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Abstract. We present a method for incorporating global features in named entity recognizers using reranking techniques and
the combination of two state-of-the-art NER learning algorithms: conditional random fields (CRFs) and support vector machines
(SVMs). The reranker employs two kinds of features: flat and structured features. The former are generated by a polynomial
kernel encoding entity features whereas tree kernels are used to model dependencies amongst tagged candidate examples. The
experiments on two standard corpora in two languages, i.e. the Italian EVALITA 2009 and the English CoNLL 2003 datasets,
show a large improvement on CRFs in F-measure, i.e., from 80.34% to 84.33% and from 84.86% to 87.99%, respectively. Our
analysis reveals that (i) both kernels provide a comparable improvement over the CRFs baseline; and (ii) their combination
improves CRFs much more than the sum of the individual contributions, suggesting an interesting synergy.
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1. Introduction

Research in statistical natural language processing
has shown that reranking is a promising approach for
enhancing system accuracy. This method first employs
a probabilistic model to generate a list of top-N can-
didates and then reranks such list with additional fea-
tures (see for example, (Moschitti et al., 2006; Mos-
chitti et al., 2008; Dinarelli et al., 2009; Nguyen et
al., 2010; Johansson and Moschitti, 2010; Moschitti
et al., 2012; Severyn and Moschitti, 2012). The ap-
proach is appealing as it can flexibly incorporate ar-
bitrary features into a learning model. These features
help in discriminating good from bad hypotheses and
consequently can be used to select the best one. Var-
ious algorithms have been applied for reranking in
NLP applications, including parsing (Collins, 2000;
Collins and Duffy, 2002; Charniak and Johnson, 2005;
Huang, 2008), name tagging (Collins, 2002; Collins
and Duffy, 2002), machine translation (Shen et al.,
2004) and opinion detection (Johansson and Moschitti,
2010). Such work has exploited the discriminative

property as the main criterion of the reranking algo-
rithm.

Recent research (Moschitti et al., 2012; Severyn and
Moschitti, 2012) has shown that reranking models im-
prove when coupled with kernel methods (Collins and
Duffy, 2001; Moschitti, 2004; Moschitti, 2006). The
main contribution of the latter is the possibility to ex-
tract a huge amount of features along with their de-
pendencies from the ranking hypotheses. Indeed, while
feature-based learning algorithms only involve the dot
product between feature vectors, kernel methods al-
low for a higher generalization by replacing the dot
product with a function between pairs of linguistic ob-
jects. Such functions are a kind of similarity measure
satisfying certain properties. For example, tree ker-
nels (Collins and Duffy, 2001) encode grammatical
information in learning algorithms by computing the
number subtrees shared by two syntactic trees (asso-
ciated with the classification instances). Similarly, se-
quence kernels (Lodhi et al., 2002) count the number
of common subsequences shared by two input strings.

0000-0000/12/$00.00 c© 2012 – IOS Press and the authors. All rights reserved



2 V. Nguyen and A. Moschitti / Reranking Model for Named Entity Recognition

The use of reranking kernels for NER is promis-
ing as previous algorithms, i.e., described in (Collins,
2002; Collins and Duffy, 2002), only targeted the en-
tity detection (and not entity classification) task. Be-
sides, kernel methods offer a natural way to exploit lin-
guistic properties. Finally, the NER hypotheses can be
generated from an entire sentence such that it can be
possible to capture important global semantic features.

In this paper, we describe the use of kernel methods
for performing effective reranking of NER hypothe-
ses provided by basic systems for both Italian and En-
glish languages over well-known corpora. The key as-
pect of our method regards the use of structured and
flat features for discriminating between candidate hy-
potheses. For this purpose, we apply tree kernels to a
tree structure encoding sentence annotation, which, in
turn, refers to a tagged sequences. We also combine
such model with a polynomial kernel applied to vec-
tors of innovative global features.

Our main contribution is to show that tree kernels
can be used to define general and effective features
modeling syntactic but also semantic information for
NER reranking. Our study demonstrates that the com-
posite kernel is very effective for reranking named-
entity sequences. Without the need of producing and
heuristically combining learning models like previous
work on NER, our composite kernel not only cap-
tures most of the flat features but also efficiently ex-
ploits structured features. More interestingly, this ker-
nel yields significant improvement when applied to
two corpora of two different languages. The evaluation
on the Italian corpus shows that our approach outper-
forms the best-reported methods whereas on the En-
glish data it reaches the state-of-the-art.

In the remainder of this paper, Section 2 reports on
the related work, Section 3 introduces the tree kernel
theory, Section 4 describes the datasets and the base-
line performance associated with them, Section 5 de-
scribes our reranking models, Section 6 illustrates out
experiments and finally Section 7 derives the conclu-
sions.

2. Related Work

Named-entities (NEs) are objects that can be re-
ferred by names (Chinchor and Robinson, 1998), such
as people, organizations, and locations. NEs are es-
sential for defining the semantics of a document. The
research on NER has been promoted by the Mes-
sage Understanding Conferences (MUCs, 1987-1998),

the shared task of the Conference on Natural Lan-
guage Learning (CoNLL, 2002-2003), and the Auto-
matic Content Extraction program (ACE, 2002-2005).
Figure 1 shows a text from the CoNLL 2003 corpus,
where all named entities are in bold.

The MUC and ACE programs were held in order
to exchange research findings on techniques for ex-
tracting a variety of levels of information from offi-
cial data. However, most early works were based on
hand-crafted rules. The use of machine learning for
NER was firstly proposed in (Bikel et al., 1997; Leek,
1997) and consisted in a simple Hidden Markov Model
(HMM). Since then, various IE learning algorithms
have been developed. In the last decade, most effort
has been focused on developing machine learning al-
gorithms to reduce effort and time required by domain
experts for engineering rules.

