
Engineering of Syntactic Features for Shallow Semantic Parsing

Alessandro Moschitti¦

¦ DISP - University of Rome “Tor Vergata”, Rome, Italy
{moschitti, pighin, basili }@info.uniroma2.it

† ITC-Irst, ‡ DIT - University of Trento, Povo-Trento, Italy
coppolab@itc.it

Bonaventura Coppola†‡ Daniele Pighin¦ Roberto Basili¦

Abstract

Recent natural language learning research
has shown that structural kernels can be
effectively used to induce accurate models
of linguistic phenomena.

In this paper, we show that the above prop-
erties hold on a novel task related to predi-
cate argument classification. A tree kernel
for selecting the subtrees which encodes
argument structures is applied. Experi-
ments with Support Vector Machines on
large data sets (i.e. the PropBank collec-
tion) show that such kernel improves the
recognition of argument boundaries.

1 Introduction

The design of features for natural language process-
ing tasks is, in general, a critical problem. The inher-
ent complexity of linguistic phenomena, often char-
acterized by structured data, makes difficult to find
effective linear feature representations for the target
learning models.

In many cases, the traditional feature selection
techniques (Kohavi and Sommerfield, 1995) are not
so useful since the critical problem relates to feature
generation rather than selection. For example, the
design of features for a natural language syntactic
parse-tree re-ranking problem (Collins, 2000) can-
not be carried out without a deep knowledge about
automatic syntactic parsing. The modeling of syn-
tactic/semantic based features should take into ac-
count linguistic aspects to detect the interesting con-

text, e.g. the ancestor nodes or the semantic depen-
dencies (Toutanova et al., 2004).

A viable alternative has been proposed in (Collins
and Duffy, 2002), where convolution kernels were
used to implicitly define a tree substructure space.
The selection of the relevant structural features was
left to the voted perceptron learning algorithm. An-
other interesting model for parsing re-ranking based
on tree kernel is presented in (Taskar et al., 2004).
The good results show that tree kernels are very
promising for automatic feature engineering, espe-
cially when the available knowledge about the phe-
nomenon is limited.

Along the same line, automatic learning tasks that
rely on syntactic information may take advantage of
a tree kernel approach. One of such tasks is the au-
tomatic boundary detection of predicate arguments
of the kind defined in PropBank (Kingsbury and
Palmer, 2002). For this purpose, given a predicatep
in a sentences, we can define the notion ofpredicate
argument spanning trees(PASTs) as those syntac-
tic subtrees ofs which exactly coverall and only
thep’s arguments (see Section 4.1). The set of non-
spanning trees can be then associated with all the
remaining subtrees ofs.

An automatic classifier which recognizes the
spanning trees can potentially be used to detect the
predicate argument boundaries. Unfortunately, the
application of such classifier to all possible sen-
tence subtrees would require an exponential execu-
tion time. As a consequence, we can use it only to
decide for a reduced set of subtrees associated with
a corresponding set of candidate boundaries. Notice
how these can be detected by previous approaches



(e.g. (Pradhan et al., 2004)) in which a traditional
boundary classifier (tbc) labels the parse-tree nodes
as potential arguments (PA). Such classifiers, gen-
erally, are not sensitive to the overall argument struc-
ture. On the contrary, aPAST classifier (pastc) can
consider the overall argument structure encoded in
the associated subtree. This is induced by thePA
subsets.

The feature design for thePAST representation
is not simple. Tree kernels are a viable alternative
that allows the learning algorithm to measure the
similarity between twoPASTs in term of all pos-
sible tree substructures.

In this paper, we designed and experimented a
boundary classifier for predicate argument labeling
based on two phases: (1) a first annotation of po-
tential arguments by using a high recalltbc and
(2) aPAST classification step aiming to select the
correct substructures associated with potential argu-
ments. Both classifiers are based on Support Vector
Machines learning. Thepastc uses the tree kernel
function defined in (Collins and Duffy, 2002). The
results show that thePAST classification can be
learned with high accuracy (the f-measure is about
89%) and the impact on the overall boundary detec-
tion accuracy is good.

