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Abstract. We consider the use of reranking as a way to relax typical in-
dependence assumptions often made in hierarchical multilabel classification.
Our reranker is based on (i) an algorithm that generates promising k-best
classification hypotheses from the output of local binary classifiers that clas-
sify nodes of a target tree-shaped hierarchy; and (ii) a tree kernel-based
reranker applied to the classification tree associated with the hypotheses
above. We carried out a number of experiments with this model on the
Reuters corpus: we firstly show the potential of our algorithm by computing
the oracle classification accuracy. This demonstrates that there is a signifi-
cant room for potential improvement of the hierarchical classifier. Then, we
measured the accuracy achieved by the reranker, which shows a significant
performance improvement over the baseline.
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1 Introduction

Hierarchical multilabel classifiers often impose a number of simplifying restrictions
on their models. In particular, category assignments are normally assumed to be
conditionally independent: The probability of a document D belonging to a sub-
category Ci of a category C is assumed to depend only on D and C, but not on
other subcategories of C, or any other categories in the hierarchy. This indepen-
dence assumptions clearly does not hold, since categories may well be subject to
relationships that are not simply explained by the hierarchy. However, the intro-
duction of these long-range dependencies will lead to computational intractability,
since simple maximization algorithms based on divide-and-conquer strategies are
no longer applicable.

In this paper, we propose to use reranking as a way to handle the computational
issues. We first use a conventional hierarchical classifier to generate a hypothesis set
of limited size, and then apply a more complex model – which can be more liberal
in its use of statistical dependencies – to pick the final output.

Such a model is a reranker based on a classifier taking pairs of hypotheses as its
input. These are represented by means of trees, whose nodes are the categories and
whose edges connect fathers with children of the hierarchy. The model is learned
using Support Vector Machines and tree kernels. To prepare the ground for the use of
reranking, we also present an algorithm to generate the top k category assignments
from a large-scale hierarchical classifier; it is clear that this can be useful also for
other purposes than reranking.

We carried out experiments on the well-known Reuters Volume 1 collection.
First, we evaluated the oracle performance, which shows high potential for im-
provement (i.e. 8 points in Microaverage and 15 in Macroaverage). Then, we tested
the impact of reranker, which shows significant improvement. This is higher for rare
categories, which are typically associated with lower basic accuracy.



Although, we focus on a small hierarchy the approach is easily extendable to
larger structures, also considering that we do not need to encode the entire hierarchy
in a tree since the very long-distant nodes intuitively can be assumed independent.

In the reminder, Section 2 introduces preliminaries for the hypothesis generation
algorithm, which is then presented in Section 3. Section 4 illustrates our reranking
approach based on tree kernels, Section 5 reports our experiments, and finally Sec-
tion 6 derives the conclusions.

2 Preliminaries

We address the problem of hierarchical classification, which we define as the task of
assigning an object – henceforth referred to as a document – to one or more hier-
archically organized categories: If it belongs to a category C, then it also implicitly
belongs to all supercategories of C, including the top category T consisting of all
documents. In this work we consider tree-shaped hierarchies; we leave the extension
to general DAG-shaped category systems to future work.

We base our model on the computation of two types of probabilities. First, for a
given document D, and a category C with subcategories C1, . . . , Cn, we define the
stop probability as the probability of “stopping” at C, i.e. that D does not belong
to any of the subcategories of C:

p0(C) = P (D /∈ C1 ∧ . . . ∧D /∈ Cn|D ∈ C)

Secondly, in the case where we know that at least one subcategory has been selected,
we can compute the probabilities of selecting a particular subcategory:

pCi(C) = P (D ∈ Ci|D ∈ C ∧ (D ∈ C1 ∨ . . . ∨D ∈ Cn)), i ∈ {1, . . . , n}

At this stage, we assume conditional independence between the subcategories, so
the probability will depend only on the document and the supercategory.
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Fig. 1. Example of a hierarchy.