Existing approaches for NER using machine learn-
ing fall into two types. Simpler NER systems employ-
ing one learning algorithm only. These include, e.g.,
Maximum Entropy (Bender et al., 2003; Chieu and Ng,
2003; Curran and Clark, 2003), Hidden Markov Mod-
els (Zhou and Su, 2002), Perceptron (Carreras et al.,
2003a), Adaboost (Carreras et al., 2003b), Conditional
Random Fields (McCallum and Li, 2003) and Support
Vector Machines (Mayfield et al., 2003).

The second type uses multiple learning algorithms
used in classifier committees. For example, (Florian et
al., 2003) present a classifier combination for NER in
which four diverse models are combined under differ-
ent conditions.

2.1. Reranking in Statistical Natural Language
Processing

As mentioned in the introduction, discriminative
rerankers have been used for many NLP applications,
including parsing (Collins, 2000; Collins and Duffy,
2002; Charniak and Johnson, 2005; Huang, 2008),
name tagging (Collins, 2002; Collins and Duffy,
2002), machine translation (Shen et al., 2004) and
opinion detection (Johansson and Moschitti, 2010; Jo-
hansson and Moschitti, 2013). Their algorithm is very
simple: first a basic classifier is used to generate a set
of automatic annotation hypotheses of limited size,
and then a second classifier, i.e., the reranker, is used
to select the best hypothesis. The reranker is a sim-
ple binary classifier of hypothesis pairs but can encode
complex dependencies, e.g., thanks to structural ker-
nels (e.g., see (Moschitti, 2008)). In particular, tree,
sequence and linear kernels can be applied to struc-
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Owen Finegan has recovered from the knocks he took in last weekend’s test against
Wales and retains his place in the back-row ahead of Daniel Manu. The Wallabies
have their sights set on a 13th successive victory to end their European tour with a
100 percent record but also want to turn on the style and provide David Campese with
a fitting send-off in his final match in Australian colours.

Fig. 1. CoNLL text with all entities in bold

tural and feature-vector representations of the hypoth-
esis pairs to train the reranker. For example, we have
used them for reranking the output of (i) a multi-label
hierarchical text classifiers (Moschitti et al., 2012); (ii)
a question answering system (Severyn and Moschitti,
2012); (iii) a concept labeling and segmentation model
for speech (Dinarelli et al., 2009); and (iv) a semantic
role labeling system (Moschitti et al., 2006; Moschitti
et al., 2008).

A typical approach to discriminative reranking us-
ing kernel methods is the preference reranker. The task
concerns the selection of the correct hypothesis can-
didate Hi from a candidate set H = {H1,H2, . . . ,Hk}.
This task is reduced to a binary classification problem
by training a model on hypothesis pairs. The mem-
ber order of the latter determines the positive or neg-
ative label of the data. For example, if H1 is better
than H2, we can choose to have the following order
〈H1,H2〉, consequently, 〈H2,H1〉 will be a negative ex-
ample. This training set can then be used to train a
binary classifier. At classification time, pairs are not
formed (since the correct candidate is not known); in-
stead, the standard one-versus-all binarization method
is applied.

The kernels are then engineered to implicitly repre-
sent the differences between the objects in the pairs. If
we have a valid kernel K over H , we can construct a
preference kernel PK : H ×H →ℜ as follows:

PK(〈H1,H2〉,〈H3,H4〉) = K(H1,H3)+K(H2,H4)

−K(H1,H4)−K(H2,H3) (1)

It is easy to show that PK is also a valid Mercer’s ker-
nel (Shawe-Taylor and Cristianini, 2004). This makes
it possible to use kernel methods to train the reranker.
The next section describes tree kernels in detail to
demonstrate how they can generate effective features
to represent trees. The latter are used to represent NER
hypotheses in our reranker.

3. Tree Kernels

Tree kernels represent trees in terms of their sub-
structures (called tree fragments). Such fragments
form a feature space, which, in turn, is mapped into a
vector space. Tree kernels measure the similarity be-
tween pair of trees by counting the number of frag-
ments in common. There are three important charac-
terizations of fragment type: the SubTrees (STs), the
Syntactic Trees (SYTs) and the Partial Trees (PTs).

3.1. Tree Fragment Types

An ST is defined by taking any node along with
its descendants. An SYT is a more general structure,
which does not necessarily include all the descendants.
One strong constraint is that an SYT (and also an ST)
must be generated by applying the same grammatical
rule set that generated the original tree, as pointed out
in (Collins and Duffy, 2001). The rules impose gram-
matical constraints on the children of a node, which
cannot be separated (otherwise the grammar rule gen-
erating an SYT with split children may be constituted
by a new rule and thus would be different from the ini-
tial set of rules). A Partial Tree (PT) is a more general
form of substructure obtained by relaxing constraints
over the SYTs, i.e., children can be separated to gen-
erate PTs. Figure 2 shows the overall fragment set of
the ST, SYT and PT kernels for the syntactic parse tree
of the sentence fragment: gives a talk. In general, the
tree kernel impact depends on the specific application,
which should suggest the appropriate kernel type.

