Anomaly Detection in the Cloud: Detecting Security
Incidents via Machine Learning

Matthias Gander, Basel Katt, Michael Felderer, Adrian Tolbaru, Ruth Breu! and Alessandro Moschitti?

Abstract. Cloud computing is now on the verge of being embraced
as a serious usage-model. However, while outsourcing services and
workflows into the cloud provides indisputable benefits in terms of
flexibility of costs and scalability, there is little advance in security
(which can influence reliability), transparency and incident handling.
The problem of applying the existing security tools in the cloud is
twofold. First, these tools do not consider the specific attacks and
challenges of cloud environments, e.g., cross-VM side-channel at-
tacks. Second, these tools focus on attacks and threats at only one
layer of abstraction, e.g., the network, the service, or the workflow
layers. Thus, the semantic gap between events and alerts at differ-
ent layers is still an open issue. The aim of this paper is to present
ongoing work towards a Monitoring-as-a-Service anomaly detection
framework in a hybrid or public cloud. The goal of our framework is
twofold. First it closes the gap between incidents at different layers
of cloud-sourced workflows, namely we focus both on the workflow
and the infrastracture layers. Second, our framework tackles chal-
lenges stemming from cloud usage, like multi-tenancy. Our frame-
work uses complex event processing rules and machine learning, to
detect populate user-specified metrics that can be used to assess the
security status of the monitored system.

1 Introduction

Building your own monolithic IT infrastructure is slowly rendered
obsolete by cost efficient cloud solutions that promise on-demand
scalability with leased hardware, i.e. by contracting Infrastructure as
a Service (IaaS) provider such as Amazon’s “elastic compute cloud”
EC2 cloud) [1, 2]. Therefore it is not surprising that corporations opt
to outsource IT related computing units, such as hosts or services,
to such clouds (cloud-sourcing) to become cloud fenants. Leading
analysts forecast a dramatic increase of cloud services revenue, i.e.
Gartner, Inc. forecast Software as a Service (SaaS) to increase 17.9%
from the 2011 revenue of $12.3 billion.> Cloud tenants though, of-
ten have to pay a price. Increased scalability of resources demands
dynamical compositions of computing machinery resulting in design
inherent weaknesses, for instance, tenants share the same cloud and
are potentially allowed to interact by design [23].

This results in potentially hostile machines residing within the corpo-
rate network that has to be secured. Hostile machines on the network
tear security holes in multiple layers of computation. Infrastructure
items, such as hosts, can be broken into by a competing company to
attain confidential information about its users and other data that is

1 University of Innsbruck, Austria, email: {matthias.gander, michael.felderer,
basel.katt, adrian.tolbaru, ruth.breu} @uibk.ac.at

2 Information Engineering and Computer Science Department, University of
Trento, Italy, email: moschitti @disi.unitn.it

3 http://www.gartner.com/it/page.jsp?id=1963815, Accessed: July 30, 2012

stored on the machine. This in turn allows workflows to be changed,
i.e. by breaking in a system and patching the code-base or the plat-
form itself [27, 15], or simply by reverse engineering workflows and
creating rogue clients. A thusly changed workflow has semantical
consequences on its logic, for instance, bypassed checks for suf-
ficient funds in a credit card application, a compromised XACML
(or Kerberos) infrastructure that grants authorizational access to re-
stricted entities.

Another problem is that attacks themselves have become sneakier.
Attackers tend to use more advanced techniques, and more persis-
tence to eventually mask an attack as inside job*. For example, if
credentials of legitimate service users are stolen and information is
leaked gradually and persistently over a longer time period. Such at-
tacks usually manifest in a change of behavior of entities involved
in any given activity (e.g. behavioural changes observed in off-key
working hours, spiking access over document data etc.).

To decrease the chance of successful attacks, security monitoring
was introduced to analyse events committed by sensors in the corpo-
rate network. The analysis of events usually involves signature-based
methods. Features, extracted from logged event data, are compared
to features in attack signatures which in turn are provided by ex-
perts [17, 25]. Other approaches, e.g. anomaly detection, often make
use of machine learning-based algorithms [11]. Anomalies are an un-
expected event (or a series of unexpected events) that exhibit a signif-
icant change in behaviour of an entity, for example, a user. If anoma-
lous behavior can be distinguished from normal behavior by hard
bounds that are known beforehand, then signature-based approaches
can be used to classify attacks immediately. However, when it is hard
to specify all entities and their normal behaviour completely before-
hand, then statistical measures have to be used to classify deviations
in oder to detect possible attacks.