In the remainder of this paper, Section 2 intro-
duces the Semantic Role Labeling problem along
with the boundary detection subtask. Section 3 de-
fines the SVMs using the linear kernel and the parse
tree kernel for boundary detection. Section 4 de-
scribes our boundary detection algorithm. Section 5
shows the preliminary comparative results between
the traditional and the two-step boundary detection.
Finally, Section 7 summarizes the conclusions.

2 Automated Semantic Role Labeling

One of the largest resources of manually annotated
predicate argument structures has been developed in
the PropBank (PB) project. The PB corpus contains
300,000 words annotated with predicative informa-
tion on top of the Penn Treebank 2 Wall Street Jour-
nal texts. For any given predicate, the expected ar-
guments are labeled sequentially fromArg0 to Arg9,
ArgA and ArgM. Figure 1 shows an example of
the PB predicate annotation of the sentence:John

rented a room in Boston.

Predicates in PB are only embodied by verbs
whereas most of the timesArg0 is thesubject, Arg1
is thedirect objectandArgM indicateslocations, as
in our example.

 
 
 
 
 

 
 
 
 

Predicate 

Arg. 0 

Arg. M 

S 

N 

NP 

D N 

VP 

V John 

in 

 rented 

a   room 

PP 

IN N 

Boston 

Arg. 1 

Figure 1:A predicate argument structure in a parse-tree rep-

resentation.

Several machine learning approaches for auto-
matic predicate argument extraction have been de-
veloped, e.g. (Gildea and Jurasfky, 2002; Gildea and
Palmer, 2002; Gildea and Hockenmaier, 2003; Prad-
han et al., 2004). Their common characteristic is
the adoption of feature spaces that model predicate-
argument structures in a flat feature representation.
In the next section, we present the common parse
tree-based approach to this problem.

2.1 Predicate Argument Extraction

Given a sentence in natural language, all the predi-
cates associated with the verbs have to be identified
along with their arguments. This problem is usually
divided in two subtasks: (a) the detection of the tar-
get argument boundaries, i.e. the span of its words
in the sentence, and (b) the classification of the argu-
ment type, e.g.Arg0or ArgM in PropBank orAgent
andGoal in FrameNet.

The standard approach to learn both the detection
and the classification of predicate arguments is sum-
marized by the following steps:

1. Given a sentence from thetraining-set, gener-
ate a full syntactic parse-tree;

2. let P andA be the set of predicates and the
set of parse-tree nodes (i.e. the potential argu-
ments), respectively;

3. for each pair< p, a >∈ P ×A:

• extract the feature representation set,Fp,a;



• if the subtree rooted ina covers exactly
the words of one argument ofp, put Fp,a

in T+ (positive examples), otherwise put
it in T− (negative examples).

For instance, in Figure 1, for each combination of
the predicaterent with the nodesN, S, VP, V, NP,
PP, D or IN the instancesFrent,a are generated. In
case the nodea exactly covers ”John”, ”a room” or
”in Boston”, it will be a positive instance otherwise
it will be a negative one, e.g.Frent,IN .

TheT+ andT− sets are used to train the bound-
ary classifier. To train the multi-class classifierT+

can be reorganized as positiveT+
argi

and negative
T−argi

examples for each argumenti. In this way,
an individual ONE-vs-ALL classifier for each argu-
menti can be trained. We adopted this solution, ac-
cording to (Pradhan et al., 2004), since it is simple
and effective. In the classification phase, given an
unseen sentence, all itsFp,a are generated and clas-
sified by each individual classifierCi. The argument
associated with the maximum among the scores pro-
vided by the individual classifiers is eventually se-
lected.

