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Abstract

Kernel methods are considered the most ef-
fective techniques for various relation extrac-
tion (RE) tasks as they provide higher accu-
racy than other approaches. In this paper,
we introduce new dependency tree (DT) ker-
nels for RE by improving on previously pro-
posed dependency tree structures. These are
further enhanced to design more effective ap-
proaches that we call mildly extended depen-
dency tree (MEDT) kernels. The empirical re-
sults on the protein-protein interaction (PPI)
extraction task on the AIMed corpus show that
tree kernels based on our proposed DT struc-
tures achieve higher accuracy than previously
proposed DT and phrase structure tree (PST)
kernels.

1 Introduction

Relation extraction (RE) aims at identifying in-
stances of pre-defined relation types in text as for
example the extraction of protein-protein interaction
(PPI) from the following sentence:

“Native C8 also formed a heterodimer
with C5, and low concentrations of
polyionic ligands such as protamine and
suramin inhibited the interaction.”

After identification of the relevant named entities
(NE, in this case proteins) C8 and C5, the RE task
determines whether there is a PPI relationship be-
tween the entities above (which is true in the exam-
ple).

Kernel based approaches for RE have drawn a lot
of interest in recent years since they can exploit a

huge amount of features without an explicit repre-
sentation. Some of these approaches are structure
kernels (e.g. tree kernels), which carry out struc-
tural similarities between instances of relations, rep-
resented as phrase structures or dependency trees,
in terms of common substructures. Other kernels
simply use techniques such as bag-of-words, subse-
quences, etc. to map the syntactic and contextual
information to flat features, and later compute simi-
larity.

One variation of tree kernels is the dependency
tree (DT) kernel (Culotta and Sorensen, 2004;
Nguyen et al., 2009). A DT kernel (DTK) is a
tree kernel that is computed on a dependency tree
(or subtree). A dependency tree encodes grammati-
cal relations between words in a sentence where the
words are nodes, and dependency types (i.e. gram-
matical functions of children nodes with respect to
their parents) are edges. The main advantage of a
DT in comparison with phrase structure tree (PST)
is that the former allows for relating two words di-
rectly (and in more compact substructures than PST)
even if they are far apart in the corresponding sen-
tence according to their lexical word order.

Several kernel approaches exploit syntactic de-
pendencies among words for PPI extraction from
biomedical text in the form of dependency graphs or
dependency paths (e.g. Kim et al. (2010) or Airola
et al. (2008)). However, to the best of our knowl-
edge, there are only few works on the use of DT
kernels for this task. Therefore, exploring the po-
tential of DTKs applied to different structures is a
worthwhile research direction. A DTK, pioneered
by Culotta and Sorensen (2004), is typically applied
to the minimal or smallest common subtree that in-
cludes a target pair of entities. Such subtree reduces
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Figure 1: Part of the DT for the sentence “The binding
epitopes of BMP-2 for BMPR-IA was characterized using
BMP-2 mutant proteins”. The dotted area indicates the
minimal subtree.

unnecessary information by placing word(s) closer
to its dependent(s) inside the tree and emphasizes
local features of relations. Nevertheless, there are
cases where a minimal subtree might not contain im-
portant cue words or predicates. For example, con-
sider the following sentence where a PPI relation
holds between BMP-2 and BMPR-IA, but the mini-
mal subtree does not contain the cue word “binding”
as shown in Figure 1:

The binding epitopes of BMP-2 for
BMPR-IA was characterized using BMP-
2 mutant proteins.

In this paper we investigate two assumptions. The
first is that a DTK based on a mild extension of
minimal subtrees would produce better results than
the DTK on minimal subtrees. The second is that
previously proposed DT structures can be further
improved by introducing simplified representation
of the entities as well as augmenting nodes in the
DT tree structure with relevant features. This paper
presents an evaluation of the above assumptions.

More specifically, the contributions of this paper
are the following:

• We propose the use of new DT structures,
which are improvement on the structures de-
fined in Nguyen et al. (2009) with the most gen-
eral (in terms of substructures) DTK, i.e. Par-
tial Tree Kernel (PTK) (Moschitti, 2006).

• We firstly propose the use of the Unlexicalized
PTK (Severyn and Moschitti, 2010) with our
dependency structures, which significantly im-
proves PTK.