Unfortunately, probabilities and patterns of unwanted behaviour are
very hard to procure and labeled training data for a new system
is sparse [11, 22]. But it is reasonable to assume that most activ-
ity in a network is not triggered by compromised machines and at-
tacks are represented by only a tiny fraction of the overall behaviour.
Therefore, methods provided by unsupervised learning yield outliers,
which in turn may represent attacks [22, 18, 5]. Unsupervised learn-
ing can roughly be classified in, nearest-neighbour, rule-mining, sta-
tistical, and clustering techniques. Each of which have advantages
and disadvantages, depending on how they are used, see Chandola et
al. [5]. For our purpose of grouping anomalous instances, clustering
seems best suited. The disadvantages of clustering, i.e. the complex-
ity of clustering algorithms and possible misclassifications, can be
reduced by leveraging optimized algorithms, assumptions, and false-

4 http://www.schneier.com/blog/archives/2011/11/advanced_persis.html, Ac-
cessed: July 30, 2012

positive reductions [22, 13].

Both methods, signature-based and anomaly-based, have strengths
and weaknesses. The main drawback of signature-based methods is
the inherent limitation that they always have to consult the signature
database to match detected features with the information therein [22].
If a new attack is out, it is probable that the signature database does
not contain the latest attack pattern. Anomaly-based detection tech-
niques, on other hand, have their true potential in detecting previ-
ously unseen patterns [11]. A common limitation both detection tech-
niques share is a lack of “context”. This context needs to provide
information about inherent relations among users, services they use,
the hosts from which they operate, and for which workflow they are
assigned to. For instance, it is not sufficient to know that a service has
longer than average response time, the correlation of response time
and measurable changes of user and network host behaviour offers
more valuable clues.

In order to get benefits from signature- and anomaly-based moni-
toring we propose to combine them into a context-based anomaly
detection framework. This framework consists of three main tiers:

i The specification of a DSL which allows to model the cloud-
sourced IT landscape in detail such that workflows can be spec-
ified, monitoring rules can be generated, and computing entities
can be put into relation.

ii The detection of workflow aberrations, or semantic gaps, caused
by attacks via Complex Event Processing (CEP) based on mon-
itoring rules generated by the model. CEP is a signature-based
method to analyze event streams in a midtoupper size IT infras-
tructure [8]. The purpose of CEP is to derive more meaningful
events (in this case alerts).

iii The detection of abnormal entities, i.e. users, services, network
hosts, and workflows, by leveraging unsupervised machine learn-
ing, to detect unforeseen changes in the behavior.

The application of our framework in a cloud-sourced health-care en-
vironment provides the means necessary to unravel the following in-
cidents:

e Semantic Gaps. A document retrieval workflow doctor accessing
the database without proof of first having received a permission
token, replay attacks, workflow aberrations through patched code.

e Anomalies. An increase of service activity, service calls at unusual
hours, abnormal users, detectable by a gradually increasing num-
ber of document requests, suspiciously active hosts, but also a
change in flow behavior of service calls and network hosts (i.e.
payload analysis of web-service parameters). The entities, ser-
vices, users, hosts, workflows, constituting the unusual behaviour
are labeled as anomaly.

The paper will continue with a description of the framework in Sec-
tion 2, including the DSL 2.1, the usage of CEP 2.2, profiling enti-
ties 2.3 and anomaly detection via fingerprints 2.4. Section 3 depicts
the used architecture and Sections 6 and 5 discuss future work and
related work respectively.

2 Framework Overview

In this section we discuss the framework in more detail. We begin
with the DSL to specify the IT infrastructure consisting of work-
flows, services, hosts, users, and their relations. This in turn leads to
the discussion of how CEP is included in the framework. Afterwards
our discussion will continue with details about the profiling of enti-
ties for anomaly detection purposes, i.e. discuss the different profiles,

the features for fingerprints, the clustering method and distance mea-
sure, and round it up with a description of the architecture.

Every monitoring system needs events to determine the actual state
of the system. Our framework expects events from the infrastruc-
ture, in form of TCP and UDP packets sent from the machines in the
network, and in form of service calls. TCP and UDP packets are ag-
gregated as flows that have multiple characteristics, such as, source,
destination, ports, time, among others, duration. Service events are
used to derive the current state of the services, show user behaviour
(i.e. access requests), and give general information on the state of
workflows. Information that should be present is, the duration of a
call, the time, the user, and the object id that was requested.

2.1 A DSL for IT landscapes

The use of metamodels or domain specific languages (DSL) is not
uncommon [4, 16], their main use is to provide the vocabulary for
experts to let them express their knowledge to represent the system
in a textual > (or graphical) model. These models can later be ac-
cessed for look-ups, reasoning, and/or code generation.