To carry out efficient computation of this high di-
mensional representation, we follow the algorithm in-
troduced in (Collins and Duffy, 2001). We enumer-
ate all tree fragments that occur in the training data
from 1 to n. Thus, each tree is represented by an n-
dimensional vector where the i’th component counts
the number of occurrences of the i’th tree fragment.
Let us define the function ci(T ) to be the number of



4 V. Nguyen and A. Moschitti / Reranking Model for Named Entity Recognition

VP 

NP V 

a 

gives 

talk 

D N 

NP 

a talk 

D N V 

gives a 

D 

talk 

N 

(a) A tree with all of its subtrees (STs) 

VP 

NP V 

D N gives 

talk 

VP 

NP V 

a 

gives 

talk 

D N 

VP 

NP V 

D N 

VP 

NP V 

a talk 

D N 

NP 

a talk 

D N 

NP 

a 

D N 

NP 

talk 

D N 

V 

gives 

NP 

D N a 

D 

talk 

N 

VP 

NP V 

a 

D N 

VP 

NP V 

talk 

D N 

VP 

NP V VP 

NP V 

a 

D N gives 

VP 

NP V 

gives 

VP 

NP V 

D N gives 

(b) A tree with all of its subset trees (SYTs) 

VP 

NP 

talk 

N 
VP 

NP V 

D N gives 

talk 

NP 

a 

D N 

VP 

NP V 

a 

D N 

VP 

NP V 

talk 

D N 

VP 

NP V 
VP 

NP V 

a 

D N gives 

VP 

NP V 

gives 

VP 

NP V 

D N gives 

VP 

NP 

a talk 

D N 

V 

gives 

VP 

VP 

NP V 

a 

gives D 

VP 

NP V 

gives 

talk 

N 

VP 

V 

VP 

NP 

D N 

VP 

NP 

D N 

VP 

NP 

VP 

NP 

a talk 

D N 

VP 

NP 

a 

D 

VP 

NP 

a 

D N 

NP 

D N 

NP 

D 
N 

NP 

talk 

N 
a 

D 

VP 

NP V 

a 

gives 

talk 

D N 

VP 

NP V 

D N 

V 

gives 

VP 

NP V 

a talk 

D N 
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Fig. 2. Three kinds of tree fragment sets: ST, SYT (also known as SST) and PT: they all originate from the first tree of each subfigure, i.e., the
tree associated with “gives a talk” (which also corresponds to the largest fragment).

occurrences of the i’th tree fragment in tree T, so that T
is now represented as~c(T ) = (c1(T ),c2(T ), ...,cn(T )).

We then examine the inner product between two
trees T1 and T2 under this representation, i.e., K(T1,T2)=
~c(T1) ·~c(T2). To compute K, we define (i) the set of
nodes in trees T1 and T2 as N1 and N2 respectively;
and (ii) the indicator function Ii(n) to be 1 if subtree is
seen rooted at node n and 0 otherwise. It follows that
ci(T1) =∑n1∈N1

Ii(n1) and ci(T2) =∑n2∈N2
Ii(n2). With

some simple algebra we have:

~c(T1) ·~c(T2) = ∑
i

ci(T1)ci(T2) =

∑
n1∈N1

∑
n2∈N2

∑
i

Ii(n1)Ii(n2) ∑
n1∈N1

∑
n2∈N2

∆(n1,n2)

where we define ∆(n1,n2) = ∑i Ii(n1)Ii(n2). Note that
∆(n1,n2) can be computed in polynomial time and de-
termines the kernel type.

3.2. Syntactic Tree Kernel

To compute STK, we need to define ∆(n1,n2) as fol-
lows:

– If the productions at n1 and n2 are different
∆(n1,n2) = 0.

– If the productions at n1 and n2 are the same, and
n1 and n2 are pre-terminals, then ∆(n1,n2) = 1.

– Else if the productions at n1 and n2 are the same
and n1 and n2 are not pre-terminals,

∆(n1,n2) =
nc(n1)

∏
j=1

(1+∆(ch(n1, j),ch(n2, j))), (2)

where nc(n1) is the number of children of n1 in the tree
(nc(n1) = nc(n2) since the productions at n1/n2 are the
same) and ch(n1, j) is the j’th child of n1.

Note that ∆(n1,n2) counts the number of common
subtrees rooted at both n1 and n2. From the identity
~c(T1) ·~c(T2) = ∑

n1,n2

∆(n1,n2), and the recursive defini-

tion of ∆(n1,n2), it follows that STK can be calculated
in O(|N1||N2|) time.

3.3. Partial Tree Kernel (PTK)

The computation of PTFs is carried out by the ∆

function defined as follows:

1. if the node labels of n1 and n2 are different then
∆(n1,n2) = 0;

2. else:

∆(n1,n2)= 1+ ∑
~I1,~I2,l(~I1)=l(~I2)

l(~I1)

∏
j=1

∆(ch(n1,~I1 j),ch(n2,~I2 j))
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where~I1 = 〈k1,k2,k3, ..〉 and~I2 = 〈k′1,k′2,k′3, ..〉 are in-
dex sequences associated with the ordered child se-
quences ch(n1, ·) of n1 and ch(n2, ·) of n2, respectively.
~I1 j and~I2 j point to the j-th child in the corresponding
sequence, and l(·) returns the sequence length, i.e., the
number of children in the sequence.

Furthermore, we add two decay factors: µ for the
depth of the tree and λ for the length of the child
subsequences with respect to the original sequence,
which accounts for gaps. Hence, the PTK expression
for ∆(n1,n2) =

µ

(
λ

2 +∑
~I1,~I2,l(~I1)=l(~I2)

λ
d(~I1)+d(~I2)

l(~I1)

∏
j=1

∆(ch(n1,~I1 j),ch(n2,~I2 j))
)

(3)

where d(~I1) =~I1l(~I1)
−~I11+1 and d(~I2) =~I2l(~I2)

−~I21+

1. This way, we penalize both larger trees and child
subsequences with gaps. Eq. 3 is more general than
Eq. 2. Indeed, if we only consider shared subsequences
that contain all the node children (no child of a node is
skipped), we actually obtain the STK kernel. The com-
putational complexity of PTK is O(pρ2|NT1 | × |NT2 |)
(Moschitti, 2006), where p is the largest subsequent of
children that we want to consider and ρ is the maxi-
mal outdegree observed in the two trees. However, as
shown in (Moschitti, 2006), the average running time
again tends to be linear in the number of nodes for nat-
ural language syntactic trees.