These probabilities can be used to compute the probability of a complete assign-
ment of categories to a document. To exemplify, consider the hierarchy in Figure 1.
To compute the probability of a document D belonging to the categories AB and C
(and then also implicitly to T and A) but not to AA, B, CA, or CB, we decompose
the probability using the above-mentioned conditional probabilities:

(1− p0(T )) · pA(T ) · (1− pB(T )) · pC(T ) · (1− p0(A)) · (1− pAA(A)) · pAB(A) · p0(C)

3 An Algorithm to Generate the Top k Hypotheses

The number of category assignments is exponential in the number of categories,
so for any nontrivial hierarchy a brute-force search to find the best hypothesis



Algorithm 1 Generation of the top hypothesis.

function Top1(C)
// Returns the top hypothesis
// and its probability
if p0(C) > 0.5

return 〈{C}, p0(C)〉
〈S, P 〉 ←MaxSubcats(C)
if S = ∅
〈S, P 〉 ←MaxOneSubcat(C,P )

if p0(C) > P
return 〈{C}, p0(C)〉

else
return 〈{C} ∪ S, P 〉

function MaxOneSubcat(C,P )
qmin ←∞
for each subcategory Ci ⊂ C
〈Si, Pi〉 ← Top1(Ci)
qi ← (1− pCi(C))/(Pi · pCi(C))
if qi < qmin

qmin ← qi, Smin ← Si

return 〈Smin, P/qmin〉

function MaxSubcats(C)
S ← ∅, P ← 1− p0(C)
for each subcategory Ci ⊂ C

if pCi(C) > 0.5
〈Si, Pi〉 ← Top1(Ci)
if pCi(C) · Pi > (1− pCi(C))

P ← P · pCi(C) · Pi

S ← S ∪ Si

else
P ← P · (1− pCi(C))

else
P ← P · (1− pCi(C))

return 〈S, P 〉

is not applicable. However, the independence assumptions ensure that the search
space is decomposable so that the best assignment – and the k best assignments –
can be found quickly. Similar to the fastest k-best algorithm for natural language
parsing presented in [12], our algorithm proceeds in two steps: first we find the best
assignment, and then we construct the k-best list by incremental modifications.

The algorithm exploits the fact that the scores are probabilities in order to
prune the search space slightly: If we see that the stop probability p0 is greater
than 0.5, we do not need to compute the probability of entering any subcategory
since (1−p0) ·pCi is then guaranteed to be less than 0.5. If we rewrite the algorithm
without this trick, it can easily be generalized to the situation where the scores are
not probabilistic.

3.1 Generation of the Top Hypothesis

We first describe the function Top1 that finds the category assignment having
the highest probability; note that this is not necessarily what we would get by a
greedy algorithm selecting the highest probability assignment at each choice point.
Algorithm 1 shows the pseudocode. The algorithm is fairly straightforward; the
only complication is that we need to ensure that at least one subcategory Ci ⊂ C is
enabled if we do not stop at a category C. In practice, the implementation will cache
the probabilities and maximal assignments to avoid redundant recomputations. For
brevity, we omit these details from the pseudocode.

3.2 Expansion of Hypotheses

The algorithm TopK to generate the k top hypotheses (Algorithm 2) relies on the
fact that the conditional independence assumptions we have made ensure that the
search space is monotonic. The hypothesis at position i in the list of hypotheses
is then a one-step modification of one of the first i − 1 hypotheses. To generate k



Algorithm 2 Generation of the top k hypotheses.

function TopK(C, k)
// Returns the top k hypotheses
// and their probabilities
H ← ∅
q ← empty priority queue
Enqueue(q,Top1(C))
while |H| < k and q is nonempty

repeat
〈S, P 〉 ← Dequeue(q)

until 〈S, P 〉 /∈ H
H ← H ∪ {〈S, P 〉}
if |H| < k

for each h ∈ Succs(C,P, S)
Enqueue(q, h)

return H

function Succs(C,P, S)
// Returns the set of modifications
// of the hypothesis S
if C has no subcategory

return ∅
H ← ∅
if S 6= {C}

Stop(C,P, S,H)
EnableEachSubcat(C,P, S,H)
DisableEachSubcat(C,P, S,H)
SubcatSuccs(C,P, S,H)

else
Unstop(C,P, S,H)

return H

hypotheses, we thus start with the most probable one and put it into a priority
queue ordered by probability. Until we have found k hypotheses, we pop the front
item and put it into the output list. We then apply the function Succs to find all
one-step modifications of the item, and we add them all back to the queue.