Our DSL, therefore, allows the creation of a model that in turn al-
lows harvesting information of entities (i.e. traceability of deployed
entities to model information) and monitoring rule-generation. The
model in Figure 1 reuses concepts from Breu et al. [4, 16], for exam-
ple the introduction of multiple conceptual layers. The event-driven
process chain paradigm [19] that is used in the model facilitates the
modeling process, since it allows to represent services through their
behaviour in form of events. A workflow activity, therefore, is not
modeled via services and their call-sequence but rather as a series of
events.

A model derived from the DSL contains three layers, Workflow, Ser-
vice and Infrastructure. The workflow layer contains three classes,
these are WF Activity, Role, and Actor. Activities and service events
are related by arcs (Arc) which describe the way a workflow is exe-
cuted. These arcs can have different types, i.e. AND, OR, XOR, SEQ.
SEQ denotes that if said arc lies between two workflow activities A
and B, then A is followed by B. AND, OR and XOR relate events in a
boolean fashion. For instance A AND B,C denotes that after A, B and
C is executed. Roles, role is a set of responsibilities and obligations
for a stakeholder, that can influence heuristics during the analysis of
events. As discussed above, services are not modeled directly, but are
modelled as ServiceEvent of various types (EventTypeEnum). Event
emitters are services, on top of hosts. Hence, among other features
provided by the service event, i.e. variable ones such as timestamps
and session ids (to identify the Actor), we assume a source and a
destination pointing to the hosts that were responsible for the event.
This allows us to connect the service layer to the infrastructure layer.
Hosts (Node in the model) can be of various types (NodeType), this
makes it easier to map events to their corresponding workflow activ-
ity during runtime.

Identifier defines the set of identifiers, i.e. all elements are con-
nected to it via identifiedBy, such as hosts, service events, and actors
are identified by it (via UUID and a location). The elements doing
the execution are hosts from the infrastructure, hence the (runsOn)
class.

2.2 Complex Event Processing

To monitor proper execution of systems rule-based approaches tend
to be used, i.e. in form of CEP. For CEP much research has been

5 xText: http://www.eclipse.org/Xtext, Accessed: July 20, 2012

Transition Workflow Identification
End Ly WF Activity identifie sSWF
i 1D : Identifier involvedin Role N Actor
Beain T 0.* 0¥ rpe: Type ‘“15* D - Identifier
1.¥ *
executionOrder
B service \dentifier
concerns D Sting
1¥[L* Begin ServiceEvent denifiedsy
WF SE End Timestamp
‘ ‘ n Type - EventTypeEnum U
—— 5" ldentifer EventTypeEnum
“Final - Boolean = false .
Authorization
Arc Authentication
runsOn Query
Retrieve
Update
Forward
Source | | Destination et ifckenl
Delete
Create
; | dentifiedBy
_Ln ical Operator
linkedTo ‘ Infrastructure —
ocation
1
Node neration numeration L !
-Type : NodeTypeEnum NodeTs
1% |-DynType : NodeDynEnum | [Static P e
1 - Dynamic GatewayService RoleEnumType
ISty Privileged
Workstation o
hierarchy AuthenticationService " leaed
DatabaseService
Database
Figure 1. A language to describe an IT landscape.

invested in query languages to handle the stream of events in query-
based languages similar to SQL®, ESPER’, Oracle CEP®, Coral8’
and Aleri'®. In our case we need to listen for events that are mod-
elled beforehand, i.e. we need to listen for sequences that represent a
workflow. These sequences give all the information necessary to in-
fer who is responsible for certain actions. Part of our work focuses on
the creation of CEP rules automatically based on the model created
by the expert. For CEP rules the Esper Query Language (EQL)!! in
combination with the Esper CEP engine was chosen, since it is open
source (GPL GNU Public License v2.0), has an active community
and has shown potential in several benchmarks [12]. The translation
from workflow models to query rules is straight forward, since EQL
provides the same boolean logical connectives as our model and also
provides the possibility to model sequences —. For instance, the
formula Evg — FEwv, is only satisfied if andqonly if Evg is em-

seq

mitted before Ev;. In summary a workflow model, as used for com-
pliance detection, is nothing more than a series of CEP rules that are
verified by the CEP engine.

