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Abstract Feature engineering is one of the most complex aspects of the sys-
tem design in machine learning. Kernel methods provide the designer with
formidable tools to tackle such complexity. Among others, tree kernels (TKs)
have been successfully applied for representing structured data in diverse do-
mains, ranging from bioinformatics and data mining to natural language pro-
cessing. One drawback of such methods is that the learning typically requires
a large number of kernel computations (quadratic in the number of training
examples) between the model and training examples. However, in practice sub-
structures often repeat in the data which makes it possible to avoid a large
number of redundant kernel evaluations.

In this paper, we propose the use of Directed Acyclic Graphs (DAGs) to
compactly represent trees in the training algorithm of Support Vector Ma-
chines (SVMs). In particular, we use DAGs for each iteration of the cutting
plane algorithm (CPA) to encode the model composed by a set of trees. This
enables DAG kernels to efficiently evaluate TKs between the current model
and a given training tree. Consequently, the amount of total computation is
reduced by avoiding redundant evaluations over shared substructures. We pro-
vide theory and algorithms to formally characterize the above idea, which we
tested on several datasets. The empirical results confirm the benefits of the ap-
proach in terms of significant speedups over previous state-of-the-art methods.
In addition, we propose an alternative sampling strategy within the CPA to
address the class-imbalance problem, which coupled with fast learning meth-
ods provides a viable TK learning framework for a large class of real-world
applications.
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1 Introduction

Structural kernels have been successfully applied to ease the design of ma-
chine learning systems in diverse domains, ranging from bioinformatics [19,
21,30] and datamining [3,38,33,45,42,7,48,44] to Natural Language Process-
ing (NLP) [20,9,34,18,10,4]. They free oneself from tedious manual feature
engineering by automatically generating huge feature spaces assuming that
the learning algorithm will end up using the most relevant features for a given
task. This is especially useful when designing models for domains where no ex-
pert knowledge is easily available with respect to which features are most useful
for a given problem. However, the use of kernel methods has been restricted
to relatively small datasets as the training becomes much slower compared to
linear models. Indeed, the major drawback of kernel methods, Support Vector
Machines (SVMs) in particular, is the necessity to carry out learning in the
dual space, where training complexity is typically quadratic in the number of
training instances. This is largely attributed to the fact that the model weight
vector is represented as a linear combination of training examples (support
vectors) that all lie in the implicit feature space spanned by a given kernel
function. As the size of the training set increases the number of support vec-
tors in the kernel expansion of the model also tends to grow linearly [37]. Thus,
evaluating a dot product between a model and a given example entails a large
number of kernel computations over the training examples in the model.

Recently, a number of efficient methods to train SVMs based on the idea
of the Cutting Plane Algorithm (CPA) have been proposed [16,12]. The CPA
finds the model parameter vector by iteratively constructing cutting plane
models that refine the estimation of the empirical risk. The optimal solution
is a linear combination of such cutting planes. The linear-time behavior of the
CPA again depends on the possibility to compact the model by summing up
its constituent feature vectors such that the dot product can be computed effi-
ciently. Unfortunately, again, for the reason briefly outlined above the method
scales well only when linear kernels are used. To address slow learning with
non-linear kernels, Joachims and Yu [17] propose to extract basis vectors to
compactly represent cutting plane models, which speeds up both classifica-
tion and learning. However, this requires to solve a non-trivial optimization
problem, which renders intractable when considering discrete feature spaces
generated by structural kernels. Finding a set of basis vectors in such high-
dimensional spaces produced by arbitrary kernels, and in particular structural
kernels, is an active research area.

Another approach of adapting CPA for non-linear kernels by reducing the
number of kernel evaluations is studied in [46], where sampling is used to
reduce the number of basis functions in the resulting kernel expansion. In
[31], we showed that the same algorithm can be successfully applied to SVM
learning with structural kernels on very large data obtaining speedup factors
up to 10 over conventional SVMs. The approach was rather general as we
did not make any assumption on the data. In contrast, in [1,2], we exploited
a specific approach based on Directed Acyclic Graphs (DAGs) in the online
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Fig. 1 Three syntactic trees and the resulting DAG.

learning setting to speed up the perceptron algorithm. DAGs were used to
compactly represent tree forests given by the support vectors found by the
learning algorithm. The approach reduced the number of expensive kernel
evaluations, since DAGs provided the means to avoid redundant computations
over shared substructures.

To give an intuition of the DAG approach for compact model representation
studied in this article, consider an example of the tree-structured data, e.g.
syntactic parse trees that are used extensively in Natural Language Processing.
Fig. 1 shows a model consisting of only three syntactic trees1 on the left
and the resulting DAG on the right. As we can see, the subtree of the noun
phrase [NP [D a][N car]] is repeated in two trees, thus the frequency of
the corresponding node is updated to 2. Also smallest subtrees such as [D a]

and [D car] are shared with a frequency of 3. The two subtrees rooted in VP

are different and require different roots but they can still share some of their
subparts, e.g. [V buy].

In [32], we modeled DAGs to encode the cutting plane models computed
at each iteration of the CPA algorithm. We presented two different algo-
rithms, which, by compressing the trees in the CPA model, delivered impres-
sive speedups for both training and testing. However, consecutive experiments
revealed that as the size of the training data becomes larger, the speedup with
respect to the algorithm using vanilla CPA model decreases, requiring a more
thorough study.

In this paper, we extended and assessed our previously proposed methods
by also deriving insights that better explain our approach. In particular, our
contributions are as follows: firstly, we have extended our approach to any
tree kernel satisfying some properties, e.g., our approach can be applied to a
more general tree kernel, namely, the Partial Tree Kernel (PTK) [23]. PTK
not only enables the use of dependency syntactic trees and other different
syntactic paradigms, but also allows for applying our fast approach to many
other application domains, e.g., it can be applied to XML trees or any other
tree-structured data. In contrast to Syntactic Tree Kernel (STK) used in the
previous study, PTK takes on a more fine-grained approach by matching any
subsequence of children nodes of a given node. This necessitates modifications

1 node labels define syntactic categories: NP - noun phrase, D - determiner, V - verb, VP
- verb phrase, N - noun, JJ - adjective
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in the organization of the DAG structure and also yields different levels of
compression compared to the STK. We extensively study the effects of using
PTK when compacting tree forests into DAGs.

Secondly, we investigated the speedup decrease by defining a new efficiency
measure based on atomic kernel operations that in our case is the ∆ function
(i.e., the evaluation of the number of shared substructures rooted at two given
nodes). This allowed us to exactly verify the speedup independently of the
hardware used for running the experiments.

Next, we included a parallelization approach and a method for handling
class-imbalanced datasets in the CPA algorithm, which has been previously
missing. Plain CPA model previously studied in [31] simply learns a model
that minimizes the error rate, which in the case of imbalanced datasets tends
to produce models with low Recall. While, CPA can be used to train models
that optimize various performance measures, e.g. F1 score [15], this, however,
entails the use of non-decomposable loss-functions, which, in turn, requires
to compute the inner product over the entire training set when constructing
cutting plane models at each iteration of the CPA. Hence, it prevents the
use of sampling to speed up the learning with non-linear kernels. Conversely,
we show that a simple cost-proportionate sampling technique is an elegant
solution to extend the CPA to handle class-imbalanced data. We demonstrate
that using an alternative sampling strategy within the CPA to build cutting
planes at each iteration, indeed, provides an efficient way to tune up Precision
and Recall of the obtained classifer. We also show that the original convergence
bounds still apply to the modified algorithm.

Finally, we carried out an extensive evaluation of our approaches on five
datasets: (a) a large dataset of Semantic Role Labeling (SRL) that contains
a collection of parse trees expressing predicate argument relationships; (b) a
new dataset derived from the previous one by removing lexical information, i.e.
words, (unlexicalized trees); (c) question classification dataset, i.e., a taxonomy
of the question types used in question answering systems; (d) question and
answer pairs from Yahoo! answers; and (e) a new dataset from INEX [39] 2005
competition that contains a collection of XML trees. We evaluated the speedup
in terms of the training time and the number of ∆-iterations for both STK
and the newly proposed PTK on DAGs.

The results show that (i) our approach defined in [32] generalizes to most of
tree-based kernels; and (ii) the high speedup achieved in [32] was also due to the
compactness of the model, which could better fit in the CPU cache, amplifying
the benefit of our approach. Nevertheless, the results also demonstrate that
there is still a significant speedup for any size of the data at hand. Additionally,
when dealing with less sparse data, e.g., with unlexicalized trees, the impact
of our approach is further amplified. In particular, on the INEX data, whose
trees show much larger repetition of the sub-structures, the DAG methods
deliver the speedups of about two orders of magnitude w.r.t. to plain CPA
model. This reveals that the potential impact of our approach may be beyond
those we have outlined here.
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In the remainder of this article sections 2 and 3 provide the reader with
the required background on the CPA algorithm and structural kernels. Sec-
tion 4 illustrates how the idea of compacting trees into a DAG can be used
to speed up the CPA algorithm. Section 5 demonstrates our approach to con-
struct DAGs from a tree forest, the computation of the DAG tree kernel and
the parallelization of the resulting CPA algorithm. Section 6 illustrates our
methods for dealing with class imbalance. Section 7 illustrates an extensive
empirical study on five different datasets. Finally, section 9 derives the con-
clusions outlining future research directions.

