
Generating SQL Queries Using Natural
Language Syntactic Dependencies and Metadata

Alessandra Giordani and Alessandro Moschitti

Department of Computer Science and Engineering
University of Trento

Via Sommarive 14, 38100 POVO (TN) - Italy
{agiordani,moschitti}@disi.unitn.it

Abstract. This research concerns with translating natural language
questions into SQL queries by exploiting the MySQL framework for both
hypothesis construction and thesis verification in the task of question an-
swering. We use linguistic dependencies and metadata to build sets of
possible SELECT and WHERE clauses. Then we exploit again the meta-
data to build FROM clauses enriched with meaningful joins. Finally, we
combine all the clauses to get the set of all possible SQL queries, produc-
ing an answer to the question. Our algorithm can be recursively applied
to deal with complex questions, requiring nested SELECT instructions.
Additionally, it proposes a weighting scheme to order all the generated
queries in terms of probability of correctness.
Our preliminary results are encouraging as they show that our system
generates the right SQL query among the first five in the 88% of the
cases. This result can be greatly improved by re-ranking the queries with
a machine learning methods.

1 Introduction

NLIDB propose a large body of work based manual work for grammar specifica-
tion and dataset annotation. However the task of question answering, translating
natural language (NL) into something understandable by a machine, in an au-
tomatic way is rather challenging as it is not possible to hand-crafting all the
needed rules.

We address this problem by generating SQL queries whose structure and
components match with NL concepts (expressed as words) and grammar depen-
dencies. Our new idea consists on how and where this matching can be found,
i.e., exploiting existing knowledge that comes along with each database (meta-
data). The resulting matching between metadata and words allows for building
sets of query components (clauses). These are combined together using a smart
algorithm to generate a set of SQL queries, taking into account also the structure
of the starting NL.

1.1 Motivations and Problem Definition

A database is not just a collection of data: at design time, domain experts or-
ganize entities and relationships giving proper names to tables and columns,



2 Alessandra Giordani and Alessandro Moschitti

defining constraints and specifying the type of the stored data. This additional
information is known as metadata and is stored in an underlying database called
Information Schema (IS, for brevity) that contains, for each database, ta-
bles containing columns referring to table names and column names. This self-
reference allows for querying metadata with the same technique and technology
used to query the database embedding data that answer a given question. In
other words, we can execute several SQL queries over IS and a target database
and combine their result sets to generate the final SQL query in a straightforward
and very intuitive way.

In addition, we can perform question answering against multiple databases,
since IS stores metadata of all databases that reside in a single machine. More-
over there is no need to use tailored dictionaries since metadata already embeds
a rich knowledge based on the experience of the domain expert that designed the
database. Another important feature that should be taken into account is the
potential complexity of the NL question (subordinates, conjunction, negation)
that can find its own matching in nested SQL query. The general SQL query
that our system can deal with has the form:

SELECT DISTINCT COLUMN FROM TABLE [WHERE CONDITION ] (1)

We can project a single COLUMN and eventually apply aggregation op-
erators that summarize it by means of SUM, AVG, MIN, MAX and COUNT.
Optionally, we can also select data for which a CONDITION holds. This is
represented as a logical expression where basic conditions, in the form eL OP eR,
with OP={<,>,LIKE,IN}, may be combined with AND, OR, NOT operators.
While eL (as well as COLUMN) is always in the form table.column, eR could
be a numerical value, a string value or a nested query. The meaning of TABLE
is more straightforward, since it should contain table name(s) to which the other
two clauses refer. This clause could just be a single table or be a join operation,
which selectively pairs tuples of two tables.

We found a mapping algorithm that matches dependencies between NL com-
ponents and SQL structure that allows to build a set of possible queries that an-
swers a given question. To represent textual relationships of the NL sentence we
use typed dependency relations. The Stanford Dependencies Collapsed (SDC)
representation [1] provide a simple and uniform description of binary grammar
relations holding between a governor and a dependent (each dependency is writ-
ten as rel(gov, dep) where gov and dep are words in the sentence).

The question answering task of finding an SQL query Q that retrieves an
answer for a given NL question q reduces to the following problem. Given ques-
tion q represented by means of its typed dependencies collapsed SDCq, generate
the three sets of clauses S,F ,W such that the set A =SELECT S× FROM F×
WHEREW contains all possible answers to q and select the one that maximizes
the probability of being the correct answering query Q. In the next section, we
show how we can efficiently generate such triples.

2 Building Clauses Sets
The first step before generating all possible queries for a question q is to create
their components S,F ,W, i.e. SELECT, FROM and WHERE clauses, starting



Automatic generation of SQL queries 3

Fig. 1. Categorizing stems into projection and/or selection oriented sets

from a dependency list SDCq. This list should be (a) preprocessed using pruning,
stemming and adding synonyms, (b) analyzed to create the set of stems used to
build S and W and (c) modified/cleaned to keep dependency used in a eventual
recursive step in order to generate nested queries.