2.2 Standard feature space

The discovery of relevant features is, as usual, a
complex task. However, there is a common con-
sensus on the set of basic features. These stan-
dard features, firstly proposed in (Gildea and Juras-
fky, 2002), refer to unstructured information de-
rived from parse trees, i.e.Phrase Type, Predicate
Word, Head Word, Governing Category, Position
andVoice. For example, thePhrase Typeindicates
the syntactic type of the phrase labeled as a predicate
argument, e.g. NP forArg1 in Figure 1. TheParse
Tree Pathcontains the path in the parse tree between
the predicate and the argument phrase, expressed as
a sequence of nonterminal labels linked by direction
(up or down) symbols, e.g.V ↑ VP↓ NPfor Arg1 in
Figure 1. ThePredicate Wordis the surface form of
the verbal predicate, e.g.rent for all arguments.

In the next section we describe the SVM approach
and the basic kernel theory for the predicate argu-
ment classification.

3 Learning predicate structures via
Support Vector Machines

Given a vector space in<n and a set of positive and
negative points, SVMs classify vectors according to
a separating hyperplane,H(~x) = ~w × ~x + b = 0,
where ~w ∈ <n andb ∈ < are learned by applying
theStructural Risk Minimization principle(Vapnik,
1995).

To apply the SVM algorithm to Predicate Argu-
ment Classification, we need a functionφ : F → <n

to map our features spaceF = {f1, .., f|F|} and our
predicate/argument pair representation,Fp,a = Fz,
into<n, such that:

Fz → φ(Fz) = (φ1(Fz), .., φn(Fz))

From the kernel theory we have that:

H(~x) =
( ∑

i=1..l

αi~xi

)
· ~x + b =

∑

i=1..l

αi~xi · ~x + b =
∑

i=1..l

αiφ(Fi) · φ(Fz) + b.

where,Fi ∀i ∈ {1, .., l} are the training instances
and the productK(Fi, Fz) =<φ(Fi) ·φ(Fz)> is the
kernel function associated with the mappingφ.

The simplest mapping that we can apply is
φ(Fz) = ~z = (z1, ..., zn) wherezi = 1 if fi ∈ Fz

andzi = 0 otherwise, i.e. the characteristic vector
of the setFz with respect toF . If we choose the
scalar product as a kernel function we obtain the lin-
ear kernelKL(Fx, Fz) = ~x · ~z.

An interesting property is that we do not need to
evaluate theφ function to compute the above vector.
Only theK(~x, ~z) values are in fact required. This al-
lows us to derive efficient classifiers in a huge (pos-
sible infinite) feature space, provided that the ker-
nel is processed in an efficient way. This property
is also exploited to design convolution kernel like
those based on tree structures.

3.1 The tree kernel function

The main idea of the tree kernels is the modeling of
a KT (T1, T2) function which computes the number
of common substructures between two treesT1 and
T2.

Given the set of substructures (fragments)
{f1, f2, ..} = F extracted from all the trees of the
training set, we define the indicator functionIi(n)



 

S 

NP VP 

VP VP CC 

VB NP 

took DT NN 

the book 

and VB NP 

read PRP$ NN 

its title 

PRP 

John 

S 

NP VP 

VP 

VB NP 

read 

Sentence Parse-Tree 

S 

NP VP 

VP 

VB NP 

  took 

took{ARG0, ARG1} 

PRP 

John 

PRP 

John 

DT NN 

the book 

PRP$ NN 

its title 

read{ARG0, ARG1} 

Figure 2:A sentence parse tree with two predicative tree structures (PASTs)

which is equal 1 if the targetfi is rooted at noden
and 0 otherwise. It follows that:

KT (T1, T2) =
∑

n1∈NT1

∑

n2∈NT2

∆(n1, n2) (1)

where NT1 and NT2 are the sets of theT1’s
and T2’s nodes, respectively and∆(n1, n2) =∑|F|

i=1 Ii(n1)Ii(n2). This latter is equal to the num-
ber of common fragments rooted at then1 andn2

nodes. We can compute∆ as follows:

1. if the productions atn1 and n2 are different
then∆(n1, n2) = 0;