2 Preliminaries: Cutting Plane Algorithm with Sampling

In this section, we begin by briefly introducing the problem formulation for
binary SVMs to ease the illustration of a re-elaborated version of the cut-
ting plane method (originally proposed in the context of structural SVMs) for
binary classification. Having considered the case for linear SVMs, we point
out the main source of inefficiency for the case when non-linear kernels are
used. Next, we present the idea of using sampling [46] to approximate cutting
planes computed at each iteration of the CPA, which is shown to alleviate high
training costs for SVMs with non-linear kernels.

2.1 Cutting-plane algorithm (primal)

Given a dataset of n labeled examples X = {(xi, yi)}ni=1 with xi ∈ X and
yi × {−1,+1}, binary SVMs seek to find a linear decision function f(w,x) =
sign(w · x)2 that given a test example x and the model weight vector w ∈ X
predicts its label. The model weight vector w is estimated by solving the
following optimization problem:

minimize
w,ξ≥0

1

2
‖w‖2 +

C

n

n∑
i=1

ξi

subject to yi(w · xi) ≥ 1− ξi, i = 1, . . . , n

(1)

where the first term in the objective function is a regularizer encoding the
maximum-margin principle and the second term represents the empirical loss
incurred on the training set. The constraints enforce the requirement to classify
the training examples with a minimum margin. The slack variables ξi allow
for violations in classification, which is useful in case of the noisy data. The
margin trade-off parameter C controls the balance between the regularization
term and the empirical loss.

2 here we fix the bias term b at zero, as it could be easily incorporated in feature vectors
as an additional constant
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Algorithm 1 Cutting Plane Algorithm (primal)

1: Input: X = {(xi, yi)}ni=1, C, ε
2: S ← ∅; t← 0
3: repeat
4: (w, ξ)← optimize OP2 over the constraints in S
5: for i = 1 to n do

6: c
(t)
i ←

{
1 if yi(w · xi) ≤ 1
0 otherwise

7: d(t) ← 1
n

∑n
i=1 c

(t)
i

8: g(t) ← 1
n

∑n
i=1 c

(t)
i yixi

9: S ← S ∪ {(d(t),g(t))}
10: t← t+ 1
11: until no CPMs are violated by more than ε
12: return w, ξ

Next, we consider an equivalent formulation of the SVM training problem,
known as a 1-slack reformulation [16], to derive a more efficient version of the
CPA for binary classification:

minimize
w,ξ≥0

1

2
‖w‖2 + Cξ

subject to
1

n

n∑
i=1

ciyiw · xi ≥
1

n

n∑
i=1

ci − ξ, ∀c ∈ {0, 1}n
(2)

where a binary vector c = (c1, . . . , cn) ∈ {0, 1}n is an index into the training
set and selects which training examples form a given constraint. Hence, each of
such constraints is composed by a linear combination of the constraints of the
form: yi(w · xi) ≥ 1− ξi. The key idea behind this equivalent reformulation is
to represent the empirical risk by only a single slack variable ξ shared across all
the constraints. Even though the number of slack variables is reduced to only
a single ξ, the number of constraints is 2n (as defined by all possible values
of c). This prevents the application of off-the-shelf optimization methods to
directly solve optimization problem in Eq. 2 (OP2). Nevertheless, it has been
shown in [40] that the cutting plane algorithm applied to the OP2 uses only a
small subset of active constraints that is independent of the size of the training
set.

To solve OP2, an adaptation of the generic cutting plane algorithm [16] for
binary classification problem has been shown to yield significant performance
gains over conventional classifiers. The CPA is presented in Alg. 1. It starts
with an empty set of constraints S and computes the optimal solution to the
OP2. Next, the algorithm forms a binary vector c that is merely an index
into the training set and selects which training examples will form the next

cutting plane model (CPM) (defined by an offset d(t) = 1
n

∑n
i=1 c

(t)
i and a

gradient g(t) = 1
n

∑n
i=1 c

(t)
i yixi (lines 5-8)). The cutting plane model encodes

a constraint w ·g(t) ≥ d(t)−ξ that is violated the most by the current solution
w, which is then included in the set of active constraints S (line 9). This
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process is repeated until no CPMs are violated by more than ε (line 11),
which is formalized by the following criteria w · g(t) ≥ d(t) − ξ + ε.

2.2 Cutting-plane algorithm (dual)

While SVMs discussed in the previous section seek to build classifiers that
are linear functions, one may achieve better accuracy by using the power of
kernels to build highly discriminative non-linear decision boundaries. This is
achieved by introducing a mapping function φ(·) that projects the inputs into
some high-dimensional feature space. However, the use of kernels requires to
solve the OP2 in the dual space. Its solution w lies in the feature space defined
by a kernel K(xi,xk) = φ(xi) · φ(xi). Omitting the details, it can be verified
(by deriving the dual from OP2) that the solutions of the primal and dual
problems are connected via:

w =

t∑
j=1

αjg
(j), (3)

where αi are dual variables, g(j) = 1
n

∑n
k=1 c

(j)
k ykφ(xk) denotes the gradient

of the cutting plane model added at iteration j and t is the current iteration.
As one can see, with the use of kernels the gradient g(j) represents a

weighted sum of training examples that lie in the feature space spanned by
φ(·). This implies that a dot product between w and a given example xi re-
quires an explicit computation with each of its components encoded by g(j),
i.e., a common trick, to compact w into a single vector by simply summing
up its n feature vectors is no longer possible. This prohibits to exploit linear-
time training algorithms of SVMs with linear kernels and represents a major
bottleneck of kernelized SVMs. We will address the problem of compact rep-
resentation of the cutting plane models in Section 4.

Computing an inner product between the weight vector w and an example
xi involves the sum of kernel evaluations for each example xk in the cut-
ting plane model g(j) over the set S. In particular, using the expansion of
w from (3), the inner product required to find the next cutting plane model
(steps 5-8 in the Alg. 1), renders as:

w · φ(xi) =

t∑
j=1

αjg
(j) · φ(xi) =

t∑
j=1

αj

( 1

n

n∑
k=1

c
(j)
k yk

)
K(xk,xi), (4)

The analysis of the inner product given by (4) reveals that the number of
kernel evaluations is O(tn). Indeed, the number of non-zero elements in each
g(j) is proportional to the number of support vectors which grows linearly with
the training size n [37]. Performing the kernel evaluations for each cutting plane
model g(j) in the set S, we obtain the complexity of (4) is O(tn). Since the
inner product (4) needs to be computed for each training example (lines 5-6
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in Alg. 1) we obtain the total O(tn2) scaling behavior for each iteration of the
Alg. 1.

The obtained quadratic scaling in the number of examples makes cutting
plane training for non-linear SVMs prohibitively expensive for even medium-
sized datasets and no better than convenvional decomposition methods such
as SMO or SVM-light. To address this limitation [46] proposed to construct
approximate cuts by sampling r examples from the training set. The idea is
to replace the expensive computation of the cutting plane (lines 5-7, Alg. 1)
over all training examples n by a sum over a smaller sample r, s.t. the number
of examples in g(j) is reduced from O(n) to O(r). In this case the double sum
of kernel evaluations in (4) reduces from

∑n
i,j=1K(xi,xj) to a more tractable

in practice
∑r
i,j=1K(xi,xj). This reduces the complexity of each iteration of

Alg. 1 from O(tn2) to O(tr2).
While using sampling to approximate cutting planes computed at each

iteration introduces an additional parameter into the learning algorithm, it
has been shown in [46] that the resulting training and test set errors are stable
with respect to changes in the sample size r. Additionally, [31] extensively
studied the effects of the sample size on the obtained runtime speedups within
the context of SVMs with structural kernels. It has been shown that selecting
smaller sample sizes r (as small as 100 examples) provides significant savings
in the runtime while leading to only a small loss in accuracy.

3 Learning from Structured Data with Tree Kernels

In this section we introduce tree kernels that represent trees in terms of their
sub-structures (fragments). The kernel function detects if a tree subpart (com-
mon to both trees) belongs to the feature space that we intend to generate. For
such purpose, the desired fragments need to be described and efficiently com-
puted. We consider two important convolution kernel functions: the syntactic
tree kernel (STK) and the partial tree kernel (PTK).

3.1 Counting shared fragments in convolution kernels

Convolution TKs compute the number of common substructures between two
trees T1 and T2 without explicitly considering the whole fragment space. For
this purpose, let the set T = {t1, t2, . . . , t|T |} be the space of substructures
and χi(n) be an indicator function, equal to 1 if the target ti is rooted at a
node n and equal to 0 otherwise. A tree-kernel function over T1 and T2 is

TK(T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2), (5)

where NT1
and NT2

are the sets of the T1’s and T2’s nodes, respectively and

∆(n1, n2) =

|T |∑
i=1

χi(n1)χi(n2). (6)
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(b) Partial Tree fragments (PTFs)

Fig. 2 Examples of different classes of tree fragments used as features by Tree Kernels.

which computes the number of common fragments rooted in the n1 and n2
nodes.

Of course, the number above depends on how fragments are defined. Indeed,
there are different types as described in [23]. We consider three important
characterizations: (i) the subtrees, (ii) the syntactic tree fragments (STFs)
and (iii) the partial tree fragments (PTFs). These three types of tree fragments
determine three different kernel functions.