The Succs function applies the following one-step modification operations:
Stop, which changes an assignment with subcategories to a stop; EnableEach-
Subcat, which enables every disabled subcategory; DisableEachSubcat, which
disables every enabled subcategory if there are more than one; Unstop, which
enables at least one subcategory of an assignment without subcategories; and fi-
nally SubcatSuccs, which recursively computes a one-step modification of every
enabled subcategory. Note that we only need to carry out the modifications that
reduce the probability. The pseudocode for the modification operations is shown
in Algorithm 3. The pseudocode uses two auxiliary functions: Subtree(C), which
returns the set of categories that are subcategories of C, and ProbSubcats, which
returns the (previously computed) probability of an assignment of a set of subcat-
egories.

3.3 Efficiency of the Hypothesis Set Generation Algorithm

The complexity of the algorithm is O(ks log(ks)) where s is the maximal number
of modified items generated by the Succs function, since the complexity of the
Enqueue operation is logarithmic in a standard priority queue. A non-tight upper
bound on s is 2N , where N is the number of nodes in the hierarchy, but this is of
limited interest: In practice, the number of modified items will be much smaller,
and depend on parameters such as the shape of the hierarchy and the number of
enabled subcategories in an assignment. However, it is clear that the algorithm is
able to handle very large hierarchies even in the worst case.

The bottleneck in practice will typically be the call to the probability estimation
procedure, and we note that the worst case – for 1-best as well as k-best generation
– occurs when we have to estimate all probabilities in the hierarchy. The number
of estimations in a hierarchy of N nodes is at most N − 1 stop probabilities and
N − 1 subcategory probabilities; note that these two worst-case numbers do not
occur at the same time. However, since we generate the probabilities only when we
need them, the number of estimations will typically be much smaller in practice.



Algorithm 3 Functions that generate one-step modifications of a hypothesis.

function Stop(C,P, S,H)
P ′ ← P · p0(C)/(1− p0(C))
for each subcategory Ci ⊂ C

if Ci ∈ S
P ′ ← P ′/pCi(C)
P ′ ← P ′/ProbSubcats(S,Ci)

else
P ′ ← P ′/(1− pCi(C))

if P ′ < P
H ← H ∪ {〈{C}, P ′〉}

function Unstop(C,P, S,H)
〈Ss, Ps〉 ←MaxSubcats(C)
if Ss = ∅
〈Ss, Ps〉 ←MaxOneSubcat(C,P )

P ′ ← P · (1− p0(C)) · Ps/p0(C)
if P ′ < P

H ← H ∪ {〈S ∪ Ss, P
′〉}

function EnableEachSubcat(C,P, S,H)
for each subcategory Ci ⊂ C

if Ci /∈ S
〈Si, Pi〉 ← Top1(Ci)
P ′ ← P · pCi(C) · Pi/(1− pCi(C))
if P ′ < P

H ← H ∪ {〈S ∪ Si, P
′〉}

function DisableEachSubcat(C,P, S,H)
for each subcategory Ci ⊂ C

if Ci ∈ S
P ′ ← P · (1− pCi(C))
P ′ ← P ′/pCi(C)/ProbSubcats(S,Ci)
S′ ← S \ Subtree(Ci)
if P ′ < P and S′ 6= {C}

H ← H ∪ {〈S′, P ′〉}

function SubcatSuccs(C,P, S,H)
for each subcategory Ci ⊂ C

if Ci ∈ S
Pi ← ProbSubcats(S,Ci)
Si ← S ∩ Subtree(Ci)
for each 〈Ss, Ps〉 ∈ Succs(Ci, Pi, Si)

H ← H ∪ {〈(S \ Si) ∪ Ss, P/Pi · Ps〉}

How much of the hierarchy we actually need to explore will of course depend on the
particular probabilities.