2. if the productions atn1 andn2 are the same,
andn1 andn2 have only leaf children (i.e. they
are pre-terminals symbols) then∆(n1, n2) =
1;

3. if the productions atn1 andn2 are the same,
andn1 andn2 are not pre-terminals then

∆(n1, n2) =
nc(n1)∏

j=1

(1 + ∆(cj
n1

, cj
n2

)) (2)

wherenc(n1) is the number of the children ofn1

andcj
n is thej-th child of the noden. Note that, as

the productions are the same,nc(n1) = nc(n2).
The above kernel has the drawback of assigning

higher weights to larger structures1. In order to over-
come this problem we scale the relative importance
of the tree fragments imposing a parameterλ in con-
ditions 2 and 3 as follows:∆(nx, nz) = λ and

∆(nx, nz) = λ
∏nc(nx)

j=1 (1 + ∆(cj
n1

, cj
n2

)).
1In order to approach this problem and to map similarity

scores in the [0,1] range, a normalization in the kernel space,
i.e. K′

T (T1, T2) = KT (T1,T2)√
KT (T1,T1)×KT (T2,T2)

. is always applied

4 Boundary detection via argument
spanning

Section 2 has shown that traditional argument
boundary classifiers rely only on features extracted
from the current potential argument node. In or-
der to take into account a complete argument struc-
ture information, the classifier should select a set of
parse-tree nodes and consider them as potential ar-
guments of the target predicate. The number of all
possible subsets is exponential in the number of the
parse-tree nodes of the sentence, thus, we need to
cut the search space. For such purpose, a traditional
boundary classifier can be applied to select the set
of potential argumentsPA. The reduced number of
PA subsets can be associated with sentence subtrees
which in turn can be classified by using tree kernel
functions. These measure if a subtree iscompatible
or not with the subtree of a correct predicate argu-
ment structure.

4.1 The Predicate Argument Spanning Trees
(PASTs)

We consider the predicate argument structures an-
notated in PropBank along with the corresponding
TreeBank data as our object space. Given the target
predicatep in a sentence parse treeT and a subset
s = {n1, .., nk} of the T’s nodes,NT , we define as
the spanning tree rootr the lowest common ancestor
of n1, .., nk. The node spanning tree (NST ), ps is
the subtree rooted inr, from which the nodes that
are neither ancestors nor descendants of anyni are
removed.

Since predicate arguments are associated with
tree nodes, we can define thepredicate argu-



 

S 

NP VP 

VB NP 

read 

John 

DT NN 

the title 

NP PP 

DT NN 

the book 

NP IN 

of 

Arg. 1 

Arg. 0 

S 

NP VP 

VB NP 

read 

John 

DT NN 

the title 

NP PP 

DT NN 

the book 

NP IN 

of 

S 

NP VP 

VB NP 

read 

John 

DT NN 

the title 

NP PP 

DT NN 

the book 

NP IN 

of 

S 

NP-0 VP 

John 

PP 

DT NN 

the book 

NP IN 

of 

S 

NP-0 VP 

VB NP 

read 

John 

DT NN 

the title 

NP-1 PP-2 

DT NN 

the book 

IN 

of 

NP 

(a) (b) (c) 

Correct PAST 

Incorrect  PAST 

Correct PAST 

Incorrect  PAST 

DT NN 

the title 

NP 

NP-1 VB 

read 

 
 

 

Figure 3:Two-step boundary classifier.

ment spanning tree(PAST ) of a predicate ar-
gument set,{a1, .., an}, as theNST over such
nodes, i.e. p{a1,..,an}. A PAST corresponds
to the minimal subparse tree whose leaves are
all and only the word sequence compounding
the arguments. For example, Figure 2 shows
the parse tree of the sentence"John took the

book and read its title" . took{ARG0,ARG1}
and read{ARG0,ARG1} are two PAST structures
associated with the two predicatestook and read,
respectively. All the otherNSTs are not valid
PASTs.