First we prune those relations that are useless for our processing and then
reduce govs and deps to stems [2] to obtain the optimized list SDCopt

q . An
example showing SDCopt

q1 with respect to question q1: “What are the capitals of
the states that border the most populated state?” can be found in Figure 1.

Then for each grammatical relation in SDCopt
q we apply an iterative algo-

rithm that adds these stems respectively to Π and/or Σ categories accordingly
to a set rules that for lack of space cannot be listed here. However, the key idea
is to exploit projection-oriented relations (e.g. ROOT and nsubj ) and selection-
oriented ones (e.g. prep and obj ) to categorize stems recursively.

Next, we use Π to search in metadata all fields that could match with
projection-oriented stems. Based on how many matchings are found, a weight w
is inferred to each projection, obtaining the SELECT clause set S.

Instead, the selection-oriented set of stems Σ should be divided into two
distinct sets of stems ΣL and ΣR. The set ΣL contains stems that find their
matching in IS, whereas for remaining stems ΣR = Σ − ΣL we should look up
in the database to find a matching. In order to build the WHERE clauses set
W, ∀eL ∈ WL,∀eR ∈ WR we first generate basic expressions expr = eL OP R

and combine them by means of conjunction and negation, keeping only those
expressions expr such that the execution of πcount(∗) (σexpr(table)) 1 does not
lead to an error for at least a table in the database.

It is worth nothing that ΣR could be the empty set, e.g. when a WHERE
condition requires nesting; in this case eR will be the whole subquery. Moreover,
also ΣL could be empty. This is not surprising since, in a SQL query the WHERE
clause is not mandatory. However the absence of selection-oriented stems doesn’t
necessarily mean that W should be empty. When this happens all tables and
columns of the database are taken into account to find valid conditions: W*R =
{t.c|t ∈ πtable name (IS.Columns) and c ∈ πcolumn name (IS.Columns)}.

Last, once the two sets S and W have been constructed, the generation of
the FROM clause F is straightforward. This set should just contain all tables to
which clauses in S andW refer, enriched by pairwise joins. Again, this task could

1 π and σ represents projection and selection operators of relational algebra.



4 Alessandra Giordani and Alessandro Moschitti

Fig. 2. Possible pairings for q2: “Capitals of states bordering New York”

be performed running SQL queries over IS, and especially exploiting metadata
stored in table KEY COLUMN USAGE. This table identifies all columns in
current databases that are restricted by some unique, primary key, or foreign
key constraint. That is, for each foreign key column usage in the table, we can
determine how many aggregate table columns match that column usage.

3 Generating Queries
The starting point for finding an answering query is to generate the set A =
{S×F×W} ∪ {S×F}. If such query exists there should be a pairing 〈s, f, w〉 ∈
A, such that the execution of SELECT s FROM f [WHERE w] retrieve the cor-
rect answer. Given that on average each clause set contains up to ten items,
their product could result in a very huge set. Actually when generating all pairs
some preliminary conditions are verified, e.g. tables appearing in SELECT and
WHERE clauses should as well appear in the FROM clause, otherwise the ex-
ecution of that query will fail. This avoids to generate incorrect queries and to
waste time trying to execute them.

At this point the set A contain all valid pairings, among which there are
still someone not useful. One example are meaningless queries: those projecting
the same field compared to a value in the selection. For example the pairing
〈s3, f2, w2〉 in Figure 2 answers the question “Which state is Texas?” that is
clearly useless.

In particular there are redundant queries that once optimized can lead to
a duplicate in the set; hence its cardinality is lower than in theory. For ex-
ample, the pairing 〈s2, f3, w1〉 involves that the columns state.state name and
border info.border are the same, so w2 would select same rows of w′1 : state.state
name =’new york’, but this means that table border info is not used and this

pairing would be equivalent to 〈s2, f1, w′1〉, which is a meaningless query.
As we already noticed in previous sections, we add a weight to each clauses

in S and W. This weight is a simple measure consisting in counting how many
stems originated the clause. When pairing clauses the combined weight is just
computed as the sum of its components, and it’s used to order the obtained set
Ā of possible useful queries from the most probable to the less one.

In Figure 2 the higher probability is highlighted by thicker connection lines
(dashed lines illustrate pruned queries). The final ordered set answering q2 is

Ā=
{
〈s1, f3, w2〉7 , 〈s3, f2, w1〉6 , 〈s2, f3, w2〉6 , 〈s1, f1〉3 , 〈s2, f1〉2 , 〈s3, f2〉1

}
. The right

answering query can be derived from the pairing with highest weight, that is:
SELECT state.capital FROM state join border on state.state name =

border info.border WHERE border info.state name=’new york’.



Automatic generation of SQL queries 5

Fig. 3. Precision values when seeking for the answer in a larger subset.

It is worth noting that there could be more queries with the same weight. To
cope with that we privilege queries that involve less joins and those that embed
the most meaningful (i.e. referenced) table, e.g. state in the case of GeoQuery.
Note, for example, the order of the second and third pairings in Ā: they have
been swapped since f3 contains a join while f2 doesn’t.