3.4 Encoding Hypotheses in a Tree Structure

Once hypotheses are generated, we need a representation from which dependen-
cies between the different nodes of the hierarchy can be learned. Since we do not
know in advance which can be the important dependencies and not even the scope
of the interaction between the different structure subparts, we rely on automatic
feature engineering via structural kernels. For this paper, we consider tree-shaped
hierarchies so that tree kernels, e.g. [17], can be applied.

More in detail, in this paper, we focus on the subhierarchy of Reuters in Figure
2 regarding Markets (MCAT) and its subcategories: Equity Markets (M11), Bond
Markets (M12), Money Markets (M13) and Commodity Markets (M14). These also
have subcategories: Interbank Markets (M131), Forex Markets (M132), Soft Com-
modities (M141), Metals Trading (M142) and Energy Markets (M143).

As the input of our reranker, we can simply use a tree representing the hierarchy
above, marking the assignments of the current hypothesis in the node labels, e.g.
-M143 means that the document was not classified as Energy Markets. For example,
Figure 3 shows the representation of a classification hypothesis, whose only assigned
category is M132.

Note that such tree substructures can capture dependencies between the different
categories.



Fig. 2. A subhierarchy of Reuters.

Fig. 3. A tree representing a category assignment hypothesis.

4 A Kernel-based Reranker for Hierarchical Classification

The vast majority of tasks in natural language processing involve the processing
of structured objects. Building classifiers for these objects is traditionally carried
out by implementing rule-based extractors of features. However, the complexity of
the structure prevents an exhaustive approach to feature generation since the use
of all possible substructures produces an exponential number of features, and con-
sequently the development of such systems is typically guided by heuristics rather
than a systematic approach. For instance, [5] commented on the development of fea-
tures for a parse tree reranker: “It is worth noting that developing feature schemata
is much more an art than a science.”

As a way to avoid the feature selection problem, learning methods that work
directly with objects instead of feature vectors have been proposed. The generaliza-
tion from linear classifiers (that apply to vectors) to kernel-based classifiers (that
apply to objects) is straightforward. To derive the kernel-based decision function,
we start from the decision function of a linear classifier:

f(x) = w · x + b =

n∑

i=1

αiyixi · x + b (1)

where x is a classifying example and w and b are the separating hyperplane’s gra-
dient and its bias, respectively. The gradient is a linear combination of the training
points xi, their labels yi and their weights αi. Applying the so-called kernel trick
it is possible to replace the scalar product with a kernel function defined over pairs
of objects:

f(o) =

n∑

i=1

αiyik(oi, o) + b

with the advantage that we do not need to provide an explicit mapping φ(·) of our
examples in a vector space; instead, the scalar product can be computed implicitly,
which may be much more efficient. It is also easy to show that for kernels k1 and k2,
we may form new kernels k1 +k2 and k1 ·k2, allowing for a modular decomposition.
Kernel functions have proven very effective for natural language applications as
suggested by the large body of related work, e.g. [6, 15, 8, 4, 7, 9, 26, 16, 25, 18, 10].

4.1 Tree Kernels

In the case where the objects we want to classify are trees, there exist efficient
algorithms based on dynamic programming that compute kernel functions based on



counting the shared substructures of the trees: tree kernels. These computations are
efficient since they do not have to enumerate the whole fragment space explicitly.

Let F = {f1, f2, . . . , f|F|} be the set of tree fragments and χi(n) an indicator
function equal to 1 if the target fi is rooted at node n and equal to 0 otherwise. A
tree kernel function over T1 and T2 is defined as

TK(T1, T2) =
∑

n1∈NT1

∑

n2∈NT2

∆(n1, n2),

where NT1
and NT2

are the sets of nodes in T1 and T2, respectively, and ∆(n1, n2) =∑|F|
i=1 χi(n1)χi(n2).
The ∆ function is equal to the number of common fragments rooted in nodes

n1 and n2 and thus depends on the fragment type. Below, we report the algorithm
to compute ∆ for the partial tree fragments (PTFs) [17].
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Syntactic Constituent Tree Kernel (STK) A syntactic tree fragment (STF)
is a set of nodes and edges from the original tree such that the former is still a tree
and with the constraint that any node must have all or none of its children. This
is equivalent to stating that the production rules contained in the STF cannot be
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Fig. 2. A tree for the sentence “Sid is a painter” with some of its syntactic tree frag-
ments (STFs) and specific partial tree fragments (PTFs), before and after the vertical
line, respectively.