A subtree rooted in a node n of a target tree T is a substructure that
includes n with all of its descendants. A generalization of subtrees are STFs
that do not necessarily include all the descendants of n, although each of its
nodes contain exactly the same edges of T . For example, Figure 2(a) shows 10
STFs (out of total 17) of the subtree rooted in VP (of the left tree). In phrase
structure syntactic trees, the constraint on the edges, is equivalent to impose
that grammatical rules cannot be broken3. For example, [VP [V NP]] is an
STF, which has two non-terminal symbols, V and NP, as leaves whereas [VP

[V]] is not an STF, i.e. the rule VP->V NP can not be split.
If we relax such constraint, we obtain more general substructures called

PTFs. These can be generated by the application of partial production rules
of the grammar, consequently [VP [V]] and [VP [NP]] are valid PTFs. More
in general, nodes in PTFs can have any subset of edges that had in T . This
means that PTFs are not constrained to any grammar and can be applied to
any tree structure of any domain. Figure 2(b) shows that the number of PTFs
derived from the same tree as before is higher (i.e. 30 PTs).

3.2 Syntactic Tree Kernel (STK)

The ∆ function depends on the type of fragments that we consider as basic
features. To evaluate the number of STFs, we can use the following algorithm:

1. if the productions at n1 and n2 are different then ∆(n1, n2) = 0;
2. if the productions at n1 and n2 are the same, and n1 and n2 have only leaf

children (i.e. they are pre-terminal symbols) then ∆(n1, n2) = 1;
3. if the productions at n1 and n2 are the same, and n1 and n2 are not pre-

terminals then

∆(n1, n2) =

nc(n1)∏
j=1

(1 +∆(cjn1
, cjn2

)) (7)

3 Any tree can be seen as generated by an underlying grammar where the production
rules are given by a node (left handside) and its children (right handside).
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where nc(n1) is the number of children of n1 and cjn is the j-th child of the
node n. Note that, since the productions are the same, nc(n1) = nc(n2).

∆(n1, n2) evaluates the number of STFs common to n1 and n2 as proved
in [8]. Moreover, a decay factor λ can be added by modifying steps (2) and (3)
as follows4:

2. ∆(n1, n2) = λ,

3. ∆(n1, n2) = λ
∏nc(n1)
j=1 (1 +∆(cjn1

, cjn2
)).

The computational complexity of STK is O(|NT1 | × |NT2 |) but as shown in
[24], the average running time tends to be linear, i.e. O(|NT1 | + |NT2 |), for
natural language syntactic trees.

It should be noted that STK was devised for processing syntactic trees.
Its main characteristic is that the production rules of the grammar used to
generate the tree will not be broken to generate fragments. This corresponds
to the restriction of not separating children in the related substructures (i.e.
STFs). STK can be applied to compute the similarity measure between any
trees (not necessarily syntactic parse trees) with a restriction that any node
of the generated STF must still contain all (or none) of its children.

3.3 Partial Tree Kernel (PTK)

The computation of PTFs is carried out by the ∆ function defined as follows:

1. if the node labels of n1 and n2 are different then ∆(n1, n2) = 0;
2. else:

∆(n1, n2) = 1 +
∑

I1,I2,l(I1)=l(I2)

l(I1)∏
j=1

∆(cn1
(I1j), cn2

(I2j))

where I1 = 〈h1, h2, h3, ..〉 and I2 = 〈k1, k2, k3, ..〉 are index sequences associ-
ated with the ordered child sequences cn1

of n1 and cn2
of n2, respectively. I1j

and I2j point to the j-th child in the corresponding sequence, and, again, l(·)
returns the sequence length, i.e. the number of children.

Furthermore, we add two decay factors: µ for the depth of the tree and λ
for the length of the child subsequences with respect to the original sequence,
which accounts for gaps. Hence, the expression for the ∆ function for PTK
derives as follows:

∆(n1, n2) = µ
(
λ2 +

∑
I1,I2,l(I1)=l(I2)

λd(I1)+d(I2)
l(I1)∏
j=1

∆(cn1(I1j), cn2(I2j))
)
, (8)

where d(I1) = I1l(I1) − I11 + 1 and d(I2) = I2l(I2) − I21 + 1. This way, we
penalize both larger trees and child subsequences with gaps. Eq. 8 is more

4 To have a similarity score between 0 and 1, we also apply the normalization in the kernel

space: TKnorm(T1, T2) =
TK(T1,T2)√

TK(T1,T1)×TK(T2,T2)
.
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general than Eq. 7. Indeed, if we only consider the contribution of shared
subsequences containing all children of nodes, we actually obtain the STK
kernel. The computational complexity of PTK is O(pρ2|NT1

| × |NT2
|) [23],

where p is the largest subsequent of children that we want to consider and ρ is
the maximal out-degree observed in the two trees. However, as shown in [23],
the average running time again tends to be linear in the number of nodes for
natural language syntactic trees.

4 Fast CPA for Structural Kernels

In this section we present an approach to significantly speed up the approxi-
mate CPA for structural kernels described in Section 2. We observe that for
convolution structural kernels that are defined in terms of its substructures, the
cutting plane model can be compactly represented as a Directed Acyclic Graph
(DAG), where each unique substructure is stored only once. This helps to speed
up both the training and classification as the repeating kernel evaluations over
shared substructures can be avoided. Most interestingly, this approach can be
parallelized during training, thus, making structural kernel learning practical
on larger datasets.

4.1 Compacting cutting plane models using DAGs

In the previous section we have seen that computing a cutting plane model
(CPM) at each iteration involves a quadratic number of kernel evaluations.
Using sampling to approximate the cutting plane helps to reduce the number
of kernel evaluations.

Here, we explore another method to reduce the number of kernel compu-
tations when convolution structural kernels are used. Indeed, when applied
to structural data such as sequences, trees or graphs, we can take advantage
of the fact that many examples share common sub-structures. Hence, we can
use a compact representation of a cutting plane model to avoid redundant
computations over repeating sub-structures. In particular, when dealing with
tree-structured data, a collection of trees can be compactly represented as a
DAG [2]. In the following we briefly introduce the idea behind using DAGs to
compactly represent a tree forest and then show how it applies to speed up
the learning algorithm.

4.2 DAG tree kernels

A DAG can efficiently represent a set of trees (a forest F ) by including only
unique subtrees and accounting for the frequency of the repeated substruc-
tures. Given the DAG representation previously presented in Fig. 1, we can
define tree kernel functions between a DAG and a tree, which compute exactly
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the same kernel, with a relevant speedup. The support for this algorithm is
given by the following:

Theorem 1 Let D be a DAG representing a tree forest F and Kdag(D, T2) =∑
n1∈ND

∑
n2∈NT2

f(n1)∆(n1, n2) then∑
T1∈F

TK(T1, T2) = Kdag(D, T2), (9)

where f(n1) is the frequency associated with n1 in D, TK is any tree kernel
function that can be factorized with Eq. 5 and a ∆(n1, n2) function, which
counts the number of shared subtrees rooted in n1 and n2.

Proof Let S(F ) be the set of possible subtrees (see the definition in Sec. 3.1)
of F , i.e., the substructures whose leaves coincide with those of the original tree
(in general T 6= S), then

∑
T1∈F TK(T1, T2) =

∑
T1∈F

∑
n1∈NT1

∑
n2∈NT2

∆(n1, n2)

=
∑
T1∈F

∑
n1:t∈S(T1)
n1=r(t)

∑
n2∈NT2

∆(n1, n2), where r(t) is the root of the subtree

t. The last expression is equal to
∑
n1:t∈S(F )
n1=r(t)

∑
n2∈NT2

∆(n1, n2). Let S ′ be the

unique subtrees of S, we can rewrite the above equation as:∑
n1:t∈S′(F )
n1=r(t)

f(n1)
∑
n2∈NT2

∆(n1, n2) =
∑
n1:t∈D
n1=r(t)

∑
n2∈NT2

f(n1)∆(n1, n2) =∑
n1∈ND

∑
n2∈NT2

f(n1)∆(n1, n2) �

Remark 1 It should be noted that no assumption is made on ∆(n1, n2), thus
our approach is valid for a vast set of tree kernels defined by a specific form
of its ∆ function. Since STK and PTK are based on Eq. 5 and their ∆(n1, n2)
function computes the number of substructures rooted in n1 and n2 the fol-
lowing holds:

Corollary 1 Given a DAG D and a forest F , let us define

1. STKdag(D, T2) =
∑
n1∈ND

∑
n2∈NT2

f(n1)∆STK(n1, n2) and

2. PTKdag(D, T2) =
∑
n1∈ND

∑
n2∈NT2

f(n1)∆PTK(n1, n2)

then such DAG kernels exactly compute
∑
T1∈F STK(T1, T2) and∑

T1∈F PTK(T1, T2), respectively, where ∆STK is Eq. 7 and ∆PTK is Eq. 8.

Remark 2 It is easy to prove that convolution kernels [13] can be factorized
with Eq. 5 and a generic ∆(n1, n2). Therefore, our approach at least applies
to such large class of kernels.