3.4. The Polynomial Kernel

The polynomial kernel between two candidate tagged
sequences is defined as:

K(x,y) = (1+~x1 ·~x2)
2,

where~x1 and~x2 are two feature vectors extracted from
the two sequences with the global feature template.

3.5. Kernel Engineering

Kernel engineering can be carried out by combin-
ing basic kernels with additive or multiplicative opera-
tors or by designing specific data objects (vectors, se-
quences and tree structures) for the target tasks.

It is worth noting that well-known kernels applied
to new structures produce completely new kernels as
shown hereafter. Let K(t1, t2) = φ(t1) · φ(t2) be a ba-
sic kernel, where t1 and t2 are two trees. If we map
t1 and t2 into two new structures s1 and s2 with a

mapping φM(·), we obtain: K(s1,s2) = φ(s1) ·φ(s2) =
φ(φM(t1))·φ(φM(t2))= φ ′(t1)·φ ′(t2)=K′(t1, t2), which
is a noticeably different kernel induced by the mapping
φ ′ = φ ◦φM .

3.6. The role of tree kernels in Reranking

Eq. 1 allow us to use any kernel K for defining the
preference reranker. Therefore, we can use tree ker-
nels, such as PTK or STK, to describe the similarity
between two hypotheses. In Section 5.2, we will de-
scribe a tree representation for hypotheses, which can
be used as input of tree kernels. The main idea is that
tree kernels can measure the similarity between such
hypotheses in terms of their subtrees. Such similarity
can learn the order of hypotheses according to their ac-
curacy. For example, Eq. 1 imposes that if H1 is similar
to H3 and H2 is similar to H4, then H1 more accurate
than H2 will suggest that H3 is more accurate than H4.

In the next section we present the first step of rerank-
ing, i.e., the basic NER used for building the hypothe-
ses along with the baseline results.

4. Datasets and Baseline for Named Entity
Recognition

A robust NER system is expected to be adaptable to
different domains and languages. Therefore, we exper-
imented with two datasets: i) the well-known CoNLL
2003 English shared task corpus; and ii) the EVALITA
2009 Italian corpus. Statistics about such datasets are
shown in tables 1 and 2. In the following sections
we describe the datasets and the typical accuracy that
baseline NERs attain on them.

4.1. Datasets

The CoNLL English dataset. The CoNLL 2003 En-
glish dataset is created within the shared task of
CoNLL-2003 (Tjong Kim Sang and De Meulder,
2003). It is a collection of news wire articles from the
Reuters Corpus, annotated with four entity types: Per-
son (PER), Location (LOC), Organization (ORG) and
Miscellaneous name (MISC). The training and the de-
velopment datasets are news feeds from August 1996,
while the test set contains news feeds from Decem-
ber 1996. Accordingly, the named entities in the test
dataset are considerably different from those that ap-
pear in the training or the development set.
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CoNLL LOC MISC ORG PER

Train
7140 3438 6321 6600

30.38% 14.63% 26.90% 28.09%

Dev
1837 922 1341 1842

30.92% 15.52% 22.57% 31.00%

Test
1668 702 1661 1617

29.53% 12.43% 29.41% 28.63%

Table 1
Statistics on the CoNLL English dataset

EVALITA GPE LOC ORG PER

Train
2813 362 3658 4577

24.65% 3.17% 32.06% 40.11%

Test
1143 156 1289 2378

29.53% 12.43% 29.41% 28.63%

Table 2
Statistics on the EVALITA Italian dataset

The EVALITA Italian dataset. The EVALITA 2009
Italian dataset is based on I-CAB, the Italian Con-
tent Annotation Bank (Magnini et al., 2006), anno-
tated with four entity types: Person (PER), Organiza-
tion (ORG), Geo-Political Entity (GPE) and Location
(LOC). The training data, taken from the local newspa-
per “L’Adige”, consists of 525 news stories, which be-
long to five categories: News Stories, Cultural News,
Economic News, Sports News and Local News. Test
data, on the other hand, consists of completely new
texts, taken from the same newspaper and consists of
180 news stories.

4.2. The baseline algorithm

We selected Conditional Random Fields (CRFs) (Laf-
ferty et al., 2001) as the baseline model. These are
a probabilistic framework for labeling and segment-
ing sequence data. They present several advantages
over other purely generative models such as Hid-
den Markov models (HMMs) by relaxing the inde-
pendence assumptions required by HMMs. Besides,
HMMs and other discriminative Markov models are
prone to the label bias problem, which is effectively
solved by CRFs.

The named-entity recognition (NER) task is framed
as assigning label sequences to a set of observation se-
quences. We follow the IOB notation where the NE
tags have the format B-TYPE, I-TYPE or O, which
mean that the word is a beginning, a continuation, or

not part of an entity at all. For example, the following
sentence is labeled with the tags above:

Il/O presidente/O della/O Fifa/B-ORG Sepp/B-PER
Blatter/I-PER affermando/O che/O il/O torneo/O era/O
stato/O ottimo/O (FIFA president Sepp Blatter says that the
tournament was excellent)

For our experiments, we used CRF++ 1 to build our
recognizer, which is a model trained discriminatively
with the unigram and bigram features. These are ex-
tracted from a window of k words centered in the target
word w (i.e. the one we want to classify with the B, O,
I tags). The features used for each token are described
below.

Basic features. The basic features are small, primi-
tive units, consisting of the word itself with some fea-
tures directly derived from it:

1. wi for i = 1 . . .n is the i′th word
2. li is the word in lower-case
3. p1i, p2i, p3i, p4i are four prefixes of wi of size 1,

2, 3 or 4.
4. s1i, s2i, s3i, s4i are four suffixes of wi as before.
5. fi is the part-of-speech of wi
6. gi is the orthographic feature that tests whether a

word contains all upper case, initial upper case,
all lower-case letters.