• We compare the performance of the proposed
DTKs on PPI with the one of PST kernels and

show that, on biomedical text, DT kernels per-
form better.

• Finally, we introduce a novel approach (called
mildly extended dependency tree (MEDT) ker-
nel1, which achieves the best performance
among various (both DT and PST) tree kernels.

The remainder of the paper is organized as fol-
lows. In Section 2, we introduce tree kernels and re-
lation extraction and we also review previous work.
Section 3 describes the unlexicalized PTK (uPTK).
Then, in Section 4, we define our proposed DT struc-
tures including MEDT. Section 5 describes the ex-
perimental results on the AIMed corpus (Bunescu et
al., 2005) and discusses their outcomes. Finally, we
conclude with a summary of our study as well as
plans for future work.

2 Background and Related Work

The main stream work for Relation Extraction uses
kernel methods. In particular, as the syntactic struc-
ture is very important to derive the relationships be-
tween entities in text, several tree kernels have been
designed and experimented. In this section, we in-
troduce such kernels, the problem of relation extrac-
tion and we also focus on the biomedical domain.

2.1 Tree Kernel types
The objective behind the use of tree kernels is
to compute the similarity between two instances
through counting similarities of their sub-structures.
Among the different proposed methods, two of the
most effective approaches are Subset Tree (SST)
kernel (Collins and Duffy, 2001) and Partial Tree
Kernel (PTK) (Moschitti, 2006).

The SST kernel generalizes the subtree ker-
nel (Vishwanathan and Smola, 2002), which consid-
ers all common subtrees in the tree representation of
two compared sentences. In other words, two sub-
trees are identical if the node labels and order of chil-
dren are identical for all nodes. The SST kernel re-
laxes the constraint that requires leaves to be always
included in the sub-structures. In SST, for a given
node, either none or all of its children have to be in-
cluded in the resulting subset tree. An extension of

1We defined new structures, which as it is well known it
corresponds to define a new kernel.
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the SST kernel is the SST+bow (bag-of-words) ker-
nel (Zhang and Lee, 2003; Moschitti, 2006a), which
considers individual leaves as sub-structures as well.

The PT kernel (Moschitti, 2006) is more flexi-
ble than SST by virtually allowing any tree sub-
structure; the only constraint is that the order of child
nodes must be identical. Both SST and PT kernels
are convolution tree kernels2.

The PT kernel is the most complete in terms of
structures. However, the massive presence of child
node subsequences and single child nodes, which in
a DT often correspond to words, may cause overfit-
ting. Thus we propose the use of the unlexicalized
(i.e. PT kernel without leaves) tree kernel (uPTK)
(Severyn and Moschitti, 2010), in which structures
composed by only one lexical element, i.e. single
nodes, are removed from the feature space (see Sec-
tion 3).

2.2 Relation Extraction using Tree Kernels

A first version of dependency tree kernels (DTKs)
was proposed by Culotta and Sorensen (2004). In
their approach, they find the smallest common sub-
tree in the DT that includes a given pair of enti-
ties. Then, each node of the subtree is represented
as a feature vector. Finally, these vectors are used
to compute similarity. However, the tree kernel they
defined is not a convolution kernel, and hence it gen-
erates a much lower number of sub-structures result-
ing in lower performance.

For any two entities e1 and e2 in a DT, Nguyen
et al. (2009) defined the following three dependency
structures to be exploited by convolution tree ker-
nels:

• Dependency Words (DW) tree: a DW tree is
the minimal subtree of a DT, which includes e1
and e2. An extra node is inserted as parent of
the corresponding NE, labeled with the NE cat-
egory. Only words are considered in this tree.

• Grammatical Relation (GR) tree: a GR tree
is similar to a DW tree except that words are
replaced by their grammatical functions, e.g.
prep, nsubj, etc.

2Convolution kernels aim to capture structural information
in term of sub-structures, providing a viable alternative to flat
features (Moschitti, 2004).

• Grammatical Relation and Words (GRW) tree:
a GRW tree is the minimal subtree that uses
both words and grammatical functions, where
the latter are inserted as parent nodes of the for-
mer.

Using PTK for the above dependency tree struc-
tures, the authors achieved an F-measure of 56.3 (for
DW), 60.2 (for GR) and 58.5 (for GRW) on the ACE
2004 corpus3.