4 Preliminary Experiment and Related Work

In a first preliminary experiment, we have studied the effectiveness of our auto-
matic generation of SQL queries for a given NL question by testing the accuracy
of selecting the one that retrieves the correct answer.

We started from the set of 800 NL questions given in the GeoQuery cor-
pus, trying to generate a result set equivalent to the one of associated SQL query
in the corpus. Originally these questions were paired with meaning representa-
tions [3] that have been translated [4] into SQL queries. However, 23 of 800
queries are wrong or cannot be executed without leading to a MySQL error.

The first implementation of the algorithm as illustrated in this paper, failed
to generate the set of possible queries for 71 questions, leading to a recall of 88%.
These failures may be due to: (i) empty clauses set S and/orW, e.g., “How many
square kilometers in the us?” does not contain any useful stem; (ii) mismatching
in nested queries, e.g. “Count the states which have elevations lower than what
alabama has” contains an implicit reference to a missing piece of question; and
(iii) ambiguous questions, e.g. “Which states does the colorado?” from which we
retrieve an incomplete dependency set.

For all remaining questions from which we succeed in generating an ordered
list of possible queries, we find that the query on top of this list retrieves the
correct result set 81% of the times. For the other questions it can be found within
the first 10 generated queries with a precision of 99%, according to the growing
precision curve shown in Figure 3. As pointed out in the plot, the right query is
found among the first three in 92% of the cases.

As the previous work suggests [5], similar outcome has been obtained using
different approaches: relying on semantic grammar specified by an expert user
[6], enriching the information contained in the pairs [4] and implementing ad-
hoc rules in a semantic parser [3, 7]. Our system instead, requires no intervention
since the database metadata already contain all the needed information. This
result is encouraging since it compares favorably with the state of the art: with
respect to the Precise system [4] (100% Precision and 77% Recall) and the Krisp



6 Alessandra Giordani and Alessandro Moschitti

[3] system (94% Precision and 78% Recall). Our system can always provide an
answer, achieving an accuracy of 81%. If we consider valid an answer given in the
top three, our accuracy increases to 95%, achieving 99% on the 10-top ranked.
Note that the accuracy at top-ranked answer can be improved by learning a re-
ranker, as explained in [8], which can move correct answers in the top position.

5 Conclusions and Future Work
In this paper, we approach the question answering task of implementing a NL
interface to databases by automatically generating SQL queries based on gram-
matical relations and matching metadata. The complexity of generated queries is
fairly high indeed, since we can deal with questions that require nesting, aggrega-
tion and negation in addition to basic projection, selection and joining (e.g. “How
many states have major non-capital cities excluding Texas”). To our knowledge,
the underlying idea that we propose for building and combining clauses sets is
novel. Preliminary experiments on automatic question generation system show
a satisfactory accuracy, i.e. 81%, although large improvement is still possible.

In the future we plan to extend this research by introducing learning ap-
proaches to classify and rank generated queries.

Acknowledgement

The research described in this paper has been partially supported by the European

Community’s Seventh Framework Programme (FP7/2007-2013) under the grants #247758:

EternalS – Trustworthy Eternal Systems via Evolving Software, Data and Knowl-

edge, and #288024: LiMoSINe – Linguistically Motivated Semantic aggregation en-

giNes.

References

1. Marie-Catherine de Marneffe, B.M., Manning, C.D.: Generating typed dependency
parses from phrase structure parses. In: Proceedings LREC 2006. (2006)

2. Porter, M.: Porter stemmer. http://tartarus.org/~martin/PorterStemmer/
3. Kate, R.J., Mooney, R.J.: Using string-kernels for learning semantic parsers. In:

Proceedings of the 21st ICCL and 44th Annual Meeting of the ACL, Sydney, Aus-
tralia, Association for Computational Linguistics (July 2006) 913–920

4. Popescu, A.M., A Etzioni, O., A Kautz, H.: Towards a theory of natural language
interfaces to databases. In: Proceedings of the 2003 International Conference on
Intelligent User Interfaces, Miami, Association for Computational Linguistics (2003)

5. Giordani, A., Moschitti, A.: Corpora for automatically learning to map natural
language questions into sql queries. In: Proceedings of LREC’10), Valletta, Malta,
European Language Resources Association (ELRA) (may 2010)

6. Minock, M., Olofsson, P., Näslund, A.: Towards building robust natural language
interfaces to databases. In: NLDB ’08: Proceedings of Natural Language and Infor-
mation Systems, Berlin, Heidelberg (2008)

7. Ruwanpura, S.: Sq-hal: Natural language to sql translator. http://www.csse.

monash.edu.au/hons/projects/2000/Supun.Ruwanpura
8. Giordani, A., Moschitti, A.: Syntactic structural kernels for natural language inter-

faces to databases. In: Proceedings of Machine Learning and Knowledge Discovery
in Databases: Part I. ECML PKDD ’09, Springer-Verlag (2009)