Notice that, labelingps, ∀s ⊆ NT with a PAST
classifier (pastc) corresponds to solve the boundary
problem. The critical points for the application of
this strategy are: (1) how to design suitable features
for thePAST characterization. This new problem
requires a careful linguistic investigation about the
significant properties of the argument spanning trees
and (2) how to deal with the exponential number of
NSTs.

For the first problem, the use of tree kernels over
thePASTs can be an alternative to the manual fea-
tures design as the learning machine, (e.g. SVMs)
can select the most relevant features from a high di-
mensional feature space. In other words, we can use
Eq. 1 to estimate the similarity between twoPASTs
avoiding to define explicit features. The same idea
has been successfully applied to the parse-tree re-
ranking task (Taskar et al., 2004; Collins and Duffy,
2002) and predicate argument classification (Mos-
chitti, 2004).

For the second problem, i.e. the high computa-
tional complexity, we can cut the search space by us-

ing a traditional boundary classifier (tbc), e.g. (Prad-
han et al., 2004), which provides a small set of po-
tential argument nodes. LetPA be the set of nodes
located bytbc as arguments. We may consider the
setP of the NSTs associated with any subset of
PA, i.e. P = {ps : s ⊆ PA}. However, also
the classification ofP may be computationally prob-
lematic since theoretically there are|P| = 2|PA|

members.

In order to have a very efficient procedure, we
appliedpastc to only thePA sets associated with
incorrect PASTs. A way to detect such incor-
rect NSTs is to look for a node pair<n1, n2>∈
PA × PA of overlapping nodes, i.e. n1 is ances-
tor of n2 or viceversa. After we have detected such
nodes, we create two node setsPA1 = PA− {n1}
andPA2 = PA − {n2} and classify them with the
pastc to select the correct set of argument bound-
aries. This procedure can be generalized to a set of
overlapping nodesO greater than 2 as reported in
Appendix 1.

Note that the algorithm selects a maximal set of
non-overlapping nodes, i.e. the first that is gener-
ated. Additionally, the worst case is rather rare thus
the algorithm is very fast on average.

The Figure 3 shows a working example of the
multi-stage classifier. In Frame (a),tbc labels as
potential arguments (gray color) three overlapping
nodes (in Arg.1). The overlap resolution algorithm
proposes two solutions (Frame (b)) of which only
one is correct. In fact, according to the second so-
lution the propositional phrase ”of the book” would
incorrectly be attached to the verbal predicate, i.e.
in contrast with the parse tree. Thepastc, applied



to the twoNSTs, should detect this inconsistency
and provide the correct output. Note that, during the
learning, we generate the non-overlapping structures
in the same way to derive the positive and negative
examples.

4.2 Engineering Tree Fragment Features

In the Frame (b) of Figure 3, we show one of the
possible cases whichpastc should deal with. The
critical problem is that the twoNSTs are perfectly
identical, thus, it is not possible to discern between
them using only their parse-tree fragments.

The solution to engineer novel features is to sim-
ply add the boundary information provided by the
tbc to theNSTs. We mark with a progressive num-
ber the phrase type corresponding to an argument
node, starting from the leftmost argument. For ex-
ample, in the firstNST of Frame (c), we mark
as NP-0 and NP-1 the first and second argument
nodes whereas in the secondNST we have an hy-
pothesis of three arguments on theNP, NP andPP
nodes. We trasform them inNP-0 , NP-1 and
PP-2 .

This simple modification enables the tree ker-
nel to generate features useful to distinguish be-
tween two identical parse trees associated with dif-
ferent argument structures. For example, for the first
NST the fragments[NP-1 [NP][PP]] , [NP
[DT][NN]] and [PP [IN][NP]] are gener-
ated. They do not match anymore with the[NP-0
[NP][PP]] , [NP-1 [DT][NN]] and [PP-2
[IN][NP]] fragments of the secondNST .

In order to verify the relevance of our model, the
next section provides empirical evidence about the
effectiveness of our approach.