4.3 Fast Computation of the CPM on Structural Data

Having introduced the DAG tree kernel, we redefine the most computationally
expensive part of the CPA, i.e. the inner product in Eq. 4 required to compute
the CPM by compacting g(j) into a single DAG model D(j):

w · φ(xi) =

t∑
j=1

αj

( 1

n

n∑
k=1

c
(j)
k yk

)
K(xk,xi) =

1

n

t∑
j=1

αjKdag(D
(j),xi) (10)
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Unlike Eq. 4, where each cutting plane g(j) is an arithmetic sum of training
examples, here we take advantage of the fact that a collection of trees can be
efficiently put into an equivalent DAG D(j). As shown in Th. 1 computing a
kernel Kdag(·, ·) between an example and a DAG that represents a collection
of trees yields an exact kernel value. The benefit of such representation comes
from the efficiency gains obtained by speeding up kernel evaluations over the
sum of examples compacted into a single DAG.

Alternatively, to benefit even more from the compact representation offered
by DAGs, we can put all the cutting planes from the active set S into a single
DAG model D̂, such that the inner product in Eq. 10 is reduced to a single
kernel evaluation:

w · φ(xi) =
1

n

t∑
j=1

αjKdag(D
(j),xi) =

1

n
Kdag(D̂

(t),xi), (11)

where D̂(t) at iteration t is built by compacting all D(j) together with their
corresponding dual variable αj . This ensures that a single Kdag evaluation over
the full DAG model makes Eq. 11 equivalent to computing a weighted sum
of Kdag using individual D(j) in Eq. 10. Henceforth, we call the approach to
compute the inner-product in Eq. 4 using more efficient expressions in Eq. 10
and Eq. 11 as SDAG and SDAG+ respectively. A more detailed explanation
of the DAG structure implemetation along with the pseudocode of algorithms
for building a DAG from a set of trees, compacting a set of DAGs into a single
DAG and computing Kdag are given in the forthcoming section.

Now we are ready to present the new cutting plane algorithm (Alg. 2)
adapted for the use of tree kernels with DAGs. Different from Alg. 1 here we
use a set of r examples uniformly sampled from the original training set to
approximate the CPM computed at each iteration of the CPA, s.t. computing
the inner product over all n examples in the training set is reduced to a much
smaller sample r. This also reduces the size of the resulting model weight
vector, since each CPM includes maximum only r training points. To compute
the CPM we can use either SDAG or SDAG+ approach to form a binary vector
c, which then defines the training examples that are further inserted into the
DAG to represent the CPM at iteration t.

As one can see, while using SDAG+ approach provides better compression,
since all CPM models D(j) are compacted into a single D̂(t), it, however, needs
to be re-built at each iteration to accommodate an update in vector α after
re-solving the dual of OP2. Nevertheless, the time to construct D̂ is linear in
the number of nodes in the model and imposes negligible computational over-
head in practice. Another computational drawback of using full DAG model
compared to the set of D(j) is that in the former case we need to compute
the update of the Gram matrix column (line 4 in Alg.2) Git = D(i) ·D(t) for
1 ≤ i ≤ t, while in the latter case it is obtained automatically from computing
Eq. 10.

Even though the worst-case complexity of computing CPMs at each itera-
tion using both variants of DAGs is still O(r2), in practice we can observe much



14 Aliaksei Severyn, Alessandro Moschitti

Algorithm 2 Cutting Plane Algorithm (dual) using DAGs

1: Input: X = {(xi, yi)}ni=1, r, C, ε,
2: S ← ∅; D← ∅; t← 0;
3: repeat
4: Update the Gram matrix G with a new CPM
5: α← optimize Wolfe dual of OP2
6: I ← index set of r examples uniformly sampled from the training set X
7: c(t) ← find CPM using SDAG (Alg. 3) or SDAG+ (Alg. 4)
8: D(t) ← buildDAG(xc(t) ,yc(t) )

9: d(t) ← 1
r

∑r
i=1 c

(t)
i

10: S ← S ∪ {(d(t),D(t))}
11: t← t+ 1
12: until no CPMs are violated by more than ε
13: return w, ξ

Algorithm 3 Find CPM with SDAG
Input: x, S,α, I
for each i ∈ I do

c
(t)
i ←

{
1 if yi/r

∑t
j=1 αjKdag(D(j),xi) ≤ 1

0 otherwise

return c(t)

Algorithm 4 Find CPM with SDAG+
Input: x, S,α, I

d̂ag ← compactDAG(S,α)
for each i ∈ I do

c
(t)
i ←

{
1 if yi/rKdag(d̂ag,xi) ≤ 1
0 otherwise

return c(t)

better scaling behavior, since in real datasets examples tend to share many
common substructures. As verified by the extensive experiments in section 7,
this greatly speeds up both training and classification by avoiding redundant
kernel computations. Finally, it is important to note that the obtained Alg. 2
preserves all theoretical benefits of the approximate CPA with sampling, since
the kernel computations remain the same, while in practice greatly reducing
the number of expensive kernel evaluations to compute the CPM.

5 Implementation of the DAG Kernel

The implementation of the DAG kernel requires two different algorithms for:
(i) efficiently inserting trees into a DAG and (ii) computing a kernel between
a DAG and a given tree. Additionally, the DAG kernel computation can be
parallelized.
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5.1 DAG construction

There are various methods to efficiently build a DAG corresponding to a col-
lection of trees, F , see for example [2]. Given a tree, T ∈ F , we need to insert
its nodes in the DAG, where the uniqueness of each node is defined by its cor-
responding subtree. The latter criteria is crucial, since the DAG representation
has to conform to the recursive nature of the tree kernel functions computed
over the DAG, i.e. two nodes which corresponding subtrees differ in only one
element will have to be inserted separately in the DAG. For this purpose, to
insert tree nodes n ∈ T , we need to be able to efficiently check if the subtree
rooted at n is already in the DAG. The key of the node n can simply by a
serialized string representation of the subtree rooted at this node. In case the
node is already present in the DAG we only need to update its associated
weight.

The node weights are defined as yj/
√
|T | or yj · αj/

√
|T | for SDAG and

SDAG+ respectively5, such that the dag kernel produces an equivalent tree
kernel value when computing the inner product in Eq. 10 or Eq. 11. Hence,
each element in the DAG is a pair of two items: a node (we only need to keep a
pointer ) and its weight. This is enough to obtain a compact model representa-
tion, where repeating tree sub-structures are accounted by their corresponding
weights and can be uniquely stored in the DAG. This construction ensures that
one obtains the same TK values.

As we have seen from section 4.2 a DAG tree kernel is defined as the sum of
∆-function evaluations over the node pairs sharing some common property, i.e.
production rules (STK) or node labels (PTK) are the same. For this purpose,
it is convenient to maintain a second associative array indexed by either the
production rule (STK) or node labels (PTK) in the DAG structure, such that
for a given node n ∈ T we can retrieve a list of all matching nodes N in the
DAG in constant time.

Hence, we design the DAG data structure D to contain two associative
arrays: nodes and productions. The former is used to perform constant time
membership checks when inserting a new node, such that two nodes with
identical subtrees are stored only once. The latter allows for the constant time
retrieval of a list of node pairs in a DAG matching the production rule (node
label) of a given node n, which is used for computing a DAG tree kernel.
In this way we can efficiently insert trees into a DAG and enumerate all the
candidate substructures sharing the same production (STK) or node label
(PTK) to compute the tree kernel between a DAG and a given tree. The
aforementioned implementation ideas are formalized in Algorithms 5 and 8
which provide the pseudocode for inserting trees into a DAG.

More specifically, to insert a tree T into a DAG D we proceed as follows:
we first define the weight of the nodes to be inserted into a DAG as the tree
label yi divided by the tree norm |T |, such that we effectively compute the

5 here, we consider the normalized version of the tree kernel, i.e. K(T1, T2) =

K(T1, T2)/(
√
K(T1, T1) ∗

√
(K(T1, T1)), hence, we need to introduce the tree norm |T |

into the node weight.
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inner product as defined in Eq. 10. Next, for each node in the input tree, we
compute the nodes id6 and use it to check if the node is already present in
the DAG. If yes, we simply update its weight, otherwise we insert the node
together with its weight into both associative arrays: nodes and productions.
For the latter, we use nodes production (label) to retrieve a list of matching
nodes and append the new element. Finally, Alg. 8 shows how a set of DAGs
D(j) are compacted into a single D̂, which allows for a reduction of an inner
product in Eq. 10 to a single kernel evaluation as shown in Eq. 11. Note that,
to account for individual αj of each D(j) when inserting its node into a D̂,
we simply make it as an additional factor of the node weight, i.e. weight · αj
(line 7).

5.2 DAG kernel computation

Having discussed the particular implementation of the DAG data structure
that allows for efficient DAG construction from a collection of trees, we now
consider how one can compute a tree kernel over a given tree and the con-
structed DAG D. The associative array productions allows us to efficiently
compute TKs by retrieving (in constant time) a list of nodes in the DAG
matching a given node n ∈ T to evaluate ∆ for each pair of nodes. In partic-
ular, computing a tree kernel between a DAG and a tree (see Alg. 11) simply
requires (i) looping over nodes in a tree (line 3), (ii) retrieving a list of nodes
in the DAG matching node n (line 7) and (iii) summing up the product be-
tween the weight of the considered node in the DAG and the value returned
by a call to a ∆ function (line 10). Note that we return the final value of the
sum divided by a tree norm |T |, s.t. evaluating Kdag over a DAG and a set
of trees yields a normalized TK value. This procedure is similar for both STK
and PTK kernels with the difference that for PTK we form the matching node
pairs using node labels instead of production rules.

