame feature for the task of se-
mantic role labeling.

Another set of experiments regards the gener-
alization property of the ILC. We show the impact
of this feature when very few training data is avail-
able and its evolution when adding more and more
training examples. We again perform the exper-
iments for: gold frame, gold ILC, automatically
detected frame and automatically detected ILC.

Finally, we simulate the difficulty of free text
by annotating PB with FN semantic roles. We
used PB because it covers a different set of ver-
bal predicates and also because it is very different
from FN at the level of vocabulary and sometimes
even syntax. These characteristics make PB a dif-
ficult testbed for the semantic role models trained
on FN.

In the following section we present the results

obtained for each of the experiments mentioned
above.

5.1 Experimental setup

The corpora available for the experiments were PB
and FN. PB contains about 54,900 predicates and
gold parse trees. We used sections from 02 to 22
(52,172 predicates) to train the ILC classifiers and
Section 23 (2,742 predicates) for testing purposes.
The number of ILCs is 180 in PB and 133 on FN,
i.e. the classes that we were able to map.

For the experiments on FN corpus, we extracted
58,384 sentences from the 319 frames that contain
at least one verb annotation. There are 128,339
argument instances of 454 semantic roles. In our
evaluation we use only verbal predicates. More-
over, as there is no fixed split between training and
testing, we randomly selected 20% of sentences
for testing and 80% for training. The sentences
were processed using Charniak’s parser (Char-
niak, 2000) to generate parse trees automatically.

The classification models were implemented by
means of the SVM-light-TK software available at
http://ai-nlp.info.uniroma2.it/moschitti

which encodes tree kernels in the SVM-light
software (Joachims, 1999). We used the default
parameters. The classification performance was
evaluated using theF1 measure for the individual
role and ILC classifiers and the accuracy for the
multiclassifiers.



5.2 Automatic VerbNet class vs. automatic
FrameNet frame detection

In these experiments, we classify ILCs on PB and
frames on FN. For the training stage we use SVMs
with Tree Kernels.

The main idea of tree kernels is the modeling
of a KT (T1,T2) function which computes the num-
ber of common substructures between two trees T1

and T2. Thus, we can train SVMs with structures
drawn directly from the syntactic parse tree of the
sentence. The kernel that we employed in our ex-
periments is based on the SCF structure devised
in (Moschitti, 2004). We slightly modified SCF
by adding the headwords of the arguments, useful
for representing the selectional preferences (more
details are given in (Giuglea and Moschitti, 2006).

For frame detection on FN, we trained our clas-
sifier on 46,734 training instances and tested on
11,650 testing instances, obtaining an accuracy of
91.11%. For ILC detection the results are depicted
in Table 4. The first six columns report theF1

measure of some verb class classifiers whereas the
last column shows the global multiclassifier accu-
racy. We note that ILC detection is more accurate
than the frame detection on both FN and PB. Ad-
ditionally, the ILC results on PB are similar with
those obtained for the ILCs on FN. This suggests
that the training corpus does not have a major in-
fluence. Also, the SCF-based tree kernel seems to
be robust in what concerns the quality of the parse
trees. The performance decay is very small on FN
that uses automatic parse trees with respect to PB
that contains gold parse trees.

5.3 Automatic semantic role labeling on
FrameNet

In the experiments involving semantic role label-
ing, we used SVMs with polynomial kernels. We
adopted the standard features developed for se-
mantic role detection by Gildea and Jurafsky (see
Section 2). Also, we considered some of the fea-
tures designed by (Pradhan et al., 2005):First and
Last Word/POS in Constituent, Subcategorization,
Head Word of Prepositional Phrasesand theSyn-
tactic Framefeature from (Xue and Palmer, 2004).
For the rest of the paper, we will refer to these fea-
tures as being literature features (LF). The results
obtained when using the literature features alone
or in conjunction with the gold frame feature, gold
ILC, automatically detected frame feature and au-
tomatically detected ILC are depicted in Table 5.
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Figure 1: Semantic role learning curve.

The first four columns report theF1 measure
of some role classifiers whereas the last column
shows the global multiclassifier accuracy. The first
row contains the number of training and testing in-
stances and each of the other rows contains the
performance obtained for different feature com-
binations. The results are reported for the label-
ing task as the argument-boundary detection task
is not affected by the frame-like features (G&J).

We note that automatic frame produces an accu-
racy very close to the one obtained with automatic
ILC suggesting that this is a very good candidate
for replacing the frame feature. Also, both auto-
matic features are very effective and they decrease
the error rate by 20%.

To test the impact of ILC on SRL with different
amount of training data, we additionally draw the
learning curves with respect to different features:
LF, LF+ (gold) ILC, LF+automatic ILC trained on
PB and LF+automatic ILC trained on FN. As can
be noted, the automatic ILC information provided
by the ILC classifiers (trained on FN or PB) per-
forms almost as good as the gold ILC.

5.4 Annotating PB with FN semantic roles

To show that our approach can be suitable for
semantic role free-text annotation, we have au-
tomatically classified PB sentences3 with the FN
semantic-role classifiers. In order to measure
the quality of the annotation, we randomly se-
lected 100 sentences and manually verified them.
We measured the performance obtained with and
without the automatic ILC feature. The sentences
contained 189 arguments from which 35 were in-
correct when ILC was used compared to 72 incor-
rect in the absence of this feature, i.e. an accu-
racy of 81% with ILC versus 62% without it. This
demonstrates the importance of the ILC feature

3The results reported are only for role classification.



outside the scope of FN where the frame feature
is not available.

6 Conclusions

In this paper we have shown that the ILC feature
can successfully replace the FN frame feature. By
doing that we could interconnect FN to VN and
PB obtaining better verb coverage and a more ro-
bust semantic parser. Our good results show that
we have defined an effective framework which is
a promising step toward the design of more robust
semantic parsers.

In the future, we intend to measure the effec-
tiveness of our system by testing FN SRL on a
larger portion of PB or on other corpora containing
a larger verb set.
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