Moschitti (2004) proposed the so called path-
enclosed tree (PET)4 of a PST for Semantic Role
Labeling. This was later adapted by Zhang et al.
(2005) for relation extraction. A PET is the smallest
common subtree of a PST, which includes the two
entities involved in a relation.

Zhou et al. (2007) proposed the so called context-
sensitive tree kernel approach based on PST, which
expands PET to include necessary contextual in-
formation. The expansion is carried out by some
heuristics tuned on the target RE task.

Nguyen et al. (2009) improved the PET represen-
tation by inserting extra nodes for denoting the NE
category of the entities inside the subtree. They also
used sequence kernels from tree paths, which pro-
vided higher accuracy.

2.3 Relation Extraction in the biomedical
domain

There are several benchmarks for the PPI task,
which adopt different PPI annotations. Conse-
quently the experimental results obtained by dif-
ferent approaches are often difficult to compare.
Pyysalo et al. (2008) put together these corpora (in-
cluding the AIMed corpus used in this paper) in a
common format for comparative evaluation. Each
of these corpora is known as converted corpus of the
corresponding original corpus.

Several kernel-based RE approaches have been
reported to date for the PPI task. These are based on
various methods such as subsequence kernel (Lodhi
et al., 2002; Bunescu and Mooney, 2006), depen-
dency graph kernel (Bunescu and Mooney, 2005),
etc. Different work exploited dependency analy-
ses with different kernel approaches such as bag-of-

3http://projects.ldc.upenn.edu/ace/
4Also known as shortest path-enclosed tree or SPT (Zhou et

al., 2007).
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words kernel (e.g. Miwa et al. (2009)), graph based
kernel (e.g. Kim et al. (2010)), etc. However, there
are only few researches that attempted the exploita-
tion of tree kernels on dependency tree structures.

Sætre et al. (2007) used DT kernels on AIMed
corpus and achieved an F-score of 37.1. The re-
sults were far better when they combined the out-
put of the dependency parser with that of a Head-
driven Phrase Structure Grammar (HPSG) parser,
and applied tree kernel on it. Miwa et al. (2009) also
proposed a hybrid kernel 5, which is a composition
of all-dependency-paths kernel (Airola et al., 2008),
bag-of-words kernel and SST kernel. They used
multiple parser inputs. Their system is the current
state-of-the-art for PPI extraction on several bench-
marks. Interestingly, they applied SST kernel on the
shortest dependency paths between pairs of proteins
and achieved a relatively high F-score of 55.1. How-
ever, the trees they constructed from the shortest de-
pendency paths are actually not dependency trees. In
a dependency tree, there is only one node for each
individual word whereas in their constructed trees
(please refer to Fig. 6 of Miwa et al. (2009)), a word
(that belongs to the shortest path) has as many node
representations as the number of dependency rela-
tions with other words (those belonging to the short-
est path). Perhaps, this redundancy of information
might be the reason their approach achieved higher
result. In addition to work on PPI pair extraction,
there has been some approaches that exploited de-
pendency parse analyses along with kernel methods
for identifying sentences that might contain PPI pairs
(e.g. Erkan et al. (2007)).

In this paper, we focus on finding the best repre-
sentation based on a single structure. We speculate
that this can be helpful to improve the state-of-the-
art using several combinations of structures and fea-
tures. As a first step, we decided to use uPTK, which
is more robust to overfitting as the description in the
next section unveil.

5The term “hybrid kernel” is identical to “combined kernel”.
It refers to those kernels that combine multiple types of kernels
(e.g., tree kernels, graph kernels, etc)

3 Unlexicalized Partial Tree Kernel
(uPTK)

The uPTK was firstly proposed in (Severyn and
Moschitti, 2010) and experimented with semantic
role labeling (SRL). The results showed no improve-
ment for such task but it is well known that in SRL
lexical information is essential (so in that case it
could have been inappropriate). The uPTK defini-
tion follows the general setting of tree kernels.

A tree kernel function over two trees, T1 and T2,
is defined as

TK(T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2),

where NT1 and NT2 are the sets of nodes in T1 and
T2, respectively, and

∆(n1, n2) =

|F|∑
i=1

χi(n1)χi(n2).

