
Large-Scale Learning with Structural Kernels for
Class-Imbalanced Datasets

Aliaksei Severyn and Alessandro Moschitti

Department of Computer Science and Engineering
University of Trento

Via Sommarive 5, 38123 POVO (TN) - Italy
{severyn,moschitti}@disi.unitn.it

Abstract. Much of the success in machine learning can be attributed to
the ability of learning methods to adequately represent, extract, and ex-
ploit inherent structure present in the data under interest. Kernel meth-
ods represent a rich family of techniques that harvest on this principle.
Domain-specific kernels are able to exploit rich structural information
present in the input data to deliver state of the art results in many ap-
plication areas, e.g. natural language processing (NLP), bio-informatics,
computer vision and many others. The use of kernels to capture rela-
tionships in the input data has made Support Vector Machine (SVM)
algorithm the state of the art tool in many application areas. Neverthe-
less, kernel learning remains a computationally expensive process. The
contribution of this paper is to make learning with structural kernels,
e.g. tree kernels, more applicable to real-world large-scale tasks. More
specifically, we propose two important enhancements of the approximate
cutting plane algorithm to train Support Vector Machines with structural
kernels: (i) a new sampling strategy to handle class-imbalanced problem;
and (ii) a parallel implementation, which makes the training scale al-
most linearly with the number of CPUs. We also show that theoretical
convergence bounds are preserved for the improved algorithm. The ex-
perimental evaluations demonstrate the soundness of our approach and
the possibility to carry out large-scale learning with structural kernels.

Keywords: Machine Learning, Kernel Methods, Structural Kernels, Support
Vector Machine, Natural Language Processing

1 Introduction

Different domain-specific kernels have been successfully applied to various Natu-
ral Language Processing (NLP) tasks, e.g. [10, 13, 9, 1]. However, previous work
scales poorly to the real-world datasets, where the number of examples is typi-
cally in the order of millions. Indeed, kernel methods require to carry out learning
in dual spaces, where training complexity is typically quadratic in the number
of instances.

2 Aliaksei Severyn and Alessandro Moschitti

To reduce such training time [16] proposed an approximate version of the
cutting plane algorithm (CPA) [14] for training SVMs with general kernels. [12]
showed that the same algorithm can be successfully applied to train SVMs with
structural kernels on very large data obtaining speedup up factors up to 10.
These studies employ 1-slack optimization problem reformulation [5], which is
much faster than conventional cutting plane methods on large-scale datasets and
produces sparser solutions.

Unfortunately, the 1-slack reformulation prevents to accomplish cost-sensitive
classification using a standard approach in SVMs, i.e. outweighing the positive
or negative errors. This is a critical drawback for applications in NLP where data
is often imbalanced, which requires optimization of Precision/Recall measures.

In this paper, we provide two important improvements of the approximate
CPA that enable the use of structural kernels, e.g. tree kernels, for large-scale
learning: (i) an effective and sound method for tuning up Precision and Recall
on imbalanced datasets and (ii) parallelization of the training algorithm improv-
ing its scalability even further. Regarding the application side, we show that
our method allows for experimenting with tree kernels on very large real-world
datasets such as Yahoo! Answers.

The experimental results confirm the validity of our approach as (i) it greatly
outperforms previous approximate CPA when tuning of P/R is needed and (ii) it
still matches the F1-score of exact SVMs. Regarding the running time evaluation:
our approach is as fast as CPA with sampling and, when parallelized, the speedup
scales almost linearly with the number of available CPUs.

2 Cutting Plane Algorithm with Sampling

Let us consider an equivalent reformulation of SVM QP training problem, known
as a 1-slack reformulation, which produces a much more efficient version of the
CPA [5]:

minimize
w,ξ≥0

1

2
‖w‖2 + Cξ

subject to
∀c∈{0,1}n

1

n

n∑
i=1

ciyiw · xi ≥
1

n

n∑
i=1

ci − ξ,
(1)

where each vector c ∈ {0, 1}n forms all possible linear combinations of the
classical constraints yi(w · xi) ≥ 1− ξi.