To compute the number of common STFs rooted in n1 and n2, the Syntactic
Tree Kernel (STK) uses the following ∆ function [5]:

1. if the productions at n1 and n2 are different then ∆(n1, n2) = 0;

2. if the productions at n1 and n2 are the same, and n1 and n2 have only leaf
children (i.e. they are pre-terminal symbols) then ∆(n1, n2) = λ;

3. if the productions at n1 and n2 are the same, and n1 and n2 are not pre-terminals

then ∆(n1, n2) = λ
∏l(n1)

j=1 (1 + ∆(cn1(j), cn2(j)))

where l(n1) is the number of children of n1, cn(j) is the j-th child of node n and λ
is a decay factor penalizing larger structures.

Figure 2 shows 10 out of the 17 STFs of the tree appearing at the top left.
Note that STFs satisfy the constraint that grammatical rules cannot be broken. For
example, [VP [VBZ NP]] is a STF which has two non-terminal symbols, VBZ and
NP, as leaves while [VP [VBZ]] is not a STF.

Fig. 4. A tree for the sentence “Sid is a painter” with some of its syntactic tree fragments
and specific partial tree fragments (PTFs), before and after the vertical line, respectively.

Partial Tree Kernel (PTK) The ∆ function for PTK is the following. Given
two nodes n1 and n2, a tree kernel [6] is applied to all possible child subsequences
of the two nodes, i.e. a String Kernel is applied to enumerate their substrings and
the tree kernel is applied on each of such child substrings. More formally:

1. if the node labels of n1 and n2 are different then ∆(n1, n2) = 0;
2. else ∆(n1, n2) =

= 1 +
∑

I1,I2,l(I1)=l(I2)

l(I1)∏

j=1

∆(cn1
(I1j), cn2

(I2j))

where I1 = 〈h1, h2, h3, ..〉 and I2 = 〈k1, k2, k3, ..〉 are index sequences associated
with the ordered child sequences cn1

of n1 and cn2
of n2, respectively, I1j and I2j

point to the j-th child in the corresponding sequence, and again, l(·) returns the
sequence length, i.e. the number of children. Furthermore, we add two decay factors:
µ for the depth of the tree and λ for the length of the child subsequences with respect
to the original sequence, i.e. we account for gaps. It follows that ∆(n1, n2) =

=µ
(
λ2+

∑

I1,I2,l(I1)=l(I2)

λd(I1)+d(I2)

l(I1)∏

j=1

∆(cn1
(I1j), cn2

(I2j))
)
,

where d(I1) = I1l(I1) − I11 and d(I2) = I2l(I2) − I21.
This way, we penalize both larger trees and child subsequences with gaps. An

efficient algorithm for the computation of PTK is given in [17].



Category Name Train 

(Train1  Train2) 

Train1 Train2 TEST 

MCAT 24 8 16 23 

M11 346 191 155 327 

M12 202 97 105 184 

M13 10 5 5 16 

M131 303 133 170 220 

M132 187 96 91 175 

M14 53 26 27 34 

M141 378 183 195 410 

M142 85 47 38 78 

M143 172 101 71 148 

     

Total 1760 887 873 1595 

 

Table 1. Instance distributions on Reuters subhierarchy S.

4.2 Tree Kernels-based Reranker

The reranking machine learning problem consists of learning to select the best can-
didate from a given candidate set. In order to be able to apply machine learning
methods for binary classifiers such as support vector learning, we applied the re-
duction known as the Preference Kernel method [24]. The development of reduction
methods from ranking tasks to binary classification is an active research area; see
for instance [2] and [1].