The ∆ function is equal to the number of common
fragments rooted in nodes n1 and n2 and thus de-
pends on the fragment type.

The algorithm for the uPTK computation straight-
forwardly follows from the definition of the ∆ func-
tion of PTK provided in (Moschitti, 2006). Given
two nodes n1 and n2 in the corresponding two trees
T1 and T2, ∆ is evaluated as follows:

1. if the node labels of n1 and n2 are different then
∆(n1, n2) = 0;

2. else ∆(n1, n2) = µ
(
λ2 +

∑
~I1,~I2,l(~I1)=l(~I2)

λd(~I1)+d(~I2)

l(~I1)∏
j=1

∆(cn1(~I1j), cn2(~I2j))
)
,

where:

1. ~I1 = 〈h1, h2, h3, ..〉 and ~I2 = 〈k1, k2, k3, ..〉
are index sequences associated with the ordered
child sequences cn1 of n1 and cn2 of n2, respec-
tively;

2. ~I1j and ~I2j point to the j-th child in the corre-
sponding sequence;

3. l(·) returns the sequence length, i.e. the number
of children;
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4. d(~I1) = ~I1l(~I1)− ~I11 + 1 and d(~I2) = ~I2l(~I2)−
~I21 + 1; and

5. µ and λ are two decay factors for the size of
the tree and for the length of the child subse-
quences with respect to the original sequence,
i.e. we account for gaps.

The uPTK can be obtained by removing λ2 from
the equation in step 2. An efficient algorithm for the
computation of PTK is given in (Moschitti, 2006).
This evaluates ∆ by summing the contribution of
tree structures coming from different types of se-
quences, e.g. those composed by p children such
as:

∆(n1, n2) = µ
(
λ2 +

∑lm
p=1 ∆p(cn1 , cn2)

)
, (1)

where ∆p evaluates the number of common subtrees
rooted in subsequences of exactly p children (of n1

and n2) and lm = min{l(cn1), l(cn2)}. It is easy to
verify that we can use the recursive computation of
∆p by simply removing λ2 from Eq. 1.

4 Proposed dependency structures and
MEDT kernel

Our objective is twofold: (a) the definition of im-
proved DT structures and (b) the design of new DT
kernels to include important words residing outside
of the shortest dependency tree, which are neglected
in current approaches. For achieving point (a), we
modify the DW, GR and GRW structures, previously
proposed by Nguyen et al. (2009). The new pro-
posed structures are the following:

• Grammatical Relation and lemma (GRL) tree:
A GRL tree is similar to a GRW tree except
that words are replaced by their corresponding
lemmas.

• Grammatical Relation, PoS and lemma
(GRPL) tree: A GRPL tree is an extension of a
GRL tree, where the part-of-speech (PoS) tag
of each of the corresponding words is inserted
as a new node between its grammatical func-
tion and its lemma, i.e. the new node becomes
the parent node of the node containing the
lemma.

Figure 2: Part of the DT for the sentence “Interaction
was identified between BMP-2 and BMPR-IA”. The dot-
ted area indicates the minimal subtree.

Figure 3: Part of the DT for the sentence “Phe93 forms
extensive contacts with a peptide ligand in the crystal
structure of the EBP bound to an EMP1”. The dotted
area indicates the minimal subtree.

• Ordered GRL (OGRL) or ordered GRW
(OGRW) tree: in a GRW (or GRL) tree, the
node containing the grammatical function of
a word is inserted as the parent node of such
word. So, if the word has a parent node con-
taining its NE category, the newly inserted node
with grammatical function becomes the child
node of the node containing NE category, i.e.
the order of the nodes is the following – “NE
category ⇒ grammatical relation ⇒ word (or
lemma)”. However, in OGRW (or OGRL), this
ordering is modified as follows – “grammatical
relation⇒ NE category⇒ word (or lemma)”.

• Ordered GRPL (OGRPL) tree: this is similar
to the OGRL tree except for the order of the
nodes, which is the following – “grammatical
relation⇒ NE category⇒ PoS⇒ lemma”.

• Simplified (S) tree: any tree structure would
become an S tree if it contains simplified repre-
sentations of the entity types, where all its parts
except the head word of a multi-word entity are
not considered in the minimal subtree.