2.3 Profiling of Entities

To determine anomalies in the activity of a corporate network, the ac-
counting information of banks, or more general in usage behaviours,
it is common to first create a profile that describes a normal behaviour
of key entities [6, 7]. The profile types, service, user, host, and work-
flow, that we consider reflect the key entities that are involved in an
on-line data processing. Gartner, Inc. [20] states, for instance, that
there is the need for user profiling to monitor user behaviour to pre-
vent data theft. Service profiles are needed to determine, among oth-
ers, a gradual decrease of performance compared to itself or an over-

6 http://www.w3schools.com/sql/default.asp, Accessed: July 20, 2012
7 http://esper.codehaus.org/, Accessed: July 20, 2012

8 http://tinyurl.com/OracleCEP, Accessed: July 20, 2012

9 http://tinyurl.com/Coral8CEP, Accessed: July 20, 2012

10 http://tinyurl.com/AleriStreaming, Accessed: July 20, 2012

1 http://esper.codehaus.org/, Accessed: July 20, 2012

all different behaviour from other services. Communication patterns
among hosts also need to be considered in form of a host profile.
Outliers in each of these types of entities have an impact on the per-
formance/security of workflows and their activity profile.

Assume, for instance, a compromised machine that gradually in-
creases the number of requests for classified object information in
the name of an existing user U over service S by using machines
Mop..,. Normally, this is not easy to trace, especially if U has per-
missions to query restricted information (no CEP alerts will be gen-
erated). A time-based analysis, though, yields detectable changes in
the behaviour of U, S, and My...,,. These are, more queries per in U’s
name, more queries spread to machines Mp..,, more queries at un-
usual hours for S by U, and at the end, a detectable change of the
workflow behaviour itself. The profiles are further refined into, an
immediate, hourly, and monthly track.

i To perform an on-line analysis of individual service events, CEP is
used. CEP alerts have an immediate impact on the immediate track
as well as statistical information gathered from the event itself, i.e.
z-scores from parameters, duration, and the payload.

ii An hourly track allows to aggregate some more information about
hourly deviances, for instance, the average number of calls for a
service, the number of its users, average call duration, extreme
values such as maximum duration and minimum duration, the
number of alerts produced by the immediate track during selected
hours, and more.

iii To assess more subtle patterns of deviance, a longer time-period is

of need. To give an example consider the following scenario of a
persistent attack. A competing company or government managed
to break into the system and hides its activities of espionage, e.g.,
by leaking of sensitive documents, in form of an insider attack.
For this, the real attackers stole the credentials of some user U to
gradually query more and more documents, for instance creating
2-3% more queries per day (hour) than was normal. The immedi-
ate and hourly track are not built to detect such subtle aberrations
and, hence, fail to detect them. The comparison of absolute access
numbers over, for instance a monthly basis, shows a huge increase

of query activity.

Information from the hourly (h) and monthly (m) track of an en-
tity is represented by fingerprints (Fj, Fy,) and represent, hence, a
measure of the overall behaviour of the selected entity (e). Finger-
prints are basically feature vectors v; = (vio,. .., Vin—1), contain-
ing continuous data. Fingerprints contain for instance, the number of
CEP alerts in an hour, the number of alerts raised from immediate
profiles, or z-score outliers. Our framework uses these fingerprints to
compare its behaviour to other entities’ behaviours but also to mea-
sure potential deviances of its own behaviour over time.

2.4 Clustering Fingerprints for Anomaly Detection

To determine abnormal entities in relation to other entities of the
same type it is necessary to compare individual features of a pro-
file and attain a sense of distance. Since individual characteristics of
a profile might not change sufficiently to determine that an entity is
an anomaly, we take into consideration all of the individual features
that were collected. To take all features into consideration clustering
can be used [24]. Clustering makes use of the inherent structure of
data and groups data instances (clustering) by common attributes and
a similarity measure. After the outliers have been found, the model
can then be used to further link entities and detect correlations among
outlying users, and, for instance, services. Figure 2 summarizes how
the layers are related.

Although other distance measures exist, e.g., Jaccard, Dice, and
Russell/Rao [24, 10], which have their use when comparing dichoto-
mous data, the measure of distance which we use is the Euclidean
metric, see Formula 1. It gives us the opportunity to measure dis-
tances of continuous multi-dimensional variables, i.e., v; € R