1http://crfpp.sourceforge.net
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Category Pr Re F1

All 85.37 84.35 84.86

LOC 90.25 88.61 89.42

MISC 79.81 74.51 77.07

ORG 80.02 77.85 78.92

PER 87.94 90.92 89.41

Table 3
CRFs results on the CoNLL test set

Category Pr Re F1

All 84.76 84.18 84.47

LOC 87.99 88.6 88.29

MISC 79.22 75.76 77.45

ORG 80.96 76.81 78.83

PER 87.3 90.85 89.04

Table 4
SVMs results on the CoNLL test set

7. ki is a feature that tests whether a token is a word,
a number, a symbol, a punctuation mark.

8. oi is the gazetteer feature. We simply look up wi

in our knowledge base.

Combined features. A bi-gram feature is derived
from the combination of two consecutive units. To al-
low the highest generalization, the consecutive units
can be lexical words or any of their basic features as
described in the previous section. For example, the text
“presidential palace” can have one feature as “presi-
dential/palace” and another feature as “JJ/NN” where
JJ and NN are the part-of-speech of presidential and
palace.

1. The combinations wi−2/wi−1, wi−1/wi, and wi/wi+1
2. Similar to the first, but use li instead of wi

3. Similar to the first, but use p1i, p2i, p3i, p4i in-
stead of wi

4. Similar to the first, but use s1i, s2i, s3i, s4i instead
of wi

5. Similar to the first, but use fi instead of wi

6. Similar to the first, but use oi instead of wi

7. The combinations wi−2/ fi−2, wi−1/ fi−1, wi/ fi,
and wi+1/ fi+1

8. The combinations fi−2/oi−2, fi−1/oi−1, fi/oi,
and fi+1/oi+1

9. The combinations wi−2/oi−2, wi−1/oi−1, wi/oi,
and wi+1/oi+1

The gazetteer lists are built with names imported
from different sources. For English, the geographic
features are imported from NIMA’s GEOnet Names
Server (GNS)2 and The Alexandria Digital Library
(ADL) gazetteer3. The company data is included with
all the publicly traded companies listed in Google di-
rectory4 and the European business directory5. For
Italian, the generic proper nouns are extracted from
Wikipedia and various Italian sites. Moreover, the
gazetteer lists for Italian are extracted from La Repub-
blica (Baroni et al., 2004), a large corpus of Italian
newspaper text by using rule-based approach with pat-
terns tuned specifically for each NE class.

4.3. Baseline Results

We trained the NER classifier on the two datasets.
The Italian system participated in the EVALITA 2009
NER task (Nguyen et al., 2009). In addition to the
base CRF classifier we trained another classifier with
SVMs. Although this performed worse than the base
model, we reported its results for completeness.

Table 5 and 6 show the final performance on the
Italian test set with CRFs and SVMs. We found that,

2http://www.nima.mil/gns/html
3http://www.alexandria.ucsb.edu
4http://directory.google.com/Top/Business
5http://www.europages.net
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Category Pr Re F1

All 83.43 77.48 80.34

GPE 83.83 84.6 84.22

LOC 76.99 45.74 57.38

ORG 72.74 60.42 66.01

PER 90.6 89.14 89.86

Table 5
CRFs results on the EVALITA test set

Category Pr Re F1

All 82.84 77.8 80.24

GPE 82.72 85.07 83.88

LOC 77.67 48.52 59.73

ORG 71.66 61.56 66.23

PER 90.92 88.51 89.7

Table 6
SVMs results on the EVALITA test set

with the same set of features, the accuracy of the NE
classifiers trained with two models is rather competi-
tive. Moreover, the NE classes, GPE and PER, achieve
a rather good F1, while the recognition of ORG and
LOC seems more problematic. This is in line with pre-
vious work according to which ORG seems to be the
most difficult category to be learned. The lack of re-
sources (the gazetteer for LOC is the smallest) may be
another important reason for such low accuracy.

5. Reranking Models for Named Entity
Recognition

In this section we show our most important contri-
bution, i.e., the definition of a reranker for the outcome
of a NER applied to an entire sentence. One impor-
tant characteristic of such model is the use of structural
kernels (i.e., tree kernels) to learn the reranking classi-
fier. We also combine them with a polynomial kernel
applied to traditional and innovative NER features.

5.1. Reranking Strategy

We first train a CRFs model to generate 10-best
candidates per sentence, along with their probabilities.
Each candidate is then represented by a semantic tree
together with a feature vector. We set our reranking
task as a binary classification problem where examples

are pairs of hypotheses < Hi,H j >. As an example, let
us consider the sentence:

“South African Breweries Ltd bought stakes in the
Lech and Tychy brewers”

tagged by CRFs in three different ways:

Hi : B-ORG I-ORG I-ORG I-ORG O O O O B-ORG O B-ORG O

H j : B-MISC I-MISC B-ORG I-ORG O O O O B-ORG I-ORG I-ORG O

Hk : B-ORG I-ORG I-ORG I-ORG O O O O B-ORG O B-LOC O,

where the first candidate is the correct sequence
whereas B-ORG, I-ORG, B-LOC, O are the NE tags
generated according to the IOB notation (as described
in Section 4.2). Using such tagged sequences, we build
the following pairs of hypotheses:

+1 <Hi,H j >, +1 <Hi,Hk >,−1 <H j,Hi >, and
−1 < Hk,Hi >,

where we assign the positive label to the first two pairs
and negative one to the others as we assume that pos-
itive instances must have the correct hypothesis Hi,
in the first position. Then a binary classifier based on
SVMs and kernel methods can be trained on such pairs
to discriminate between the best hypothesis, i.e. Hi,
and the others. At testing time the hypothesis receiving
the highest score is selected (Collins and Duffy, 2001).