The second objective is to extend DTKs to include
important cue words or predicates that are missing
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in the minimal subtree. We do so by mildly expand-
ing the minimal subtree, i.e. we define the mildly
extended DT (MEDT) kernel. We propose three dif-
ferent expansion rules for three versions of MEDT
as follows:

• Expansion rule for MEDT-1 kernel: If the root
of the minimal subtree is not a modifier (e.g.
adjective) or a verb, then look for such node in
its children or in its parent (in the original DT
tree) to extend the subtree.

The following example shows a sentence where
this rule would be applicable:

The binding epitopes of BMP-2
for BMPR-IA was characterized us-
ing BMP-2 mutant proteins.

Here, the cue word is “binding”, the root of the
minimal subtree is “epitopes” and the target en-
tities are BMP-2 and BMPR-IA. However, as
shown in Figure 1, the minimal subtree does
not contain the cue word.

• Expansion rule for MEDT-2 kernel: If the root
of the minimal subtree is a verb and its subject
(or passive subject) in the original DT tree is
not included in the subtree, then include it.

Consider the following sentence:

Interaction was identified be-
tween BMP-2 and BMPR-IA.

Here, the cue word is “Interaction”, the root
is “identified” and the entities are BMP-2 and
BMPR-IA. The passive subject “Interaction”
does not belong to the minimal subtree (see
Figure 2).

• Expansion rule for MEDT-3 kernel: If the root
of the minimal subtree is the head word of one
of the interacting entities, then add the parent
node (in the original DT tree) of the root node
as the new root of the subtree.

This is an example sentence where this rule is
applicable (see Figure 3):

Phe93 forms extensive contacts
with a peptide ligand in the crystal
structure of the EBP bound to an
EMP1.

5 Experiments and results

We carried out several experiments with different
dependency structures and tree kernels. Most im-
portantly, we tested tree kernels on PST and our im-
proved representations for DT.

5.1 Data and experimental setup
We used the AIMed corpus (Bunescu et al., 2005)
converted using the software provided by Pyysalo et
al. (2008). AIMed is the largest benchmark corpus
(in terms of number of sentences) for the PPI task.
It contains 1,955 sentences, in which are annotated
1,000 positive PPI and 4,834 negative pairs.

We use the Stanford parser6 for parsing the data.7

The SPECIALIST lexicon tool8 is used to normalize
words to avoid spelling variations and also to pro-
vide lemmas. For training and evaluating tree ker-
nels, we use the SVM-LIGHT-TK toolkit9 (Mos-
chitti, 2006; Joachims, 1999). We tuned the param-
eters µ, λ and c following the approach described by
Hsu et al. (2003), and used biased hyperplane.10 All
the other parameters are left as their default values.

Our experiments are evaluated with 10-fold cross
validation using the same split of the AIMed corpus
used by Bunescu et al. (2005).

5.2 Results and Discussion
The results of different tree kernels applied to dif-
ferent structures are shown in Tables 1 and 2. All
the tree structures are tested with four different tree
kernel types: SST, SST+bow, PTK and uPTK.

According to the empirical outcome, our new DT
structures perform better than the existing tree struc-
tures. The highest result (F: 46.26) is obtained by
applying uPTK to MEDT-3 (SOGRL). This is 6.68
higher than the best F-measure obtained by previous
DT structures proposed in Nguyen et al. (2009), and
0.36 higher than the best F-measure obtained using
PST (PET).

6http://nlp.stanford.edu/software/lex-parser.shtml
7For some of the positive PPI pairs, the connecting depen-

dency tree could not be constructed due to parsing errors for
the corresponding sentences. Such pairs are considered as false
negative (FN) during precision and recall measurements.