[NE

n—1

> Vi = V') ()

k=0

d(vi,v'i) =

Various clustering algorithms have been proposed, e.g. DB-
SCAN [9]. DBSCAN finds clusters based on a density measure, i.e.,
it finds clusters in which data instances have only a maximal dis-
tance to each other. Hence, points near to each other are grouped in
the same cluster. This may lead to arbitrary shaped clusters, including
spherical cluster shapes. On the one hand, arbitrary shaped clusters
do not lead to any clear results, and on the other hand, clusters in
our case might have varying density values e, which is problematic
for DBSCAN. The algorithm of our choice is fixed-width cluster-
ing [22, 21]. The algorithm, described in Figure 3, has the benefit
of a better runtime complexity, compared to other clustering algo-
rithms, e.g., standard k-means, since it computes clusters with just
a single passage through the data instances (fingerprints). In fixed-
width clustering, clusters have a maximal width and a cluster center,
called centroid. Data instances that are clustered based on their fea-
ture vector either surpass the maximal width (based on the distance
measure) and create a new cluster or have a smaller distance and be-
come part of the cluster and have a certain distance to its centroid.
The fewer data instances are inside a cluster the more probable it is
that those data instances are in fact outliers. This is basically the as-
sumption discussed before: normal behaviour represents the major-
ity of data instances whereas abnormal behaviour is represented by
only few data instances (which represent potential attacks). Hence,
clusters containing fewer instances than a user-configured threshold,
represent anomalous data points. For instance if less than 1% of data

instances are within a cluster it is labeled as anomalous. We leverage
the distance notation from Formula 1 to d(v;, C') to denote the dis-
tance from a feature vector to a cluster (represented by its centroid).
The algorithm to cluster the fingerprints, as described in [21, 22],
consists of 3 steps:

1. The set S of clusters is first initialized to the empty set.
2. A fingerprint v; = (vj,...,Vin—1) is taken from the set of fin-
gerprints (unlabeled set of fingerprints).

IF The set S is still empty then the fingerprint will create a
new cluster C' and v; will be the centroid.

ELSE The cluster C' with the smallest distance is selected
arg gﬁg(d(vi, () such that the fingerprint does not surpass
€

the maximal width. If such a cluster is found, the fingerprint
is inserted, otherwise a new cluster is generated and v; will be
the centroid.

3. The second step is repeated for all remaining fingerprints.

Figure 3. Single Linkage Clustering [21, 22].

2.4.1 Detecting Abnormal Entities and False-Positives.

Clusters containing less fingerprints than the user-specified thresh-
old are automatically labeled as outliers. The fingerprints within, and
their entities they represent, are then also labeled as anomalous. For
each entity there are two possibilities for creating an anomaly alert,
(i) either through a change of behaviour from itself, or (ii) by being
substantially different from other entities of the same type. The idea
behind (i) is that the system collects fingerprints for a single entity
over an amount of time, i.e., hours or months, and clusters them. If
an entity did not change its behaviour, its fingerprints are in the same
dense cluster c. The more changes an entity undergoes (stored in the
behavioural profile) the more the fingerprints change. Eventually the
generated fingerprint surpasses the distance to the centroid of ¢ and
results in an anomaly alert. In case of (ii) fingerprints are used to
compare entities among each other. A user, who exhibits a signifi-
cant different usage pattern, creates his own cluster and is labeled as
anomalous. In case a new user, service, or host is introduced to the
system, it can be determined automatically if said entity is abnormal
or not, simply by comparing its fingerprint.

Through the use of the domain model, entities are put in relation
to each other, i.e., users to hosts, or services to workflows. Anoma-
lies are, thus, put into context and alerts propagated upwards. For
instance, abnormal services, hosts, and users, determine the security
status of the assigned workflows. Vice-versa, drilling down on an
abnormal workflow (e.g., too much network traffic or too many doc-
ument queries), exposes abnormal entities, e.g., anomalous services,
users, hosts, and speeds-up root-cause analysis.

It is possible, even likely, that some clusters that are detected anoma-
lous are actually not anomalous. Groups of fileservers will, for in-
stance, have different fingerprints than mail servers or timeservers. It
is therefore important to consider various degrees of optimization to
prevent false-positives. There are a couple of options, since the clus-
tering algorithm is parameterized by two variables, the width and the
threshold for anomalies, tweaking either of them will reduce false-
positives. An increased cluster-width allows sparse clusters, exhibit-
ing a significant higher variance, to be normal. Rising the threshold

Workflow
Activities
>
Y
w
Y
g

Y
o

Traces of service calls
compared to CEP rules

\

O—>0@

O—0—0

to detect aberrations of
workflows.

i

°8 |

Service Calls and
Network events

O 000 O 0O W O W W 0N OO O X O
O O O ¢ o O O e O O o Profiles from service,
user, node, and workflow
Node Profile User Profile Service Profile Workflow Profile activity are clustered.
o @ ” | N[N Qo[
B = o[@ @ @ (C (¢ &%
g4 5B|58 58|58 5B)||5%

Figure 2. Overview of connecting the layers.

allows to have clusters with few instances to be normal as well. An-
other option is the creation of tests to determine the true state of an
entity, but that is left for future work. If a cluster, and the ensuing
entities within, are still labeled as anomalies the framework provides
to relabel them as normal.