In the Preference Kernel approach, the reranking problem – learning to pick the
correct candidate h1 from a candidate set {h1, . . . , hk} – is reduced to a binary clas-
sification problem by creating pairs: positive training instances 〈h1, h2〉, . . . , 〈h1, hk〉
and negative instances 〈h2, h1〉, . . . , 〈hk, h1〉. This training set can then be used to
train a binary classifier. At classification time, pairs are not formed (since the correct
candidate is not known); instead, the standard one-versus-all binarization method
is still applied.

The kernels are then engineered to implicitly represent the differences between
the objects in the pairs. If we have a valid kernel K over the candidate space T , we
can construct a function DK over the space of pairs T × T as follows:

DK(x, y) = DK(〈x1, x2〉, 〈y1, y2〉)
= K(x1, y1) +K(x2, y2)

− K(x1, y2)−K(x2, y1).

It is easy to show [24] that DK is also a valid Mercer kernel. This makes it possible
to use kernel methods to train the reranker.

We trained the rerankers using SVM-light-TK1, a tree-kernel-enabled version of
SVM-light [13].

5 Evaluations

The aim of our evaluation is to demonstrate that our reranking approach can intro-
duce dependencies in the hierarchical classification model, which improve accuracy.
For this purpose, we first show that the hypotheses generated by our algorithms
allow for improving the classification task, i.e. we compute the so-called oracle ac-
curacy. Then we carried out experiments on reranking the best hypothesis by mea-
suring the impact of the automatic reordering on the classification performance.

1 http://disi.unitn.it/moschitti/Tree-Kernel.htm



 Reranked Oracle 

K Prec. Rec. Micro-

F1 

Macro-

F1 

Prec. Rec. Micro- 

F1 

Macro-

F1 

1 0.9460 0.8712 0.9070 0.7597 0.9459 0.8712 0.9070 0.7597 

2 0.9436 0.8955 0.9189 0.7870 0.9462 0.9521 0.9491 0.8372 

4 0.9350 0.9036 0.9190 0.7891 0.9579 0.9764 0.9670 0.9029 

8 0.9368 0.9042 0.9202 0.7910 0.9642 0.9882 0.9760 0.9429 

16 0.9414 0.9004 0.9205 0.7914 0.9733 0.9963 0.9846 0.9778 

!

Table 2. Global performance of the reranker (on the left) together with the best achievable
accuracy on k hypotheses or oracle performance (on the right).

5.1 Setup

We used the subhierarchy S introduced in Section 3.4, which is part of the overall
corpus of Reuters Volume1 (http://trec.nist.gov/data/reuters/reuters.html). We di-
vided the documents of S in three chunks of data: Train1, Train2 and test set (Test).
The multiclass classifiers (MCC) are trained on Train1 and tested on Train2 (and
vice versa) to generate the hypotheses and thus the training data for the reranker.
The test set is used to measure the accuracy of the final model. The distribution of
the data instances through the different categories can be observed in Table 1.

The hypotheses are represented with trees like the one in Figure 3 and are
processed by SVMs using PTK (see Section 4.1). To the latter a simple linear
kernel applied to the hypothesis probability (i.e. a vector with only one feature) is
added. This allows the reranker to exploit the contribution of the bag-of-words used
for the basic classifiers.

5.2 Experiments on Reranking

To derive the oracle performance of reranking, i.e. the accuracy of MCC by always
selecting the best hypothesis (according to the gold standard classification) out
of k, MCC is trained on Train1 ∪ Train2 and tested on the test set. The single
binary classification models are used to generate the hypotheses as explained in
Section 3. Table 2 shows the Precision, Recall, Microaverage F1 and Macroaverage
F1 according to different numbers of hypotheses. The latter are reranked by our
tree kernel model. We note that:

(i) the accuracy of the baseline MCC is 0.9070 (i.e. for k=1) whereas the best result,
0.9205 is achieved for k = 16, for an absolute improvement of 1.35 percent points
in Microaverage.

(ii) The reranker can better improve small categories for which the small availability
of training data causes lower accuracy of the basic MCC. This explains the larger
improvement in Macroaverage, i.e. 3.3 = 87.73 - 84.43.