5.3 Parallelization

The modular nature of the CPA suggests easy parallelization. In fact, in our
experiments, we observed that at each iteration 95% of the total learning time
is spent on computing the CPM (steps 3-9, Alg. 2). This involves computing
Eq. 10 over the set of individual DAGs or Eq. 11 using full DAG model for
the sample of r training examples. Using p processors the complexity of this
pre-dominant part can be brought down from O(r2) to O(r2/p).

6 Computing node ids requires to serialize subtrees rooted at each node which is linear in
the tree size and is done at the preprocessing stage.
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Algorithm 6 Insert a tree node into a DAG
1: Input: sample of I, dag D
2: for i ∈ I do
3: weight← yi√

|Ti|
4: for each node ∈ Ti do
5: addNode(D,weight, node)

procedure addNode(D,weight, node)
key ← id(node)
K ← all keys in D.nodes
if key ∈ K then

updateWeight(D.nodes[key], weight)
else
newDagElement← construct a new pair (weight, node)
D.nodes[key]← newDagElement
dagElementsList← D.productions[node.production]
append(dagElementsList, newDagElement)

Algorithm 7 Compact a set of CPMs into a single DAG
1: Input: set of CPMs S, vector of dual variables α
2: D̂ ← newDag()
3: for j = 1 to length(S) do
4: K ← all keys in D(j).nodes
5: for each key ∈ K do
6: weight, node← D(j).nodes[key]

7: addNode(D̂, weight · αj , node)

8: return D̂

Algorithm 8 Compute Kdag(D,T)

1: Input: tree T , dag
2: sum← 0
3: for each node ∈ T do
4: key ← production rule of node
5: P ← all production rules in D.productions
6: if key ∈ P then
7: dagElementsList← D.productions[key]
8: for each dagElement ∈ dagElementsList do
9: weight, dagNode← dagElement

10: sum← sum+ weight ·∆(node, dagNode)

11: return sum/
√
|T |

6 Handling Class-Imbalanced data

Having considered a set of techniques to speed up the training of SVMs with
tree kernels, we now turn to addressing another important problem of dealing
with class-imbalanced data. This problem often arises in situations when we
have to deal with datasets where the number of negative examples largely
outnumbers the number of positive examples. On such datasets, a typical
classifier that is minimizing a mis-classification rate is likely to learn a model
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that will tend to label all examples as negative. Hence, it will will do poorly
in terms of Precision and Recall.

Thus, in this section, we extend the theory of the cutting-plane algorithm to
tackle class-imbalance problem. Our approach is based on an alternative sam-
pling strategy, e.g. cost-proportionate sampling, that is effective for tuning up
Precision and Recall on class-imbalanced data. Typically, cost-proportionate
sampling is used to alter the distribution of the original training set to make
the proportion of positive and negative examples balanced, such that the clas-
sifier can be trained on a balanced data. However, the CPA operates differ-
ently as it iteratively draws samples to build an approximation of the cutting
plane models at each step. Hence, it is important to verify that altering the
distribution of the examples in the sample used to build CPM at each step,
indeed, allows for an effective way to tune up Precision and Recall of the final
classifier. We also demonstrate that the same convergence bounds hold when
cost-proportionate sampling is applied within the CPA.

6.1 Cost-proportionate sampling

Conventional SVM problem formulation allows for natural incorporation of
example dependent importance weights into the optimization problem. We
can modify the objective function to include example dependent cost factors:

minimize
w,ξi≥0

1

2
‖w‖2 +

C

n

n∑
i

ziξi

subject to yi(w · xi) ≥ 1− ξi, 1 ≤ i ≤ n
(12)

where zi is the importance weight of example i and 1
n

∑n
i ziξi serves as an

upper bound on the total cost-sensitive empirical risk. This problem formula-
tion where there is an individual slack variable ξi for each example is typically
referred to as “n-slack” formulation.

In the dual space, the example-dependent costs captured by cost factors zi
translate into the box constraints imposed on each dual variables: 0 ≤ αi ≤
ziC, 1 ≤ i ≤ n such that the ziC sets an upper bound on the values of αi.
This feature to integrate importance weights zi in the problem formulation is
implemented in SVM-light software.

This natural modification of the quadratic problem, is, however, difficult to
incorporate in the case of 1-slack formulation (OP2). Indeed, in the case of 1-
slack formulation we have a single slack variable ξ that is shared among all the
constraints. More importantly, moving to the dual space, the box constraints
0 ≤ αi ≤ C are no longer for each individual dual variable but for a sum:

∑
i αi.

This makes the 1-slack problem formulation difficult to incorporate importance
weights directly. Nevertheless, the idea of approximating the cutting plane
model at each iteration via sampling suggests a straightforward solution.

Indeed, we can extend the original CPA to the case of cost-sensitive classi-
fication. A straight-forward way to do this is instead of using uniform sampling
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to build an approximation to the CPM at each iteration in Alg. 2), we can draw
examples according to their importance weights using the cost-proportionate
rejection sampling technique (Alg. 9).

Algorithm 9 Cost-proportionate rejection sampling
1: Pick example (xi, yi, zi) at random
2: Flip a coin with bias zi/Z
3: if heads then
4: keep the example
5: else
6: discard it

Here zi is the importance weight of the i-th example and Z is an upper
bound on any importance value in the dataset. This process is repeated until
we sample the required number of examples r. This modification enables the
control over the proportion of examples from different classes that will form a
sample used to compute the CPM.

Unlike the conventional approaches for addressing the class-imbalance prob-
lem, that either under-sample the majority class or over-sample the minority
class from the training data, the rejection sampling coupled with CPA does
not completely discard examples from the training set. At each iteration it
forms a sample according to the pre-assigned importance weights for each ex-
ample, such that examples from both the majority and minority classes enter
the sample in the desired proportion. This process is repeated until the al-
gorithm converges. Thus, the learner has the chance to incorporate relevant
information present in the data over a number of iterations before it converges.
This way, the method preserves the global view on the dataset and no rele-
vant information is lost during the iterative optimization process unlike in the
“one-shot” sampling methods.

Another benefit of this approach is that by increasing the importance
weight of the minority class, we give its examples more chance to end up in
CPM and hence, become support vectors. This way the imbalanced support-
vector ratio is automatically tuned to include more examples from the minority
class, which gives more control over the class-imbalance problem. Proving this
property could be an interesting theoretical result.

6.2 Theoretical Analysis of the Algorithm

Cost proportionate rejection sampling allows for natural extension of the bi-
nary classification to importance weighted binary classification. It achieves this
task by re-weighting the original distribution of examples D according to the
importance weights of examples such that the training is effectively carried
out under the new distribution D̂.

In [47] it is shown that by transforming the original distribution D to a
training set under D̂, one can effectively train a cost-insensitive classifier on
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a dataset D̂ such that it will minimize the expected risk under the original
distribution D.

Theorem 2 (Translation Theorem; [47]) Learning a classifier h to minimize
the expected cost-sensitive risk under the original distribution D is equivalent
to learning a decision function to minimize the expected cost-insensitive risk
under the distribution D̂(x, y, z) ≡ z

E(x,y,z)∼D[z]D(x, y, z).

The proof is a straight-forward application of the definitions and simply fol-
lows by establishing an equivalence relationship between the expected cost-
sensitive risk E(x,y,z)∼D[z∆(y, h(x))] under the original distribution D and
the expected cost-insensitive risk E(x,y,z)∼D̂[∆(y, h(x))] under the transformed

distribution D̂. The theorem produces an important implication that by trans-
forming the original distribution D to D̂ according to example-dependent im-
portance weights, a classifier for the cost-sensitive problem over D can be
obtained with a cost-insensitive learning algorithm over D. We can use this
finding to show that the convergence proof for the original CPA with uniform
sampling naturally applies to the proposed version of the algorithm that uses
cost-proportionate rejection sampling:

Theorem 3 (Convergence) Assume R = max1≤i≤n‖φ(xi)‖, i.e. R is an upper
bound on the norm of any φ(xi), and ∆ = max1≤i≤n‖ ∆(y, yi)‖, the number of
steps required by Alg. 2 using the sampling strategy of Alg. 9 is upper bounded
by 8C∆R2/ε2.

Proof. We first note that the cost-proportionate rejection sampling (Alg. 9),
used to build the approximate cutting plane model, at each step re-weights
the original distribution D according to the importance weights of the exam-
ples. This means that we are effectively training a cost insensitive classifier
that draws examples to build the cutting plane model from the transformed
distribution D̂. By invoking the Translation Theorem (2), we establish that,
to obtain a cost-sensitive classifier that minimizes the expected risk under the
original distribution D, it is sufficient to learn a cost-insensitive classifier un-
der the transformed distribution D̂. The CPA that draws examples from D
using rejection sampling is equivalent to the original CPA applying uniform
sampling to the transformed distribution D̂. Thus, we can reutilize the proof
in [46] of the convergence bounds for the original CPA with uniform sampling
over D̂. This states that CPA with uniform sampling terminates after at most
8C∆R2/ε2 iterations. By applying such bound, we have proved the thesis of
the theorem.
Remarks. The main idea to obtain convergence bounds in [46] is to set an
upper bound on the value of the dual objective and if there exists a lower
bound on the minimal improvement of the dual objective at each iteration,
then the algorithm will terminate in a finite number of steps.