5 The Experiments

The experiments were carried out with
the SVM-light-TK software available at
http://ai-nlp.info.uniroma2.it/moschitti/

which encodes the tree kernels in the SVM-light
software (Joachims, 1999). Fortbc, we used the
linear kernel with a regularization parameter (option
-c ) equal to 1 and a cost-factor (option-j ) of 10 to
have a higher Recall. For thepastc we usedλ = 0.4
(see (Moschitti, 2004)).

As referring dataset, we used the PropBank cor-

pora available at www.cis.upenn.edu/ ∼ace ,
along with the Penn TreeBank 2
(www.cis.upenn.edu/ ∼treebank ) (Marcus et
al., 1993). This corpus contains about 53,700
sentences and a fixed split between training and
testing which has been used in other researches, e.g.
(Pradhan et al., 2004; Gildea and Palmer, 2002).
We did not include continuation and co-referring
arguments in our experiments.

We used sections from 02 to 07 (54,443 argu-
ment nodes and 1,343,046 non-argument nodes) to
train the traditional boundary classifier (tbc). Then,
we applied it to classify the sections from 08 to
21 (125,443 argument nodes vs. 3,010,673 non-
argument nodes). As results we obtained 2,988
NSTs containing at least an overlapping node pair
out of the total 65,212 predicate structures (accord-
ing to the tbc decisions). From the 2,988 over-
lapping structures we extracted 3,624 positive and
4,461 negativeNSTs, that we used to train the
pastc.

The performance was evaluated with theF1 mea-
sure2 over the section 23. This contains 10,406 ar-
gument nodes out of 249,879 parse tree nodes. By
applying thetbc classifier we derived 235 overlap-
ping NSTs, from which we extracted 204PASTs
and 385 incorrect predicate argument structures. On
such test data, the performance ofpastc was very
high, i.e. 87.08% in Precision and 89.22% in Recall.

Using thepastc we removed from thetbc thePA
that cause overlaps. To measure the impact on the
boundary identification performance, we compared
it with three different boundary classification base-
lines:

• tbc: overlaps are ignored and no decision is
taken. This provides an upper bound for the
recall as no potential argument is rejected for
later labeling. Notice that, in presence of over-
lapping nodes, the sentence cannot be anno-
tated correctly.

• RND: one among the non-overlapping struc-
tures with maximal number of arguments is
randomly selected.

2F1 assigns equal importance to PrecisionP and RecallR,
i.e. F1 = 2P×R

P+R
.



tbc tbc+RND tbc+Heu tbc+pastc

P R F P R F P R F P R F
All Struct. 92.21 98.76 95.37 93.55 97.31 95.39 92.96 97.32 95.10 94.40 98.42 96.36

Overl. Struct. 98.29 65.8 78.83 74.00 72.27 73.13 68.12 75.23 71.50 89.61 92.68 91.11

Table 1: Two-steps boundary classification performance using the traditional boundary classifiertbc, the random selection of

non-overlapping structures (RND), the heuristic to select the most suitable non-overlapping node set (Heu) and the predicate

argument spanning tree classifier (pastc).

• Heu (heuristic): one of theNSTs which con-
tain the nodes with the lowest overlapping
score is chosen. This score counts the number
of overlapping node pairs in theNST . For ex-
ample, in Figure 3.(a) we have aNP that over-
laps with two nodesNP andPP, thus it is as-
signed a score of 2.

The third row of Table 1 shows the results oftbc,
tbc + RND, tbc + Heu and tbc + pastc in the
columns 2,3,4 and 5, respectively. We note that:

• Thetbc F1 is slightly higher than the result ob-
tained in (Pradhan et al., 2004), i.e. 95.37%
vs. 93.8% on same training/testing conditions,
i.e. (same PropBank version, same training and
testing split and same machine learning algo-
rithm). This is explained by the fact that we
did not include the continuations and the co-
referring arguments that are more difficult to
detect.