V. Nguyen and A. Moschitti / Reranking Model for Named Entity Recognition 9

Fig. 3. Semantic structure of a candidate sequence

5.2. Representation of Tagged Sequences in Semantic
Trees

We provide a representation for hypotheses based
on structures and global features. As in the case of
NER, an input candidate is a sequence of word/tag
pairs x= {w1/t1...wn/tn}, where wi is the i′th word and
ti is the i′th NE tag for that word. The first representa-
tion we consider is a tree structure. For example, Fig-
ure 3 shows the semantic tree for Hi. In such tree rep-
resentation: (a) the words are the leaf nodes; (b) their
BIO tags are the father nodes and (c) the NER cate-
gory is the father of BIO tags. A final fake root node
connects all the NEs of the sentence. If a word is not
an NE, it is simply connected to the null node.

This structure allows for best exploiting tree ker-
nels between competing candidates. Indeed, in such
kernel space, the inner product counts the number of
common subtrees, i.e., the kernel computed on pairs of
sentences containing similar sequences of NE tags are
likely to have higher score. For example, the similarity
between Hi and Hk will be higher than the similarity
between H j and Hk. This is reasonable since Hi and Hk

have the highest F1.
It is worth noting that another useful modification

is the flexibility of incorporating diverse and arbitrary
features into this tree structure by adding them as chil-
dren of the entity tag nodes. These features can be ex-
ploited efficiently with PTK, which relaxes the con-
straints of production rules.

5.3. Global features

In addition to the structural representation, we use
traditional feature vectors. Their advantage is that they
can specify some global and unstructured information
about the NEs of the entire sentence. In particular, we
use novel features described hereafter.

Mixed n-grams features. In previous work, some
global features have been used, e.g., (Collins, 2002;
Collins and Duffy, 2002) but the employed algorithm
just exploited arbitrary information regarding word
types and linguistic patterns. In contrast, we define and
study diverse features by also considering the n-grams
patterns preceding and following the target entity.

Complementary context. In supervised learning, NER
systems often suffer from low recall, which is caused
by lack of both resource and context. For example, a
word like “Arkansas” may not appear in the training
set and, in the test set, there may not be enough context
to infer its NE tag. In such cases, neither global fea-
tures defined in (Chieu and Ng, 2002) nor aggregated
contexts (Chieu and Ng, 2003) can help.

To overcome this deficiency, we employed the fol-
lowing unsupervised procedure: first, the baseline
NER is applied to a target unlabeled corpus. Second,
we associate each word of the corpus with the most
frequent NE category assigned in the previous step.
Finally, the above tags are used as features during the
training of the improved NER and also for building
the feature representation for a new classification in-
stance. This way, for any unknown (i.e., never seen in
the training set) word w of the test set, we can rely on
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Fig. 4. An excerpt from the ontology

the most probable NE category as feature. That is, we
use the most frequent category assigned to w by a ba-
sic NER over a reference corpus. The advantage is that
we derived it by using the average over many possible
contexts of w, which are in the different instances of
the unlabeled corpus.

The unlabeled corpus for Italian was collected from
La Repubblica 6 and it contains over 20 millions
words, whereas the one for English was collected
mainly from The New York Times 7 and BBC news
stories 8 with more than 35 millions words.

Head word. As the head word of an entity plays an
important role in information extraction (Surdeanu et
al., 2003; Bunescu and Mooney, 2005), it is included
in the global set together with its orthographic repre-
sentation. More in detail, our global features are the
following:

1. wi for i = 1 . . .n is the i′th word
2. ti is the NE tag of wi
3. gi is the gazetteer feature of the word wi
4. fi is the most frequent NE tag seen in a large cor-

pus of wi
5. hi is the head word of the entity. We normally

set the head word of an entity as its last word.
However, when a preposition exists in the entity
string, its head word is set as the last word before
the preposition. For example, the head word of
the entity “University of Pennsylvania” is “Uni-
versity”.

6http://www.repubblica.it/
7http://www.nytimes.com/
8http://news.bbc.co.uk/

6. Mixed n-grams features of the words and their
gazetteer/frequent tag before/after the start/end
of an entity. In addition to the normal n-grams
solely based on words, we mix words with
gazetteer/frequent tag seen from a large corpus
and create mixed n-grams features.

Table 7 shows the full set of global features in our
reranking framework. These features are anchored for
each entity instance and adapted to entity categories.
For example, the entity string (first feature) of the en-
tity “United Nations” with entity type “ORG” is “ORG
United Nations”. This helps to discriminate different
entities with the same surface forms. Moreover, they
can be combined with n-gram patterns to learn and ex-
plicitly push the score of the correct sequence above
the score of competing sequences.

An example of feature extraction. Given the sentence
“Eric Furda, dean of admissions at the University of
Pennsylvania, is taking reader questions.” with the tar-
get entity “University of Pennsylvania”, Table 8 de-
scribes each feature with an example in context using
the following primitives:

– ws ws+1 . . . we = University of Pennsylvania
(the entity string)

– gs−1 = det (the gazetteer feature of the word the
is a determiner)

– gs = ORG PREFIX (the gazetteer feature of the
word University is an organization prefix)

– gs+1 = prep (the gazetteer feature of the word of
is a preposition)

– fs−1 = O (the most frequent NE tag of the word
the is “O”, i.e., the null tag)