(iii) There is still large possibility to improve the above outcome as the oracle per-
formance shows that about 8 and 13 points can be potentially gained in Mi-
cro/Macro F1, respectively.

To support point (ii), we report the results of the individual binary classifiers in
Table 3. We can see that small categories like for example MCAT, are associated
with a very large F1 improvement when using the oracle information. This also
results in a large improvement of the reranker.



  k=1 k=2 k=4 k=8 k=16 

  Reranked Oracle RR Oracle RR Oacle RR Oracle RR Oracle 

Precision 0.8750 0.8750 0.7333 0.7778 0.7333 0.8400 07333 0.8519 0.7333 0.8519 

Recall 0.3044 0.3044 0.4783 0.6087 0.4783 0.9130 0.4783 1.0000 0.4783 1.0000 

MCAT 

F1 0.4516 0.4516 0.5790 0.6829 0.5790 0.8750 0.5790 0.9200 0.5789 0.9200 

Precision 0.9676 0.9676 0.9569 0.9582 0.9514 0.9643 0.9543 0.9672 0.9569 0.9759 

Recall 0.9200 0.9200 0.9569 0.9877 0.9631 0.9969 0.9631 0.9969 0.9569 0.9969 

M11 

F1 0.9432 0.9432 0.9569 0.9727 0.9572 0.9803 0.9587 0.9818 0.9569 0.9863 

Precision 0.9338 0.9338 0.9264 0.9337 0.9273 0.9412 0.9268 0.9572 0.9273 0.9731 

Recall 0.7747 0.7747 0.8297 0.9286 0.8407 0.9670 0.8352 0.9835 0.8407 0.9945 

M12 

F1 0.8469 0.8469 0.8754 0.9311 0.8818 0.9540 0.8786 0.9702 0.8818 0.9837 

Precision 0.0000 0.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 

Recall 0.0000 0.0000 0.0000 0.0625 0.0000 0.2500 0.0000 0.5000 0.0000 0.9375 

M13 

F1 0.0000 0.0000 0.0000 0.1177 0.0000 0.4000 0.0000 0.6667 0.0000 0.9677 

Precision 0.8462 0.8462 0.8630 0.8745 0.8341 0.9103 0.8377 0.9195 0.8597 0.9481 

Recall 0.8500 0.8500 0.8591 0.9500 0.8682 0.9682 0.8682 0.9864 0.8636 0.9955 

M131 

F1 0.8481 0.8481 0.8611 0.9107 0.8508 0.9383 0.8527 0.9518 0.8617 0.9712 

Precision 0.9250 0.9250 0.9355 0.9392 0.9079 0.9503 0.9080 0.9663 0.9136 0.9667 

Recall 0.8506 0.8506 0.8333 0.9770 0.8506 0.9885 0.8506 0.9885 0.8506 1.0000 

M132 

F1 0.8862 0.8862 0.8815 0.9578 0.8783 0.9690 0.8783 0.9773 0.8810 0.9831 

Precision 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Recall 0.7059 0.7059 0.8235 0.8529 0.8235 0.9412 0.8235 0.9751 0.3530 0.9760 