Indeed, using the relationship between primal and dual problems, we have
that a feasible solution of the primal OP1, such as, for example: w = 0, ξ = ∆,
forms an upper bound C∆ on the dual objective of 2. Next, in [40] it is shown
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that the inclusion of ε-violated constraint at each iteration improves the dual
objective by at least ε/8R2 . Since the dual objective is upper bounded by
C∆, the algorithm terminates after at most 8C∆R2/ε2 iterations.

The derivation of the bound on the minimal improvement of the dual ob-
jective obtained at each step only depends on the values of ε and R and does
not rely on the assumption about distribution of the examples. Also note that
each cutting plane model built via rejection sampling is a valid constraint for
the OP1.

7 Experiments

In our experiments we pursue a three-fold goal: (i) study the effects of compact-
ing the cutting plane model by using DAGs on both training and classification
runtime; (ii) demonstrate the speedup factors one can obtain after straight-
forward parallelization offered by the CPA; and (iii) demonstrate the ability
of the cost-proportionate sampling scheme to tune up Precision and Recall;

7.1 Experimental setup

We integrated CPA with uniform sampling as described in [46] within the
framework of SVM-Light-TK [24,14] to enable the use of structural kernels,
e.g. we used STK and PTK (see Sec. 3). PTK has been indicated as the most
accurate in similar tasks, e.g. [24], while PTK is a more general yet much
more computationally demanding. To measure the classification performance,
we use Precision, Recall and F 1-score, i.e. a harmonic mean between Precision
and Recall.

For the DAG implementation, we employ highly efficient Judy arrays7. For
brevity, we refer to the CPA with uniform sampling as uSVM; uSVM where
each cutting plane g(j) is compacted into a D(j) as SDAG; uSVM with a single
DAG that fits all active constraints in the set S as SDAG+; uSVM with cost-
proportionate sampling as uSVM+j (Alg. 9), and SVM-light-TK as SVM. The
margin trade off parameter is fixed at 1.0.

We ran all the experiments on machines equipped with Intel R© Xeon R©
2.33GHz CPUs carrying 6Gb of RAM under Linux. Parallel implementation
relies on the OpenMP library.

7.2 Data and models

To evaluate the efficiency of the compact model representation offered by
SDAG and SDAG+ algorithms with respect to uSVM, we use Semantic Role
Labeling (SRL) benchmark. The dataset consists of the Penn Treebank texts [22],
PropBank annotation [28] and Charniak parse trees [6] as provided by the

7 http://judy.sourceforge.net
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CoNLL 2005 shared task on Semantic Role Labeling [5]. The goal is to recog-
nize semantic roles of the target verbs in a given sentence.

SRL is a complex tasks where the state-of-the-art systems achieve F1 at
about 80%, which indicates the importance of extracting the best features.
A common approach to tackle SRL problem involves two steps: (i) detection
of the verb arguments and (ii) classification of identified arguments into their
respective semantic categories and final annotation of the original parse tree.
In our experiments, we focus on the first task of argument identification (i.e.
the exact sequence of words spanning an argument). This corresponds to the
classification of parse tree nodes into correct or not correct boundaries. For
this purpose, we train a binary Boundary Classifier using the AST subtree
defined in [25], i.e. the minimal subtree, extracted from the sentence parse
tree, including the predicate and the target argument nodes. To evaluate the
learned models we report the F1

8 on two sections: 23 and 24, that contain
230k and 150k examples respectively. SRL dataset has already been used to
extensively test uSVM for structural kernels and we follow the same setting
as described in [31] unless mentioned otherwise.

We also conduct an important study on the sparsity effect inherent to the
syntactic parse trees. While the trees from SRL dataset have a very small
number of unique non-terminal nodes (less than 100), the number of unique
subtrees is huge. This is largely attributed to a great variety of the leaf nodes
(lexicals) which for syntactic parse trees are simply words. Consequently, many
subtrees that have identical structure up to the leaf nodes may differ because
only one word is different. Hence, such nodes when inserted into a DAG will
be stored separately, which prevents greater levels of compression. In NLP, the
number of unique leaf nodes (words) can be hundreds of thousands and more,
therefore, to better understand the sparsity effect caused by the leaf nodes,
we carry out another set of experiments on unlexicalized trees from SRL.
We simply remove the leaf nodes and re-train our models on this modified
data. This allows for better assessment of how our approach may perform in
other settings where trees are much less diverse and DAGs can yield better
compression.

Additionally, to better understand how the DAG idea translates to other
domains different from NLP, we also present the results for XML tree classi-
fication from the INEX 2005 challenge [11]. The dataset is formed by XML
documents describing movies from the IMDB site9. The particular steps taken
to pre-process the trees are described in [39]. The size of the training and test
set is 4820 and 4810. The distinctive property of this data is that the total
number of unique node labels (XML tags) is 197. This is much smaller when
compared to very sparse syntactic structures in NLP. This fact has a direct
effect on the number of common substructures shared among the training ex-

8 the reported scores corresponds to the accuracy of the binary classifier, which is slightly
higher than the accuracy of the overall boundary detection due to errors in parsing.

9 http://www.imdb.com
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Fig. 3 Comparison of the number of calls to ∆ for uSVM, SDAG, and SDAG+ using STK
(left) and PTK (right) kernels on the original SRL and unlexicalized version.

amples. As we will see in the next section this plays a significant role for the
SDAG and SDAG+ algorithms, which can exploit more compact models.

In the next set of experiments to study the ability of uSVM+j to tune up
Precision and Recall we used two different natural language datasets: TREC
10 QA10 (training: 5,483, test: 500) and Yahoo! Answers (YA)11(train: up to
300k, test: 10k) to perform two similar tasks of QA classification. The task for
the first dataset is to select the most appropriate type of the answer from a
set of given possibilities. The goal of the experiments on these relatively small
datasets is to demonstrate that rejection sampling is able to effectively handle
class imbalance similar to SVM. For Yahoo! Answers dataset the classification
task was set up as follows. Given pairs of questions and corresponding answers
learn if in a given pair the answer is the “best” answer for a question. The
goal of this experiment is to have a large classification task (300k examples in
our experiments) to demonstrate that class-imbalance problem can be handled
effectively at a scale where SVM becomes too slow.

7.3 Comparative speedup analysis of DAG-based model

The goal of this set of experiments is to study computational savings that
come from using a compact representation of individual (SDAG) or the full
set (SDAG+) of cutting plane models in S. As the baseline for the learning
and classification runtime comparison, we use plain uSVM algorithm. Note
that the classification accuracy is not of concern here (hence, not reported)
since SDAG and SDAG+ produce exact kernel evaluations, thus they train
the same model as uSVM.

Learning speedups. To carry out training, we use 100k examples from the
second section of the SRL dataset. Figure 3 provides the first intuition on the

10 http://l2r.cs.uiuc.edu/cogcomp/Data/QA/QC/
11 retrieved through the Yahoo! Webscope program.



24 Aliaksei Severyn, Alessandro Moschitti

Table 1 Evaluation using STK: speedups w.r.t. training time and number of calls to ∆
function for SDAG and SDAG+ over uSVM on three datasets: SRL (top), unlexicalized
SRL (middle), and INEX 2005 dataset (bottom). The size of both SRL datasets is 100k
whereas the size of INEX 2005 is 5k. For uSVM we report the absolute values of ∆ and
training time (minutes), t, while for SDAG and SDAG+ we illustrate the relative speedups,
i.e., the rate between ∆ and t and ∆S and tS of SDAG or ∆S+ and tS+ of SDAG+.

sample
uSVM SDAG SDAG+
∆ t ∆/∆S t/tS ∆/∆S+ t/tS+

SRL
250 3.3E+08 3 1.1 5.1 1.8 4.0
500 1.1E+09 10 1.1 6.3 2.2 5.4
1000 4.1E+09 37 1.1 7.0 3.0 7.8
2000 1.6E+10 138 1.1 7.3 4.3 11.0
3000 3.5E+10 303 1.2 7.2 5.4 14.3
4000 6.0E+10 517 1.2 7.2 6.2 17.2
5000 9.6E+10 834 1.2 7.6 7.3 20.0

SRL (unlexicalized)
250 2.3E+08 2 1.2 8.1 3.4 8.8
500 8.6E+08 6 1.4 8.3 4.4 11.5
1000 3.2E+09 21 1.5 8.6 5.9 16.0
2000 1.3E+10 85 1.7 8.8 8.6 19.8
3000 2.7E+10 183 1.9 8.8 10.3 22.3
4000 4.9E+10 325 2.0 9.1 12.7 26.7
5000 7.7E+10 513 2.1 9.2 14.3 28.9

INEX 2005
100 1.7E+08 1 13.1 7.5 21.7 6.9
250 8.6E+08 3 25.3 14.6 55.2 24.9
500 3.0E+09 8 43.1 23.1 90.4 43.3
1000 1.2E+10 31 78.8 46.0 156.4 77.5

runtime savings provided by SDAG and, especially, SDAG+ that is able to
provide the most compact model representation. The graph plots the total
number of calls to ∆ function made by the learning algorithm during the
training phase for uSVM, SDAG and SDAG+ for both the original SRL and
SRL with lexicals removed. While the number of kernel evaluations technically
remains the same for all the algorithms (using the same tree kernel), it is
the number of ∆ calls (see Eq. (7) and Eq. (8)) that greatly differ between
uSVM, SDAG and SDAG+. As we can see, SDAG+ provides much better
computational savings in terms of the ∆-calls than uSVM and SDAG for both
STK and PTK. This benefit becomes especially strong for unlexicalized dataset
where DAGs are able to provide even more compact representation.