– fs = ORG (the most frequent NE tag of the word
University is an organization)
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Fi Notation Description

f1 ws ws+1 . . . we Entity string, from s (start) to e (end)

f2 gs gs+1 . . . ge The gazetteer features of words of the entity

f3 fs fs+1 . . . fe The most frequent NE tag feature (seen from
a large corpus) of words of the entity

f4 hw The head word of the entity (see Section 5.3)

f5 lhw Indicates whether the head word is lower-
cased

f6 ws−1 ws; ws−1 gs; gs−1 ws; gs−1 gs Mixed bigrams of the word/gazetteer feature
associated with the word before the start, fol-
lowed by the word/gazetteer feature of the
start of the entity

f7 we we+1; we ge+1; ge we+1; ge ge+1 Mixed bigrams of the word/gazetteer feature
associated with the end of the entity, fol-
lowed by the next word/gazetteer feature

f8 ws−1 ws; ws−1 fs; fs−1 ws; fs−1 fs Similar to f6, but using the frequent-tag in-
stead of the gazetteer feature

f9 we we+1; we fe+1; fe we+1; fe fe+1 Similar to f7, but using the frequent-tag in-
stead of the gazetteer feature

f10 ws−2 ws−1 ws; ws−1 ws ws+1;
we−1 we we+1; we−2 we−1 we

Trigram features of the words before/after
the start/end of the entity

f11 ws−2 ws−1 gs; ws−2 gs−1 ws; ws−2 gs−1 gs;
gs−2 ws−1 ws; gs−2 ws−1 gs; gs−2 gs−1 ws;
gs−2 gs−1 gs;ws−1 ws gs+1; ws−1 gs ws+1;
ws−1 gs gs+1;gs−1 ws ws+1; gs−1 ws gs+1;
gs−1 gs ws+1; gs−1 gs gs+1

Mixed trigrams of the words/gazetteer fea-
tures before the start of the entity

f12 we−1 we ge+1; we−1 ge we+1; we−1 ge ge+1;
ge−1 we we+1; ge−1 we ge+1; ge−1 ge we+1;
ge−1 ge ge+1; we−2 we−1 ge; we−2 ge−1 we;
we−2 ge−1 ge; ge−2 we−1 we; ge−2 we−1 ge;
ge−2 ge−1 we; ge−2 ge−1 ge

Mixed trigrams of the words/gazetteer fea-
tures after the end of the entity

f13 ws−2 ws−1 fs; ws−2 fs−1 ws; ws−2 fs−1 fs;
fs−2 ws−1 ws; fs−2 ws−1 fs; fs−2 fs−1 ws;
fs−2 fs−1 fs; ws−1 ws fs+1; ws−1 fs ws+1;
ws−1 fs fs+1; fs−1 ws ws+1; fs−1 ws fs+1;
fs−1 fs ws+1; fs−1 fs fs+1

Mixed trigrams of the words/frequent-tag
features before the start of the entity

f14 we−1 we fe+1; we−1 fe we+1; we−1 fe fe+1;
fe−1 we we+1; fe−1 we fe+1; fe−1 fe we+1;
fe−1 fe fe+1; we−2 we−1 fe; we−2 fe−1 we;
we−2 fe−1 fe; fe−2 we−1 we; fe−2 we−1 fe;
fe−2 fe−1 we; fe−2 fe−1 fe

Mixed trigrams of the words/frequent-tag
features after the end of the entity

Table 7
Global features with the polynomial kernel for reranking

– fs+1 = O (the most frequent NE tag of the word
of )

We point out that we used the ontology and knowl-
edge base from the KIM ontology (Kiryakov et al.,
2004) as our gazetteer. The KIM proton ontology con-
tains about 300 classes, 100 attributes and relations.
KIM World Knowledge Base (KB) contains about
77,500 entities with more than 110,000 aliases. Fig-
ure 4 shows an excerpt from the KIM ontology: we

take the deepest class subsuming a leaf that matches
the target piece of text (multiwords) as tags. For exam-
ple, if the text “New York” matches with LOCATION,
STATE, CITY then CITY will be chosen since it is the
deepest class in the ontology. If a text matches with
many classes in different branches, then a more general
class will be chosen. For example, if the text “Wash-
ington” matches with PERSON and CITY, which lie in
two different branches in the ontology, then we choose



12 V. Nguyen and A. Moschitti / Reranking Model for Named Entity Recognition

Fi Example: “Eric Furda, dean of admissions at the University of Pennsylvania, is taking reader
questions”

f1 University of Pennsylvania

f2 ORG PREFIX prep STATE

f3 ORG O ORG

f4 University

f5 yes

f6 “the University”; “the ORG PREFIX”; “det University”; “det ORG PREFIX”

f7 “Pennsylvania ,”; “Pennsylvania ,”; “STATE ,”; “STATE ,”

f8 “the University”; “the ORG”; “O University”; “O ORG”

f9 “Pennsylvania ,”; “Pennsylvania O”; “ORG ,”; “ORG O”

f10 “at the University”; “the University of”; “of Pennsylvania ,”; “University of Pennsylvania”

f11 “at the ORG PREFIX”; “at det University”; “at det ORG PREFIX”; “prep the University”

f12 “of Pennsylvania ,”; “of STATE ,”; “of STATE ,”; “prep Pennsylvania ,”

f13 “at the ORG”; “at O University”; “at O ORG”; “O the University”

f14 “of Pennsylvania ,”; “of ORG ,”; “of ORG O”; “O Pennsylvania ,”

Table 8
Examples of global features in real context

the class ENTITY as the parent class for both PER-
SON and CITY.

5.4. Reranking with Composite Kernel

In this section we describe our novel tagging ker-
nels based on diverse global features as well as se-
mantic trees for reranking candidate tagged sequences.
As mentioned in the previous section, we can engineer
kernels by combining trees and entity kernels.

5.5. The Tagging Kernels

In our reranking framework, we incorporate the prob-
ability from the original model with the tree structure
as well as the feature vectors. Let us consider the fol-
lowing notations:

– K(x,y)=L(x) ·L(y) is the basic kernel where L(x)
is the log probability of a candidate tagged se-
quence x under the BIO-tag probability model.

– T K(x,y) = t(x) · t(y) is the partial tree kernel ap-
plied to our semantic tree.

– FK(x,y) = f (x) · f (y) is the polynomial kernel
applied to the global features.