3 Architecture

Figure 4 indicates the different components of our monitoring archi-
tecture, which can be offered by a cloud provider as a Monitoring
as a Service solution. A tenant uses the DSL provided by the model-
ing component to provide a model which describes his IT landscape.
This model is aligned to the three layers we discussed above. Based
on the model, rules to detect workflow non-compliance are created
to configure the CEP engine. To customize the monitoring service,
the tenant supplies the policy engine with policies (which are rules
or metrics) to enable the cloud provider to react on alerts. Policies
specify (i) the gravity of alerts and (ii) what should happen in case
they happen. By providing a policy, a tenant bids the cloud provider
to cut off a virtual host from the network, if said host is classified
as an information leaking host. This state can be mantained until the
host is classified as normal. The event processing component consists
of service and network sensors as well as a normalization feature
extraction element. The sensors act as event sinks for multiple ser-
vice and network event emitter sources. The service sensor receives
JSON'? encoded service call data, whereas the network monitor is
built as a netflow-collector. Analysis of workflow compliance (i.e.
via CEP) and outlier detection (i.e., via Clustering) is done in the
analysis component. Statistical methods, i.e., z-scores are computed
by “The Apache Commons Mathematics Library”.'* The CEP engine
of choice is ESPER'. Based on the outcome of the analysis and the
severity of alerts, the policy engine populates the dashboard and de-
termines reactive measures for the cloud provider (policies provided
by the tenant). The dashboard displays integral information about a
tenant’s infrastructure, i.e., the infrastructure in tabular form, impor-
tant alerts, and anomalous entities.

12 http://www.json.org/, Accessed: July 30, 2012
13 http://commons.apache.org/math/, Accessed: July 30, 2012
14 http://esper.codehaus.org/, Accessed: July 20, 2012

4 Evaluation

The evaluation consists of a real-life healthcare scenario where ser-
vices, data, and hosts, are outsourced to an IaaS cloud. The ar-
chitecture consists of all services necessary to allow a regulated
flow of action in a hospital, e.g., image retrieval services, diagnose
services, and an XACML-Kerberos like access control infrastruc-
ture. Based on the runtime behaviour of the system we train our
machine-learning component and measure deviations of user- and
network-activity. To measure the effectiveness of our approach the
healthcare architecture will be subject to various stealthy attacks,
i.e., a failed XACML architecture, leak attacks from insiders, fuzzy
security-testing of web-services from other tenants, or TCP/UDP
malware propagation across the cloud. The evaluation will show if
the anomaly detection can provide information about these attacks.

5 Related Work

In this section we discuss related work in the areas of anomaly de-
tection, CEP, and monitoring. There has been plenty of research
for anomaly detection via clustering, a survey on this topic is
provided by [11]. Clustering is quite versatile as the approaches
in [22, 21, 18, 13] point out. Portnoy et al. [22] detect attacks, e.g.,
denial of service, in the KDD 1999 data via clustering of network
activity set.”> Gu et al. [13] use clustering for the detection of bot-
nets by a framework called “Botminer”. The Authors in [18] improve
clustering for NIDS by using a density-based clustering algorithm
and a grid-based metric and evaluate their efforts on the KDD 1999
data set. To measure hosts we create profiles of their network be-
haviour by sampling their TCP/UDP flows based on [14, 13]. To our
knowledge, the clustering algorithm itself was first presented in [22].
Instead of clustering individual multi-dimensional features form the
KDD training set we cluster fingerprints of various entities. The main
difference from the proposed work of Gu et al. [13] is that the for-
mer only profiles hosts for the specific detection of botnets, whereas
we only try to find outliers and assemble outliers in a holistic profile
of the infrastructure. The approach presented in [14] is more similar
to ours since it also profiles machines in the network. But we’re not
restricted to machines only, but also services, users, and workflows.