Tables 1 and 2 present a more detailed performance comparison of SDAG
and SDAG+ with respect to uSVM on 100k subset of SRL and its unlexi-
calized version where leaf nodes representing words (lexicals) were removed.
The bottom part shows the results of training on INEX dataset. We carried
out comparative experiments on both STK and PTK kernels and used uSVM
outcome as a yardstick. For each algorithm and each kernel, we report two
relative metrics: ratios between the number of calls to ∆ function as defined
in equations (7) and (8) for STK and PTK correspondingly.
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Table 2 Evaluation using PTK kernel (see the caption of in Table 1).

sample
uSVM SDAG SDAG+

∆ t ∆/∆S t/tS ∆/∆S+ t/tS+

SRL
250 4.8E+09 23 1.0 1.5 1.7 1.2
500 1.8E+10 90 1.1 1.5 2.1 1.4
1000 7.1E+10 340 1.1 1.5 2.9 1.8
2000 2.7E+11 1781 1.1 2.1 3.9 3.3
3000 5.9E+11 3696 1.1 2.1 4.8 5.1
4000 1.2E+12 5039 1.3 2.1 6.4 5.7
5000 1.9E+12 6687 1.5 2.1 7.6 6.5

SRL (unlexicalized)
250 4.5E+09 20 1.8 1.7 2.9 2.3
500 8.8E+09 38 1.4 1.8 3.5 2.3
1000 3.3E+10 144 1.2 1.7 3.9 3.1
2000 1.8E+11 804 1.7 2.3 7.7 4.1
3000 4.1E+11 1405 2.1 2.2 9.1 5.4
4000 7.5E+11 2501 1.4 2.3 8.0 6.3
5000 1.0E+12 2822 1.5 2.4 10.8 7.2

INEX 2005
100 2.3E+09 1 90.7 12.8 144.8 13.4
250 1.3E+10 8 171.6 26.5 283.4 27.4
500 3.3E+10 21 145.3 21.9 243.9 22.3
1000 1.4E+11 82 152.4 21.4 260.4 21.4

As one can see both SDAG and SDAG+ deliver significant speedups during
the learning with respect to uSVMs. The main quantity to observe here is the
savings in ∆-computations as they largely define the runtime of the algorithms.
SDAG+ performs much better than SDAG being able to provide the most
compact representation of tree forests. The results become much stronger when
considering unlexicalized SRL and especially INEX datasets where subtrees
tend to be less sparse. SDAG+ is a clear winner here for both STK and PTK
kernels. Another metric reported in Tables 1 and 2 is the actual training time.
Surprisingly, SDAG+ is able to deliver speedups in training time up to 20 for
STK kernel when a large sample size is used. We also observe that training
time speedups are much higher than the savings in ∆-computations. This can
be explained by the fact that the compact DAG model require less memory
and can remain in the CPU cache thus delivering time savings better than
expected12. Another interesting finding is that as subtrees become less sparse
(unlexicalized SRL and INEX) we obtain much better compression. Especially,
the results on INEX data where the number of unique node labels (XML tags)
is much smaller than for natural language trees, show the true potential of
compressing learning models into equivalent DAGs.

Classification experiments. Regarding classification, we compare SDAG+ with
uSVM (see Table 3). We carry out learning for various sizes of the training set

12 The exact quantification of the role of the CPU cache along with the design of more
efficient algorithms based on it is beyond the scope of this paper.
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Table 3 Classification speedups for SDAG+ over uSVM using STK kernel. Testing on
10k subset when learning on SRL subsets of varying size (1st column). Time indicated in
seconds; comp denotes ratio between the number of nodes in SDAG+ and uSVM models;
#SVs- number of support vectors.

uSVM SDAG+
Data #SVs nodes t nodes tS+ comp t/tS+

10k 1686 33516 10.8 6350 0.5 5.3 24.0
25k 3392 67840 40.8 14212 1.2 4.8 33.2
50k 5876 117520 82.1 25506 2.9 4.6 28.3
75k 7489 149780 111.7 33552 5.5 4.5 20.5
100k 8674 215764 130.6 39787 6.7 5.4 19.5
250k 11234 224680 172.5 62094 16.8 3.6 10.2
500k 13037 260740 199.0 79978 26.6 3.3 7.5
750k 13270 265400 205.9 91048 33.9 2.9 6.1
1mil 13912 278240 216.3 97447 39.8 2.9 5.4

and perform testing on 10k of data. The values of interest here are the number
of nodes in the final model and the testing time. As we can see, as the size
of the training set increases not only the model becomes larger but also the
nodes that end up in the model become sparser. This affects the compression
rate of SDAG+ w.r.t. uSVM which results in smaller speedups for larger data.

Finally, in the Table 4, we report the results of comparison on 100k of
SRL data between SVM, uSVM, SDAG, and SDAG+. This replicates the
same setting as in [31]): the sample size is relatively small, i.e., 1k and 5k for
100k and 1 million datasets respectively. Therefore, the test conditions do not
emphasize the benefits if the DAG models. Nevertheless, SDAG and SDAG+
algorithms deliver high speedups w.r.t. to uSVM and it becomes much larger
when compared to SVM. Thus, DAG compression even on relatively sparse
trees from SRL (compared to INEX dataset) as carried out in this experiment
delivers very significant computational savings over conventional SVMs. We
believe that applying it to very large XML document classification datasets
would deliver even higher speedups against widely used in this setting SVM-
light algorithm.

Table 4 Comparison of SVM, uSVM, SDAG and SDAG+ on 100k and 1mil SRL using
STK kernel. For 100k the sample size was fixed at 1000 and for 1mil is 5000 (to replicate
the experiment in [31]). The number of iterations is 300. The reported values are training
time in minutes; values in parenthesis are relative speedups w.r.t. SVM.

size SVM uSVM SDAG SDAG+

100k 214 37 (6) 5 (41) 5 (45)
1mil 10705 814 (13) 349 (31) 264 (41)
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Table 5 Handling class-imbalance problem on TREC 10 (top) YA (bottom). Ratio - pro-
portion of negative examples w.r.t. positive; P/R - precision (P) and recall (R). The bottom
row in YA is the performance using bag-of-words features on 75k subset. The reported F1

scores that do not pass the statistical significance test (with p ≤ 0.05) are marked by 1 for
uSVM+j/uSVM and by 2 for uSVM+j/SVM.

Trec 10

Data Ratio uSVM uSVM+j SVM
F-1 P/R F-1 P/R F-1 P/R

ABBR 1:60 87.5 100.0/77.8 84.22 80.0/88.9 84.2 80.0/88.9
DESC 1:4 96.1 95.0/97.1 96.112 95.0/97.1 94.8 97.7/92.0
ENTY 1:3 72.3 91.8/59.6 79.1 79.6/78.7 80.4 82.2/78.7
HUM 1:3 88.1 98.1/80.0 90.3 94.9/86.2 87.5 88.9/86.2
LOC 1:3 81.4 96.6/70.4 87.0 87.5/86.4 82.6 86.5/79.0
NUM 1:5 86.0 98.9/76.1 91.2 96.1/86.7 89.9 98.9/82.3

Yahoo Answers

10k 1:1.5 37.4 33.5/42.2 39.1 29.6/57.7 37.9 24.2/87.7
50k 1:2.0 36.5 36.0/36.9 40.6 30.0/62.5 39.6 25.7/86.9
100k 1:2.4 33.4 36.2/31.1 40.2 30.2/59.9 40.3 26.6/83.5
150k 1:2.8 33.5 36.9/30.7 41.0 30.2/64.0 - -
300k 1:3.4 23.8 40.1/16.9 41.4 30.7/63.8 - -
BOW 1:2.0 34.2 33.2/35.3 38.1 27.5/61.7 36.3 22.5/93.5

7.4 Tuning up Precision and Recall.

To measure if the difference in the observed values of F1 scores of the com-
pared models is statistically significant we employed the implementation [27]
of the assumption-free randomization framework [26]. The conclusion about
the statistical significance of the difference in F1 scores of considered models
is made by assessing how likely the difference in the randomly shuffled predic-
tions of two models is due to chance. We used the default number of 10,000
shuffles for each measurement.

We first report experimental results on question classification corpus on six
different categories in Table 5 (since the dataset is small, we only report the
accuracy). For both uSVM and uSVM+j, we fixed the sample size to 100. For
uSVM+j, we picked the value of j from {1, 2, 3, 4, 5, 10} and use the best
results obtained on the validation set. For SVM, we carried out tuning of j
parameter on a validation set. It is important to note that such parameter has
slightly different meaning for uSVM+j and SVM. For the former, it controls
the bias to reject negative examples during sampling (Alg. 9) to compute CPM,
while for the latter it defines the factor by which training errors on positive
examples outweigh errors on negative examples.