The tagging kernels between two tagged sequences
are defined as follows:

1. CT K = α ·K +(1−α) ·T K
2. CFK = β ·K +(1−β ) ·FK
3. CT FK = γ ·K +(1− γ) · (T K +FK),

where α,β ,γ are parameters weighting the two partici-
pating terms. Experiments on the validation set showed
that these combinations yield the best performance
with α = 0.2 for both languages, β = 0.4 for English
and β = 0.3 for and Italian, γ = 0.24 for English and
γ = 0.2 for Italian.

6. Experiments

In these experiments, we compare the baseline per-
formance with the different reranking models pre-
sented in the previous section.

6.1. Experimental setup

As a baseline we trained the CRF classifier on the
entire training set (11,227 sentences in the Italian and
14,987 sentences in the English corpus). In developing
a reranking strategy for both English and Italian, the
training data was split into 5 sections, and in each case
the baseline classifier was trained on 4/5 of the data,
then used to decode the remaining 1/5.

The top 10 hypotheses together with their log proba-
bilities were computed for each training sentence. Sim-
ilarly, a model trained on the whole training data was
used to produce 10 hypotheses for each sentence in the
development set. For the reranking experiments, we
applied different kernel setups to the two corpora de-
scribed in Section 3. We enriched the feature set of the
base CRF classifier (presented in section 4.3) with the
most frequent tag added to each token.
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English Test Pr Re F1

CRFs 85.37 84.35 84.86

CT K 87.19 84.79 85.97

CFK 86.53 86.75 86.64

CTFK 88.07 87.91 87.99
(Finkel et al., 2005) N/A N/A 86.86

(Ratinov and Roth, 2009) N/A N/A 90.57

Table 9
Reranking results on the English test set and comparison with the state-of-the-art systems (last two rows). Note that the first row indicates the
CRF baseline result obtained in Section 4.3

Italian Test Pr Re F1

CRFs 83.43 77.48 80.34

CT K 84.97 78.03 81.35

CFK 84.93 79.13 81.93

CTFK 85.99 82.73 84.33
(Gesmundo, 2009) 86.06 77.33 81.46

(Zanoli et al., 2009) 84.07 80.02 82.00

Table 10
Reranking results on the Italian test set and comparison with the state-of-the-art systems (last two rows). Note that the first row indicates the
CRF baseline result obtained in Section 4.3

6.2. Reranking Results

Tables 9 and 10 present the reranking results on the test
data of both corpora. The results show a 20.29% rela-
tive improvement in F-measure for Italian and 21.79%
for English.

CFK based on unstructured features achieves higher
accuracy than CT K based on structured features. How-
ever, the huge amount of subtrees generated by the
PT kernel may limit the expressivity of some struc-
tural features, e.g. many fragments may only generate
noise. This problem is less important with the polyno-
mial kernel where global features are tailored for in-
dividual entities. In any case, the experiments demon-
strate that both tagging kernels CT K and CFK improve
on the CRFs baseline in both languages. This suggests
that structured and unstructured features are effective
in discriminating between competing NE annotations.

Furthermore, the combination of the two tagging
kernels on both standard corpora shows a large im-
provement in F-measure from 80.34% to 84.33% for
Italian and from 84.86% to 88.16% for English. This
suggests that these two kernels, corresponding to two
kinds of features, complement each other.

To better collocate our results with previous work,
we report the state of the art for NER on the Ital-

ian (Zanoli et al., 2009; Gesmundo, 2009) and the En-
glish (Ratinov and Roth, 2009; Finkel et al., 2005)
datasets, in the last two rows (in italic) of each table,
where the very last row shows the highest results. This
demonstrates that our model outperforms the best Ital-
ian NER system and it is close to the state-of-art model
for English, which exploits many complex features.
Also note that we are very close to the F1 achieved by
the best system of CoNLL 2003, i.e. 88.8.

7. Conclusion

In this paper, we have studied the use of discrimina-
tive reranking for named entity recognition. The ma-
jor contribution with respect to previous work is the
use of structural kernels for representing hypotheses of
the NE annotation over an entire sentence. In partic-
ular, we first use a basic NER, e.g., built with CRFs
or SVMs, to generate global hypotheses of NE anno-
tation of the sentence. Then, we apply a reranker, i.e.,
a classifier based on SVMs and tree kernels, to select
the best hypothesis. Such reranker can better select the
most accurate hypothesis since it can use features de-
scribing the global view of the sentence annotation and
its label dependencies. In particular, tree kernels are
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applied to a tree representation of the NE annotation.
This way, all the possible tree fragments generated by
the kernel correspond to features encoding global de-
pendencies between the NE labels and words of the
sentence.

Another interesting contribution of our paper is the
combination of tree kernels with global features en-
coded in traditional vectors. This joint model is rather
effective as it can capture two different important as-
pects of the sentence annotation: tree kernels provide
structural dependencies between NEs, whereas the
vectors can describe global properties without struc-
ture, which are less sparse. Additionally, we used in-
novative features, e.g., the most frequent tag associ-
ated with words in an external corpus and the KIM
gazetteer.

The comparative results on two well-known bench-
marks in Italian and English language suggest that the
partial tree kernel applied to our structural representa-
tions is rather effective. Indeed, we could improve the
state of the art of the Italian NER and achieve almost
the same accuracy of very complex model for English.
Again, this improvement is due to the richer/global
features available to the reranker, which always im-
prove the basic model. Nevertheless, (Ratinov and
Roth, 2009), applying very accurate and complex man-
ual feature engineering, provide a higher accuracy for
English. This can be due to several factors, e.g., we did
not re-implement their features. It is worth noting that
their system can be used as basic input of our reranker,
thus our model may improve it.

Finally, as our reranking kernels are rather efficient
and effective, in the future, we would like to use them
for other tasks, e.g., reranking sentence-level relation
extraction or coreference resolution annotations.
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