The key benefit of this reformulation is that there is only a single slack
variable ξ that is now shared across all the constraints. Even though the number
of constraints swelled up to 2n, the cutting plane method (Alg. 1) requires only a
sufficient subset of constraints S to solve the problem (1). It works by iteratively
resolving QP (line 4) over the current set S and adding a new constraint c(t)

violated the most by the current solution w (lines 5-7) until no constraints are
violated by more than ε (line 10).

When using kernels, examples are mapped to the feature space via a mapping
φ(·) and finding the most violated constraint (lines 5-7) involves computing an

Large-Scale Learning with Structural Kernels for Class-Imbalanced Datasets 3

Algorithm 1 Cutting Plane Algorithm (primal)

1: Input: (x1, y1), . . . , (xn, yn), C, εAlg.
2: S ← ∅; t = 0
3: repeat
4: (w, ξ)← optimize (1) over the constraints in S

/* find a cutting plane */
5: for i = 1 to n do

6: c
(t)
i ←

{
1 yi(w · xi) ≤ 1
0 otherwise

7: end for
/* add a constraint to the set of constraints */

8: S ← S ∪ {c(t)}
9: t = t+ 1

10: until 1
n

∑n
i=1 c

(t)
i (1− yiw · xi) ≤ ξ + ε

11: return w, ξ

inner product between the weight vector and each training example: w ·φ(xi). In
the dual space, where w expands over the dual variables α, this inner-product
renders as:

w · φ(xi) =

n∑
k=1

(|S|∑
t=1

1

n
αtc

(t)
k yk

)
K(xi,xk), (2)

where K(xi,xk) = φ(xi) · φ(xi) is a kernel1. Computing (2) for each training
example requires O(n2) kernel evaluations which makes the CPA training of
non-linear SVMs no better than conventional decomposition methods.

To address this limitation [16] proposed to approximate the expensive com-
putation of the most violated constraint over the full set of training examples
n by using a smaller sample r. In this case the expensive double sum of kernel
evaluations at each iteration reduces from

∑n
i,j=1K(xi,xj) to a more tractable:∑r

i,j=1K(xi,xj), such that the most violated constraint is effectively computed
over a smaller set of examples uniformly sampled from the original training set.
Even though at each step we compute only an approximation of the exact cut-
ting plane, the sampling approach has been shown to provide accurate solutions
and converge in a finite number of steps irrespective of the training set size.

3 Improving CPA with sampling

In this section we present two improvements to the CPA with sampling: (i) we
propose an alternative sampling strategy that is effective for tuning up Precision
and Recall and (ii) we parallelize the training algorithm.

1 due to the space constraints, for a more careful treatment of the dual version of CPA
with kernels we refer the reader to [8] or [12].

4 Aliaksei Severyn and Alessandro Moschitti

3.1 Sampling Strategy for Imbalanced Data

To address the problem of the imbalanced data one idea can be to use different
penalty factors [15] C+ and C− for examples from positive and negative classes.
This modification is easy to incorporate into the standard soft-margin SVM
formulation where we have individual slack variables ξi for each constraint.

However, when using the 1-slack formulation (1), we have a single slack vari-
able shared across all the constraints, while in the dual each αi no longer cor-
responds to the individual example but to a linear combination of examples.
This makes the task of controlling class imbalance through different margin pa-
rameters C+ and C− non-trivial. On the other hand the idea of sampling to
approximate (2) at each iteration suggests a straight-forward solution. Instead
of uniformly sampling r examples to compute the most violated constraint at
each step, we can use cost-proportionate rejection sampling technique. This

Algorithm 2 Rejection sampling

1: Pick example (xi, yi, qi) at random
2: Flip a coin with bias qi/q

′

3: if heads then
4: keep the example
5: else
6: discard it
7: end if

technique is presented in Alg. 2, where qi is the importance weight of the i-th
example and q′ is an upper bound on any importance value in the dataset. This
process is repeated until we sample the required number of examples. This modi-
fication enables the control over the proportion of examples from different classes
that will form a sample used to compute the most violated constraint. Unlike
the conventional approaches for addressing the class-imbalance problem, that
either under-sample the majority class or over-sample the minority class from
the training data, the rejection sampling coupled with cutting plane algorithm
does not discard any examples from the training set. At each iteration we form a
sample according to the pre-assigned importance weights for each example, such
that examples from both the majority and minority classes enter the sample in
the desired proportion. This process is repeated until the algorithm converges.
So no information is lost during the optimization process.