• BothRND andHeu do not improve thetbc re-
sult. This can be explained by observing that in
the 50% of the cases a correct node is removed.

• When, to select the correct node, thepastc is
used, theF1 increases of 1.49%, i.e. (96.86 vs.
95.37). This is a very good result considering
that to increase the very high baseline oftbc is
hard.

In order to give a fairer evaluation of our approach
we tested the above classifiers on the overlapping
structures only, i.e. we measured thepastc improve-
ment on all and only the structures that required its
application. Such reduced test set contains 642 ar-
gument nodes and 15,408 non-argument nodes. The
fourth row of Table 1 reports the classifier perfor-
mance on such task. We note that thepastc im-
proves the other heuristics of about 20%.

6 Related Work

Recently, many kernels for natural language applica-
tions have been designed. In what follows, we high-
light their difference and properties.

The tree kernel used in this article was proposed
in (Collins and Duffy, 2002) for syntactic parsing re-
ranking. It was experimented with the Voted Percep-
tron and was shown to improve the syntactic parsing.
A refinement of such technique was presented in
(Taskar et al., 2004). The substructures produced by
the proposed tree kernel were bound to local prop-
erties of the target parse tree and more lexical infor-
mation was added to the overall kernel function.

In (Zelenko et al., 2003), two kernels over syn-
tactic shallow parser structures were devised for
the extraction of linguistic relations, e.g.person-
affiliation. To measure the similarity between two
nodes, thecontiguous string kerneland thesparse
string kernel(Lodhi et al., 2000) were used. The
former can be reduced to the contiguous substring
kernel whereas the latter can be transformed in the
non-contiguous string kernel. The high running time
complexity, caused by the general form of the frag-
ments, limited the experiments on data-set of just
200 news items.

In (Cumby and Roth, 2003), it is proposed a de-
scription language that models feature descriptors
to generate different feature type. The descriptors,
which are quantified logical prepositions, are instan-
tiated by means of aconcept graphwhich encodes
the structural data. In the case of relation extraction
theconcept graphis associated with a syntactic shal-
low parse and the extracted propositional features
express fragments of a such syntactic structure. The
experiments over the named entity class categoriza-
tion show that when the description language selects
an adequate set of tree fragments the Voted Percep-
tron algorithm increases its classification accuracy.

In (Culotta and Sorensen, 2004) a dependency



tree kernel is used to detect the Named Entity classes
in natural language texts. The major novelty was
the combination of the contiguous and sparse ker-
nels with the word kernel. The results show that
the contiguous outperforms the sparse kernel and the
bag-of-words.

7 Conclusions

The feature design for new natural language learn-
ing tasks is difficult. We can take advantage from
the kernel methods to model our intuitive knowledge
about the target linguistic phenomenon. In this pa-
per we have shown that we can exploit the properties
of tree kernels to engineer syntactic features for the
predicate argument boundary detection task.

Preliminary results on gold standard trees suggest
that (1) the information related to the whole predi-
cate argument structure is important and (2) tree ker-
nel can be used to generate syntactic features.

In the future, we would like to use an approach
similar to thePAST classifier on parses provided
by different parsing models to detect boundary and
to classify semantic role more accurately .

Acknowledgements
We wish to thank Ana-Maria Giuglea for her help in
the design and implementation of the basic Seman-
tic Role Labeling system that we used in the experi-
ments.

References

Michael Collins and Nigel Duffy. 2002. New ranking
algorithms for parsing and tagging: Kernels over dis-
crete structures, and the voted perceptron. InACL02.

Michael Collins. 2000. Discriminative reranking for nat-
ural language parsing. InProceedings of ICML 2000.

Aron Culotta and Jeffrey Sorensen. 2004. Dependency
tree kernels for relation extraction. InProceedings of
the 42nd Meeting of the Association for Computational
Linguistics (ACL’04), Main Volume, pages 423–429,
Barcelona, Spain, July.