Analyzing the results from Table 5 (top), we can see that uSVM algorithm
that uses uniform sampling obtains high Precision, as it minimizes the training
error dominated by examples from negative class. This results in lower values
of the Recall. Its rather high F1 for ABBR dataset shows that the model sim-
ply misclassifies the examples from the minority class saturating the Precision.
On the other hand, uSVM+j is able to establish a much better balance be-
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tween Precision and Recall resulting in high F1 scores across the majority of
categories. Also the performance of SVM with the optimal set of parameters
suggests that our method has a better capacity to control the imbalance prob-
lem than SVM. This can be explained by the fact, as suggested in [43], that
ziC imposes only an upper bound on dual variables αi, which results in poorer
flexibility to control the class-imbalance with the j parameter of SVM.

The results on Yahoo! Answers are displayed in Table 5 (bottom). For
uSVM and uSVM+j, we fix the sample size at 500. Due to the constant time
scaling behavior of uSVM [46], the training time for both uSVM and uSVM+j
was slightly less than 10 hours across all subsets reported here. While being
faster on small subsets of 5k, 10k and 25k, SVM begins to scale poorly on
the subsets larger than 50k. Indeed, as studied in [46,31], CPA with sampling
begins to outperform SVM starting from datasets of moderate size (around
50k in our experiments). SVM did not finish the training within 5 days for
150k and 300k subsets, hence there are missing values. We set the value of j
parameter for uSVM+j equal to the ratio of negative to positive examples. This
natural setting of j parameter for uSVM+j is driven by the intuition to make
the distribution of examples from different classes approximately balanced
inside each sample, such that the classifier learns on a balanced data. As
one can see, this gives much better trade-off between Precision and Recall
compared to uSVM. Looking at the results of SVM, we conjecture that here
j parameter, similar to the results in previous experiments, is not flexible
enough to deliver the optimal P/R trade-off. Also note that training SVM on
100k subset requires almost 4 days, which makes uSVM+j a viable tool for
advanced text classification on large datasets, where obtaining optimal balance
between Precision and Recall is hindered by the class imbalance problem.

The bottom row of Table 5 reports the results using bag-of-words (BOW)
feature representation on 75k subset. We note that STK delivers an interesting
12% of relative improvement over BOW model on SVM. However, the main
goal of this experiment was not to obtain the top classification performance on
such noisy web data but rather to demonstrate that uSVM+j can efficiently
deal with large imbalanced data.

7.5 Parallelization

To assess the effects of parallelization, we tested parallel versions of SDAG
and SDAG+ on 50k subset of Yahoo! Answers dataset using up to 8 CPUs.
The achieved speedups over the sequential algorithm are reported in Figure 4,
where each curve corresponds to runtimes using different sample sizes: {100,
250, 500, 1000}. Increasing the sample size leads to the increase of the time
spent to compute CPM, which makes the speedup achieved by parallelization
for large sample sizes even more significant. Using the maximum number of 8
CPUs, we are able to achieve the speedup factor of about 7.0 (using sample
size equal to 1000). Since classification can also be easily parallelized, we could
experiment with larger sample sizes to obtain a more accurate model.
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Fig. 4 Speedups due to parallelizing SDAG/SDAG+ on 50k Yahoo! Answers dataset.
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8 Related work

To improve the scaling properties of SVM-light, a number of efficient algo-
rithms using CPA-based algorithms have been proposed. For example, SVMperf

[16] exhibits linear computational complexity in the number of examples when
linear kernels are used. While CPA-based approaches deliver state of the art
performance w.r.t. accuracy and training time, they scale well only when lin-
ear kernels are used. The problem of efficient kernel learning for CPA has been
studied in [17], where cutting plane models are compacted by extracting ba-
sis vectors. This, however, leads to a non-trivial optimization problem when
arbitrary kernel functions are applied.

Regarding learning with structural kernels, compact representation of tree
forests offered by DAGs was applied for speeding up training of the voted per-
ceptron algorithm in [2]. Another interesting idea of hash kernels for structured
data is proposed in [36], where hashing can generate explicit vector represen-
tation such that linear learning methods can be applied. However, it is likely
that hashing all possible substructures generated by STK, which is exponen-
tial in the tree length, will make the preprocessing step too expensive. Also,
due to hash collisions, this method computes approximate kernel values and
its implications on the accuracy need to be studied more extensively.

A highly efficient subtree kernel on graphs that exploits the idea from
Weisfeiler-Lehman test of graph isomorphism is proposed in [35]. While, it has
been shown to work well on various graph datasets from bioinformatics, the
subtree feature space generated by this kernel is inferior to more general STK
and PTK, as its feature generation mechanism includes uniformly all the nodes
in the neighborhood of a currently considered node within a given radius, i.e.
it does not allow for incomplete tree fragments.

In [29], a more principled feature extraction algorithm to linearize TK
spaces has been proposed. Its soundness is justified by the norm-preservation
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of the model learned by an SVM to extract the most relevant features. The
post-analysis of the most relevant tree fragments extracted by the algorithm
on the SRL task reveals that fairly complex structures with long term depen-
dencies between the sentence constituents are pertinent for the SVM learner.
This suggests that näıve feature enumeration coupled with feature hashing
to reduce the effective dimension of the resulting feature vectors will result in
lower performance on complex tasks such as SRL, were a few complex features
provide essential discriminative power to the classifier.

Concerning class-imbalance problem for SVM learning, the most widely
adopted method is to introduce different cost factors in the objective func-
tion s.t. the training errors for positive and negative examples receive differ-
ent penalties [41]. This approach is implemented as the j option in SVM-
light [14] that has a super-linear scaling behavior, which prohibits its use on
large datasets. Our approach to accomplish cost-sensitive classification shares
the idea of reductions put forward in [47] together with the benefit of the con-
ventional approach in SVMs [41] to incorporate importance weights directly
into the optimization process.

9 Conclusions and Future Work

In this paper we have presented several techniques to make learning with
SVMs and convolution tree kernels applicable to a larger set of real-world
applications. Firstly, we have defined a generalized theory and methods for
using DAG kernels in the CPA algorithm with sampling. We have proved that
our approach can be applied to any tree kernel computable by summing over
∆(n1, n2), where n1 and n2 are pairs of nodes from two trees (Th.1).

Secondly, we verified the theory above by modeling and implementing two
algorithms: SDAG and SDAG+. The former compresses only the current CPM
whereas the latter compacts the entire set of CPMs built so far during the
learning of CPA. Both algorithms were used with STK and PTK that clearly
satisfy the hypothesis of Th.1.

Thirdly, as PTK considers any node-child subsets to represent trees, we
modified the organization of the DAG structure which results in different lev-
els of compression. Consequently, we extensively studied the effects of using
PTK when compacting tree forests into DAGs. In particular, we analyzed the
efficiency of our algorithm based on the number of calls to∆ function to exactly
verify the speedup independently of the hardware used in the experiments.

Additionally, we also included a parallelization approach and a method for
handling imbalanced datasets in SDAG and SDAG+.

Finally, we have experimented with the models above on four datasets: (i)
two versions of SRL data, lexicalized and unlexicalized trees; (ii) a question
classification dataset; (iii) question and answer pairs from Yahoo! answers; and
(vi) a new dataset from INEX [39].

We evaluated the speedup in terms of the training time and the number
of ∆-iterations for both STK and the newly proposed PTK for SDAG and



Fast Support Vector Machines for Convolution Tree Kernels 31

SDAG+ on the above datasets. The results have shown that: (1) our approach
generalizes to most of tree-based kernels as we obtain significant speedup of
PTK-based learning; and (2) when the training data is relatively small (up13

to 100k) the compactness of the SDAG+ models allows for better usage of
the CPU cache, amplifying the benefit of our approach; (3) the results on the
NLP tasks underrepresent the potential of our approach as the subtrees are
based on words, which make subtrees sparser. Indeed, the results on INEX
show speedup up to 283 in terms of ∆ computations and up to 77 in runtime.

Our study opens several future research directions: application of tree ker-
nels to many tasks, where large data size has prevented their use. This surely
regards SRL in many languages but also parse tree re-ranking [8] and question
answering applications. Also applications to other data mining tasks would be
interesting, e.g., XML tree classification.

From the algorithmic perspective, it would be promising to explore ap-
proaches to prune the DAGs for achieving higher compression rates without
any loss in accuracy. Finally, the ultimate goal would be to use tree kernels
for structured output prediction.

Acknowledgements This work has been partially supported by the EC project FP247758:
Trustworthy Eternal Systems via Evolving Software, Data and Knowledge (EternalS).

References

1. Aiolli, F., Martino, G.D.S., Sperduti, A., Moschitti, A.: Fast on-line kernel learning for
trees. In: ICDM, pp. 787–791 (2006)

2. Aiolli, F., Martino, G.D.S., Sperduti, A., Moschitti, A.: Efficient kernel-based learning
for trees. In: CIDM, pp. 308–315 (2007)

3. Asai, T., Abe, K., Kawasoe, S., Arimura, H., Sakamoto, H., Arikawa, S.: Efficient sub-
structure discovery from large semi-structured data. In: SDM (2002)

4. Cancedda, N., Gaussier, E., Goutte, C., Renders, J.M.: Word sequence kernels. Journal
of Machine Learning Research 3, 1059–1082 (2003)
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