Another benefit of this approach is that by increasing the importance weight
of the minority class, we give its examples more chance to end up in the most
violated constraint and hence, become potential support vectors. This way the
imbalanced support-vector ratio is automatically tuned to include more examples
from the minority class, which gives more control over the imbalance of classes.

It can be easily shown that the new sampling technique preserves the con-
vergence bounds proven in [16]. Note that drawing examples using rejection
sampling (Alg. 2) simply re-weights the original distribution D according to the
importance weights of the examples. This means that we are effectively train-
ing a cost insensitive classifier under the new transformed distribution D̂. By

Large-Scale Learning with Structural Kernels for Class-Imbalanced Datasets 5

invoking Translation Theorem [17], we establish that, to obtain a cost-sensitive
classifier that minimizes the expected risk under the original distribution D, it is
sufficient to learn a cost-insensitive classifier under the transformed distribution
D̂. The CPA that draws examples from D using the sampling scheme in Alg. 2
is equivalent to the original CPA applying uniform sampling to the transformed
distribution D̂. This allows us to invoke the proof in [16], thus establishing sim-
ilar convergence bounds.

3.2 Parallelization

The modular nature of the cutting plane algorithm suggests easy parallelization.
In fact, in our experiments we observed that at each iteration 95% of the total
learning time is spent in the double loop (2), which involves double sum of
kernel evaluations over r examples in the sample. This observation suggests
high parallelizability of the code. Using p processors the complexity of this pre-
dominant part can be brought down from O(r2) to O(r2/p).

4 Experimental evaluation

The goal of our experiments is to study how the problem of imbalanced datasets
can be effectively tackled by the new sampling technique that we propose to
integrate into the CPA. To do so, we carry out learning on complex text clas-
sification tasks where addressing class-imbalance problem plays an important
role to obtain the optimal classification performance. In the first set of experi-
ments we compare the accuracy one can get by better parametrizing the model
using our proposed method against the cutting plane algorithm with uniform
sampling and the conventional SVM. Below we refer to the capability to control
the penalty factors for examples from different classes as simply j option (as im-
plemented in SVM-light software). Secondly, we bring the capability of cutting
plane algorithm with rejection sampling to alleviate the class-imbalance problem
to the large-scale, where training of conventional SVMs soon becomes too time-
consuming. We also demonstrate the speedup factors after parallelization. This
feature becomes especially appealing nowadays, when shared memory parallel
architectures, i.e. multi-processor and multi-core CPUs, are becoming available
for general use.

We modified the implementation of the approximate CPA with uniform sam-
pling[16] with SVM-Light-TK[11] to include cost-proportionate sampling strat-
egy. For brevity, we refer to the original CPA with uniform sampling as uSVM,
CPA + rejection sampling as uSVM+j, and SVM-light as SVM. In all our ex-
periments we used the subset tree (SST) kernel [2]. For uSVM+j and SVM we
report the best results for the optimal value of j parameter that controls Pre-
cision/Recall ratio.To measure the classification performance we use Precision,
Recall and F 1-score. All the experiments were run on machines equipped with
Intel R© Xeon R© 2.33GHz CPUs carrying 6Gb of RAM under Linux.

6 Aliaksei Severyn and Alessandro Moschitti

We used two different natural language datasets: TREC 10 QA2 (training:
5,483, test: 500) and Yahoo! Answers (YA)3(train: up to 300k, test: 10k) to
perform two similar tasks of QA classification. The task for the first dataset is
to select the most appropriate type of the answer from a set of given possibilities.
The training set consists of 5,483 questions and the test set is composed of 500
questions for each class. The goal of the experiments on these relatively small
datasets is to demonstrate that rejection sampling is able to effectively handle
class imbalance similar to SVM.