Chad Cumby and Dan Roth. 2003. Kernel methods for
relational learning. InProceedings of the Twentieth
International Conference (ICML 2003), Washington,
DC, USA.

Daniel Gildea and Julia Hockenmaier. 2003. Identifying
semantic roles using combinatory categorial grammar.

In Proceedings of the 2003 Conference on Empirical
Methods in Natural Language Processing, Sapporo,
Japan.

Daniel Gildea and Daniel Jurasfky. 2002. Automatic la-
beling of semantic roles.Computational Linguistic,
28(3):496–530.

Daniel Gildea and Martha Palmer. 2002. The neces-
sity of parsing for predicate argument recognition. In
Proceedings of the 40th Annual Conference of the
Association for Computational Linguistics (ACL-02),
Philadelphia, PA, USA.

T. Joachims. 1999. Making large-scale SVM learning
practical. In B. Scḧolkopf, C. Burges, and A. Smola,
editors,Advances in Kernel Methods - Support Vector
Learning.

Paul Kingsbury and Martha Palmer. 2002. From Tree-
bank to PropBank. InProceedings of the 3rd Interna-
tional Conference on Language Resources and Evalu-
ation (LREC-2002), Las Palmas, Spain.

Ron Kohavi and Dan Sommerfield. 1995. Feature sub-
set selection using the wrapper model: Overfitting and
dynamic search space topology. InThe First Interna-
tional Conference on Knowledge Discovery and Data
Mining, pages 192–197. AAAI Press, Menlo Park,
California, August. Journal version in AIJ.

Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello
Cristianini, and Christopher Watkins. 2000. Text clas-
sification using string kernels. InNIPS, pages 563–
569.

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz.
1993. Building a large annotated corpus of en-
glish: The Penn Treebank.Computational Linguistics,
19:313–330.

Alessandro Moschitti. 2004. A study on convolution ker-
nels for shallow semantic parsing. Inproceedings of
the 42th Conference on Association for Computational
Linguistic (ACL-2004), Barcelona, Spain.

Sameer Pradhan, Kadri Hacioglu, Valeri Krugler, Wayne
Ward, James H. Martin, and Daniel Jurafsky. 2005.
Support vector learning for semantic argument classi-
fication. to appear in Machine Learning Journal.

Ben Taskar, Dan Klein, Mike Collins, Daphne Koller, and
Christopher Manning. 2004. Max-margin parsing. In
Dekang Lin and Dekai Wu, editors,Proceedings of
EMNLP 2004, pages 1–8, Barcelona, Spain, July. As-
sociation for Computational Linguistics.

Kristina Toutanova, Penka Markova, and Christopher D.
Manning. 2004. The leaf projection path view of
parse trees: Exploring string kernels for hpsg parse se-
lection. InProceedings of EMNLP 2004.



V. Vapnik. 1995.The Nature of Statistical Learning The-
ory. Springer.

D. Zelenko, C. Aone, and A. Richardella. 2003. Kernel
methods for relation extraction.Journal of Machine
Learning Research.

Appendix 1: Generalized Boundary
Selection Algorithm

Let O be the set of overlapping nodes ofPA, and
NO the set of non overlapping nodes ofPA.
Let subs(−1)(A) = {B|B ∈ 2A, |B| = |A| − 1}.
Let Ô = subs(−1)(O).

while(true)
begin

1. H = ∅
2. ∀o ∈ Ô:

(a) If o does not include any overlapping node
pair
thenH = H ∪ {o}

3. If H 6= ∅ then:
(a) Let ŝ =argmaxo∈H pastc(pNO∪o),

where pNO∪o represents the node span-
ning tree compatible witho, and the
pastc(pNO∪o) is the score provided by the
PAST SVM categorizer on it

(b) If pastc(ŝ) > 0 then RETURN( ŝ)

4. If Ô = {∅} then RETURN( NO )

5. Else:
(a) Ô = Ô −H
(b) Ô =

⋃
o∈Ô subs(−1)(o)

end