15 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html, Accessed: July
20,2012

Modelling

R\
[IT landscape

User I WF |Architecture

/,,‘\®/\
\’ ‘) create
_’l Policy ‘ CEP Rules || Sensor Info
ECA
provides configure configures
Policy Engine
< 3) o App S:l\'l\ée':: Glcz'alssfishi .
: il P8z | e " &
% <z IS s L % Sensor (X7}
9 El @ Q = | = > 3 S
> FES A 2 3 = 02
S 3 5 True N) g JSON 2 g)
z g Alerts | | = Event Stream(| £ g Infrastructure
2 3 ML Engine E Sensor
Clustering,
. . libpcap/Netflow
Dashboard l v Analysis Event Processing

Reactions
Consult

Figure 4. Overview of the monitoring architecture.

The multi-tier DSL proposed in this paper allows the definition of
node hierarchies, roles, actors, and distinguishes three layers. These
design decisions are in its core similar to [4, 16]. Breu and Inner-
hofer et al. provide a model-based approach with concepts for secu-
rity management. There is related work for DSLs to create service in-
frastructures Berre et al. [3] present the Service Oriented Architecture
Modeling Language (SoaML) and Popescu et al. provide the Service
Markup Language SML. SoaML was not desireable for our scenario,
since our interest was more cloud oriented than SOA-centric. Our
DSL allows the definition of event-sequences, which in turn allow
to detect deviances to rules generated by the workflow model. The
paradigm of modeling services as events is similar to event-driven
process chains (EPC), discussed in-depth in [26]. Workflow compli-
ance in SOA via CEP has been discussed by Mulo et al. [19]. A
service invocation is regarded as an event and business process activ-
ities as event-trails. These event-trails guide the creation of queries
which a CEP engine uses to identify and monitor business activities.
Anomaly detection itself has been done frequently in many domains,
though to the best of our knowledge, there is no cloud monitoring
approach that allows CEP and anomaly detection to monitor (a) the
execution of workflows for semantic gaps and (b) detect infrastruc-
ture anomalies relative to said workflows. Due to the formal repre-
sentation of “behaviour” of entities we’re able to pinpoint suspicious
services, users, hosts, and workflows.

6 Conclusion and Future Work

We have sketched a context-based anomaly detection framework to
facilitate real-time monitoring of cloud-sourced workflows and in-
frastructures. Our research differs from existing monitoring work as
we aim to mitigate cloud threat-scenarios with web services and in-
frastructure anomaly detection, and CEP. The framework is able to
keep multiple profiles of entities on various layers and to link de-

tected anomalies and semantic gaps up to workflows. Future work
will consist of,

e An implementation and an evaluation based on a real-world sce-
nario, machine learning algorithms will be tested on standard ma-
chine learning datasets.

e Carefully evaluating other clustering methods, e.g., Entropy Max-
imization, to reduce false-positives and attain a better clustering
result.

e A CEP rule repository to further allow the reduction of false-
positives with domain knowledge, detect additional signature-
based events to augment the profiles for entities in general. Along
the way goes the inclusion of other monitoring tools such as
Snort'® and Ossec!” to get a more elaborate profile for hosts.

e Finding anomalies is a good first step, but it serves a wider pur-
pose, i.e., the semi-automatic labeling of clusters via supervised
learning. First, normal and anomalous clusters are labeled, then
based on the fingerprints in these clusters training data for super-
vised learning, e.g., Naive-Bayes, Random Forests, is easily gen-
erated. New fingerprints can then be readily classified as a specific
form of behaviour.

ACKNOWLEDGEMENTS

This work is supported by QE LaB-Living Models for Open Systems
(FFG 822740), and SECTISSIMO (FWF 20388) and has been par-
tially supported by the European Community’s Seventh Framework
Programme (FP7/2007-2013) under the grants #247758: ETERNALS
— Trustworthy Eternal Systems via Evolving Software, Data and
Knowledge, and #288024: LIMOSINE - Linguistically Motivated
Semantic aggregation engiNes.

16 http://www.snort.org/, Accessed: July 30, 2012
17 http://www.ossec.net/, Accessed: July 30, 2012

REFERENCES

(1]
(2]

[3]

[4]

(5]

(6]
(71
(8]
(91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

EC Amazon, ‘Amazon elastic compute cloud (amazon ec2)’, Amazon
Elastic Compute Cloud (Amazon EC2), (2010).

M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwin-
ski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al., ‘A view of cloud
computing’, Communications of the ACM, 53(4), 50-58, (2010).

A. Berre. Service oriented architecture modeling language (soaml)-
specification for the uml profile and metamodel for services (upms),
2008.

R. Breu, F. Innerhofer-Oberperfler, and A. Yautsiukhin, ‘Quantita-
tive assessment of enterprise security system’, in The Third Interna-
tional Conference on Availability, Reliability and Security, pp. 921—
928. IEEE, (2008).