The second corpus is a large subset of Yahoo! Answers dataset. The dataset
contains a set of 142,627 non-factoid, i.e. “how to” questions, and 364,419 an-
swers. Testing was carried out on the 10k subset. The classification task was set
up as follows. Given pairs of questions and corresponding answers learn if in a
given pair the answer is the ’best’ answer for a question. The goal of this exper-
iment is to have a large-scale classification task (300k examples in our experi-
ments) to demonstrate that class-imbalance problem can be handled effectively
at this scale.

Results on TREC 10 and YA. Experimental results on six different categories
of TREC corpus and on YA dataset are reported in Table 1(a) and Table 1(b)
respectively. One can see that uSVM algorithm with uniform sampling obtains
high precision trying to minimize the training error dominated by examples from
negative class and is not able to adjust in the presence of class imbalance. This
results in lower values of the recall. On the other hand uSVM+j is able to achieve
a better tradeoff between precision and recall resulting in higher F1 scores. Also
the P/R ratio of SVM with the optimal set of parameters suggests that uSVM+j
has a better capacity to control the imbalance problem.

(a)
Data Ratio uSVM uSVM+j SVM

F-1 P/R F-1 P/R F-1 P/R

ABBR 60:1 87.5 100.0/77.8 84.2 80.0/88.9 84.2 80.0/88.9
DESC 4:1 96.1 95.0/97.1 96.1 95.0/97.1 94.8 97.7/92.0
ENTY 3:1 72.3 91.8/59.6 79.1 79.6/78.7 80.4 82.2/78.7
HUM 3:1 88.1 98.1/80.0 90.3 94.9/86.2 87.5 88.9/86.2
LOC 5:1 81.4 96.6/70.4 87.0 87.5/86.4 82.6 86.5/79.0
NUM 5:1 86.0 98.9/76.1 91.2 96.1/86.7 89.9 98.9/82.3

(b)
10k 1.5:1 37.4 33.5/42.2 39.1 29.6/57.7 37.9 24.2/87.7
50k 2.0:1 36.5 36.0/36.9 40.6 30.0/62.5 39.6 25.7/86.9
100k 2.4:1 33.4 36.2/31.1 40.2 30.2/59.9 40.3 26.6/83.5
150k 2.8:1 33.5 36.9/30.7 41.0 30.2/64.0 - -
300k 3.4:1 23.8 40.1/16.9 41.4 30.7/63.8 - -

Fig. 1. Results on TREC-10 (a) YA (b) datasets.
Ratio - proportion of negative examples with respect
to positive; P/R - precision (P) and recall (R).

sp
ee

du
p

1

2

3

4

5

6

7

number of CPUs
87654321

sample size = 100
sample size = 250
sample size = 500
sample size = 1000

Fig. 2. Speedups vs number of CPUs
after parallelization of CPA on Yahoo!
Answers (50k).

2 http://l2r.cs.uiuc.edu/cogcomp/Data/QA/QC/
3 retrieved through the Yahoo! Webscope program.

Large-Scale Learning with Structural Kernels for Class-Imbalanced Datasets 7

Parallelization. To test the effects of parallelization we carried out experiments
on 50,000 subset of YA dataset on 1 to 8 CPUs. The achieved speedups are
reported in Fig. 2, where each curve corresponds to training using different
sample sizes. Increasing the sample size leads to an increase in the time spent
inside the double loop (2), which makes the speedup for larger sample sizes
even more significant. Using 8 CPUs gives the speedup factor of about 7.0 using
sample size equal to 1000. Since classification can also be easily parallelized it
allows one to experiment with larger sample sizes to obtain a more accurate
model or carry out training on larger data.

To better demonstrate the advantage of the parallel implementation we repli-
cated the large-scale experiment in [12] on Semantic Role Labeling dataset4 using
1 million examples. The reported training time was 4 hours for uSVM and 7.5
days for SVM, while our parallel implementation took about 30 minutes for
learning on 8 CPUs.

5 Related work

The most popular method to address class-imbalance problem in SVMs is to
introduce cost factors in the primal problem [15]. It is implemented in SVM-
light [4] that has a super-linear scaling behavior, which prohibits the experiments
on very large datasets.