M14 

F1 0.8276 0.8276 0.9032 0.9206 0.9032 0.9697 0.9032 0.9851 0.9032 0.9851 

Precision 0.9925 0.9925 0.9828 0.9830 0.9828 0.9831 0.9828 0.9831 0.9828 0.9855 

Recall 0.9681 0.9681 0.9804 0.9902 0.9828 0.9951 0.9828 0.9976 0.9804 0.9976 

M141 

F1 0.9802 0.9802 0.9816 0.9866 0.9828 0.9890 0.9828 0.9903 0.9816 0.9915 

Precision 0.9839 0.9839 0.9841 0.9855 0.9846 0.9867 0.9851 1.0000 0.9844 1.0000 

Recall 0.7821 0.7821 0.7949 0.8718 0.8205 0.9487 0.8062 1.0000 0.8077 1.0000 

M142 

F1 0.8714 0.8714 0.8794 0.9252 0.8951 0.9673 0.9103 1.0000 0.8873 1.0000 

Precision 0.9452 0.9452 0.9467 0.9477 0.9533 0.9735 0.9597 0.9735 0.9533 0.9800 

Recall 0.9388 0.9388 0.9660 0.9864 0.9728 1.0000 0.9728 1.0000 0.9728 1.0000 

M143 

F1 0.9420 0.9420 0.9562 0.9667 0.9630 0.9866 0.9662 0.9866 0.9630 0.9899 

Micro-P. 0.9460 0.9460 0.9436 0.9462 0.9350 0.9579 0.9368 0.9642 0.9414 0.9733 

Micro-R. 0.8712 0.8712 0.8955 0.9521 0.9036 0.9764 0.9042 0.9882 0.9004 0.9963 

Micro-F1 0.9070 0.9070 0.9189 0.9491 0.9190 0.9670 0.9202 0.9760 0.9205 0.9846 

Global 

Macro-F1 0.7597 0.7597 0.7870 0.8372 0.7891 0.9029 0.7910 0.9429 0.7914 0.9778 

!

Table 3. F1 for the individual categories together with the best achievable F1 on k
hypotheses (oracle performance).

5.3 Experiments using the Full Reuters Hierarchy

We finally carried out an experiment in classification using the full Reuters hierar-
chy, although on a relatively small subset of the available data. This includes 5,598
documents in training set and 4,195 documents in the test set. The result is shown
in Table 4 and demonstrates that the approach also scales up to larger hierarchies.
The improvement for the 16-best reranker over the baseline is 4.6 points in micro
F-measure and 7.1 points in macro F-measure.

 

 Reranked Oracle 

K Prec. Rec. Micro- 

F1 

Macro- 

F1 

Prec. Rec. Micro- 

F1 

Macro- 

F1 

1 0.8034 0.4639 0.5882 0.4227 0.8034 0.4639 0.5882 0.4227 

2 0.7025 0.5657 0.6267 0.4842 0.7606 0.6765 0.7161 0.5734 

4 0.7057 0.5716 0.6316 0.4883 0.7968 0.7542 0.7749 0.6315 

8 0.7033 0.5769 0.6338 0.4905 0.8201 0.8117 0.8159 0.6796 

16 0.6969 0.5821 0.6343 0.4933 0.8350 0.8479 0.8414 0.7096 

!

Table 4. Oracle and reranker performance on the full Reuters hierarchy.



6 Conclusions

We have described a framework for reranking the output of an MCC. This is based
on SVMs using structural kernels, which can learn to reorder a set of ranked hy-
pothesis based on complex statistical dependencies. It should be noted that this
algorithm is based on a simple binary classifier that selects the best hypothesis. We
have seen a consistent improvement that is especially notable for categories with few
training documents; it will be important to study whether our method addresses
any of the well-known problems with large hierarchies with sparse training data [3].

One problem of the proposed approach may arise when very large categorization
schemes are used since the use of tree kernel-based models may become impracti-
cal. However, our approach can be also applied by dividing the large hierarchy in
different subparts and then applying tree kernels on such smaller subtrees. This
is intuitively both efficient and accurate since it would be less likely to see strong
statistical dependencies between nodes if these are very far away in the hierarchy.
Additionally, two recent results support the viability of our approach: (i) fast algo-
rithms for structural kernels have shown that large scale learning is practical [22,
23] and (ii) models based on structural kernels can be efficiently and effectively
converted in linear models [19–21].

Finally, while we have presented a simple inference strategy based on reranking,
there are also other approximate inference strategies that can be constructed with
the k-best as a starting point. For instance, the k-best search algorithm for natural-
language parsing presented in [12] was later used as the main building block in
the forest reranking method for approximate inference in complex discriminative
parsing models [11]. This approximate search method has also been used in joint
syntactic and role-semantic analysis [14]. The forest reranking method is one way
to address the common criticism of reranking systems, that is: they may be too
constrained by the limited internal variation of the k-best hypothesis set.
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