V. Chandola, A. Banerjee, and V. Kumar, ‘Anomaly detection: A sur-
vey’, ACM Computing Surveys (CSUR), 41(3), 15, (2009).

D.E. Denning, ‘An intrusion-detection model’, Software Engineering,
IEEE Transactions on, (2), 222-232, (1987).

Nancy A. Durgin, Pengchu Zhang, Nancy A. Durgin, and Pengchu
Zhang. Profile-based adaptive anomaly detection for network security,
2005.

M. Eckert and F. Bry, ‘Complex Event Processing (CEP)’, (2009).

M. Ester, H.P. Kriegel, J. Sander, and X. Xu, ‘A density-based algorithm
for discovering clusters in large spatial databases with noise’, in Pro-
ceedings of the 2nd International Conference on Knowledge Discovery
and Data mining, volume 1996, pp. 226-231. AAAI Press, (1996).

H. Finch, ‘Comparison of distance measures in cluster analysis with
dichotomous data’, Journal of Data Science, 3(1), 85-100, (2005).

P. Garcia-Teodoro, J. Diaz-Verdejo, G. Macia-Fernandez, and
E. Vazquez, ‘Anomaly-based Network Intrusion Detection: Tech-
niques, Systems and Challenges’, computers & security, 28(1-2), 18—
28, (2009).

Stefan Grohe, Christoph Schlameu, and Ralf Sommer, ‘Performancev-
ergleich von cep-engines’, Technical report, Hochschulschriftenserver
der Universitt Stuttgart [http://elib.uni-stuttgart.de/opus/oai2/oai2.php]
(Germany), (2010).

G. Gu, R. Perdisci, J. Zhang, and W. Lee, ‘Botminer: clustering analysis
of network traffic for protocol-and structure-independent botnet detec-
tion’, in Proceedings of the 17th conference on Security symposium, pp.
139-154, (2008).

F. Hernandez-Campos, A.B. Nobel, ED. Smith, and K. Jeffay, ‘Under-
standing patterns of tcp connection usage with statistical clustering’, in
Modeling, Analysis, and Simulation of Computer and Telecommunica-
tion Systems, 2005. 13th IEEE International Symposium on, pp. 35-44.
IEEE, (2005).

G. Hoglund and J. Butler, Rootkits: subverting the Windows kernel,
Addison-Wesley Professional, 2006.

F. Innerhofer-Oberperfler, R. Breu, and M. Hafner, ‘Living security
collaborative security management in a changing world’, in Parallel
and Distributed Computing and Networks/720: Software Engineering.
ACTA Press, (2011).

Jack Koziol, Intrusion Detection with Snort, Sams, Indianapolis, IN,
USA, 1 edn., 2003.

K. Leung and C. Leckie, ‘Unsupervised anomaly detection in network
intrusion detection using clusters’, in Proceedings of the Twenty-eighth
Australasian conference on Computer Science-Volume 38, pp. 333—
342, (2005).

E. Mulo, U. Zdun, and S. Dustdar, ‘Monitoring web service event trails
for business compliance’, in Service-Oriented Computing and Applica-
tions (SOCA), 2009 IEEE International Conference on, pp. 1-8. IEEE,
(2009).

M. Nicolett and Kavanaugh Kelly, ‘2012 Gartner Critical Capabilities
and Magic Quadrant for SIEM’, (2012).

J. Oldmeadow, S. Ravinutala, and C. Leckie, ‘Adaptive clustering for
network intrusion detection’, Advances in Knowledge Discovery and
Data Mining, 255-259, (2004).

L. Portnoy, E. Eskin, and S. Stolfo, ‘Intrusion detection with unlabeled
data using clustering’, in Proceedings of ACM CSS Workshop on Data
Mining Applied to Security, (2001).

T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, ‘Hey, you, get
off of my cloud: exploring information leakage in third-party compute
clouds’, in Proceedings of the 16th ACM conference on Computer and
communications security, pp. 199-212. ACM, (2009).

PN. Tan, M. Steinbach, and V. Kumar, ‘Cluster Analysis: basic con-

[25]

[26]

[27]

cepts and algorithms’, Introduction to Data Mining, Addison-Wensley,
(2006).

Inc. Trend Micro. Ossec documentation.
net / [accessed: December 14, 2010].
W.M.P. van der Aalst, ‘Formalization and verification of event-driven
process chains’, Information and Software technology, 41(10), 639—
650, (1999).

Dj Walker-Morgan. Vsftpd backdoor discovered in source code.
Website, 2011. Available online at http://h-online.com/
-1272310; visited: July 4, 2011.

http://www.ossec.