To improve the scaling properties of SVM-light, a number of CPA-based
methods have been proposed (for example, SVMperf [5]). [3] have further im-
proved the convergence rate of the underlying CPA. Another approach to directly
optimize for F1-score, was proposed in [7]. While the aforementioned algorithms
deliver fast and accurate solutions, they scale well only when linear kernels are
used. Another approach to iteratively extract basis vectors as a part of a cutting
plane algorithm is studied in [6]. This, however, leads to a non-trivial optimiza-
tion problem when arbitrary kernel functions are used.

6 Conclusions

In this paper we proposed a method that combines the benefits of CPA with
sampling for training non-linear SVMs on large-scale data together with the
flexibility to control the problem of imbalanced data. This improvement becomes
particularly significant when learning on large text classification datasets, where
class-imbalance plays an important role to obtain the optimal balance between
precision and recall. The proposed sampling strategy has shown superior ability
to parametrize the model with respect to conventional approach implemented in
SVM-light on two Question/Answer classification tasks. We also take advantage
of the possibility to parallelize the code to make learning even faster.

The distinctive property of the proposed method is that it directly integrates
the cost-proportionate sampling into the CPA optimization process, unlike the

4 http://danielepighin.net/ cms/research/MixedFeaturesForSRL

8 Aliaksei Severyn and Alessandro Moschitti

other sampling approaches based on the reductions idea of [17]. In other words,
sampling is carried out iteratively, such that no information is discarded from
training examples as in “one-shot” sampling methods.

Acknowledgements

This work has been partially supported by the EC project FP247758: Trustwor-
thy Eternal Systems via Evolving Software, Data and Knowledge (EternalS).

References

1. Cancedda, N., Gaussier, E., Goutte, C., Renders, J.M.: Word sequence kernels.
Journal of Machine Learning Research 3, 1059–1082 (2003)

2. Collins, M., Duffy, N.: New ranking algorithms for parsing and tagging: Kernels
over discrete structures, and the voted perceptron. In: ACL. pp. 263–270 (2002)

3. Franc, V., Sonnenburg, S.: Optimized cutting plane algorithm for support vector
machines. In: ICML. pp. 320–327 (2008)

4. Joachims, T.: Making large-scale SVM learning practical. In: Advances in Kernel
Methods - Support Vector Learning, chap. 11, pp. 169–184. MIT Press, Cambridge,
MA (1999)

5. Joachims, T.: Training linear SVMs in linear time. In: KDD (2006)
6. Joachims, T., Yu, C.N.J.: Sparse kernel svms via cutting-plane training. Ma-

chine Learning 76(2-3), 179–193 (2009), european Conference on Machine Learning
(ECML) Special Issue

7. Joachims, T.: A support vector method for multivariate performance measures. In:
ICML. pp. 377–384 (2005)

8. Joachims, T., Finley, T., Yu, C.N.J.: Cutting-plane training of structural svms.
Machine Learning 77(1), 27–59 (2009)

9. Kate, R.J., Mooney, R.J.: Using string-kernels for learning semantic parsers. In:
ACL (July 2006)

10. Kudo, T., Matsumoto, Y.: Fast methods for kernel-based text analysis. In: Pro-
ceedings of ACL’03 (2003)

11. Moschitti, A.: Making tree kernels practical for natural language learning. In:
EACL. The Association for Computer Linguistics (2006)

12. Severyn, A., Moschitti, A.: Large-scale support vector learning with structural
kernels. In: ECML/PKDD (3). pp. 229–244 (2010)

13. Shen, L., Sarkar, A., Joshi, A.k.: Using LTAG Based Features in Parse Reranking.
In: Proceedings of EMNLP’06 (2003)

14. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods
for structured and interdependent output variables. Journal of Machine Learning
Research 6, 1453–1484 (2005)

15. Veropoulos, K., Campbell, C., Cristianini, N.: Controlling the sensitivity of support
vector machines. In: Proceedings of the International Joint Conference on AI. pp.
55–60 (1999)

16. Yu, C.N.J., Joachims, T.: Training structural svms with kernels using sampled
cuts. In: KDD. pp. 794–802 (2008)

17. Zadrozny, B., Langford, J., Abe, N.: Cost-sensitive learning by cost-proportionate
example weighting. In: Proceedings of ICDM (2003)