8http://lexsrv3.nlm.nih.gov/SPECIALIST/index.html
9http://disi.unitn.it/moschitti/Tree-Kernel.htm

10Please refer to http://svmlight.joachims.org/ and
http://disi.unitn.it/moschitti/Tree-Kernel.htm for details
about parameters of the respective tools
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DT DT DT DT DT DT DT DT DT
(GR) (SGR) (DW) (SDW) (GRW) (SGRW) (SGRL) (SGRPL) (OGRPL)

SST P: 55.29 P: 54.22 P: 31.87 P: 30.74 P: 52.76 P: 52.47 P: 56.09 P: 56.03 P: 57.85
R: 23.5 R: 24.4 R: 27.5 R: 27.3 R: 33.4 R: 30.8 R: 33.6 R: 33.0 R: 31.7
F: 32.98 F: 33.66 F: 29.52 F: 28.92 F: 40.9 F: 38.82 F: 42.03 F: 41.54 F: 40.96

SST P: 57.87 P: 54.91 P: 30.71 P: 29.98 P: 52.98 P: 51.06 P: 51.99 P: 56.8 P: 61.73
+ R: 21.7 R: 23.5 R: 26.9 R: 25.9 R: 32.0 R: 31.3 R: 31.4 R: 28.8 R: 29.2

bow F: 31.56 F: 32.91 F: 28.68 F: 27.79 F: 39.9 F: 38.81 F: 39.15 F: 38.22 F: 39.65
PT P: 60.0 P: 57.84 P: 40.44 P: 42.2 P: 53.35 P: 53.41 P: 51.29 P: 52.88 P: 53.55

R: 15.9 R: 16.6 R: 23.9 R: 26.5 R: 34.2 R: 36.0 R: 37.9 R: 33.0 R: 33.2
F: 25.14 F: 25.8 F: 30.04 F: 32.56 F: 41.68 F: 43.01 F: 43.59 F: 40.64 F: 40.99

uPT P: 58.77 P: 59.5 P: 29.21 P: 29.52 P: 51.86 P: 52.17 P: 52.1 P: 54.64 P: 56.43
R: 23.8 R: 26.0 R: 30.2 R: 31.5 R: 32.0 R: 33.7 R: 36.0 R: 31.2 R: 30.7
F: 33.88 F: 36.19 F: 29.7 F: 30.48 F: 39.58 F: 40.95 F: 42.58 F: 39.72 F: 39.77

Table 1: Performance of DT (GR), DT (DW) and DT (GRW) (proposed by (Nguyen et al., 2009)) and their modified
and improved versions on the converted AIMed corpus.

RE experiments carried out on newspaper text
corpora (such as ACE 2004) have indicated that ker-
nels based on PST obtain better results than kernels
based on DT. Interestingly, our experiments on a
biomedical text corpus indicate an opposite trend.
Intuitively, this might be due to the different na-
ture of the PPI task. PPI can be often identified by
spotting cue words such as interaction, binding, etc,
since the interacting entities (i.e. proteins) usually
have direct syntactic dependency relation on such
cue words. This might have allowed kernels based
on DT to be more accurate.

Although tree kernels applied on DT and PST
structures have produced high performance on cor-
pora of news text (Zhou et al., 2007; Nguyen et al.,
2009), in case of biomedical text the results that we
obtained are relatively low. This may be due to the
fact that biomedical texts are different from newspa-
per texts: more variation in vocabulary, more com-
plex naming of (bio) entities, more diversity of the
valency of verbs and so on.

One important finding of our experiments is the
effectiveness of the mild extension of DT struc-
tures. MEDT-3 achieves the best result for all ker-
nels (SST, SST+bow, PTK and uPTK). However, the
other two versions of MEDT appear to be less effec-
tive.

In general, the empirical outcome suggests that
uPTK can better exploit our proposed DT structures

as well as PST. The superiority of uPTK on PTK
demonstrates that single lexical features (i.e. fea-
tures with flat structure) tend to overfit.

Finally, we have performed statistical tests to as-
sess the significance of our results. For each kernel
(i.e. SST, SST+bow, PTK, uPTK), the PPI predic-
tions using the best structure (i.e. MEDT-3 applied
to SOGRL) are compared against the predictions of
the other structures. The tests were performed using
the approximate randomization procedure (Noreen,
1989). We set the number of iterations to 1,000 and
the confidence level to 0.01. According to the tests,
for each kernel, our best structure produces signifi-
cantly better results.

5.3 Comparison with previous work

To the best of our knowledge, the only work on tree
kernel applied on dependency trees that we can di-
rectly compare to ours is reported by Sætre et al.
(2007). Their DT kernel achieved an F-score of
37.1 on AIMed corpus which is lower than our best
results. As discussed earlier, Miwa et al. (2009))
also used tree kernel on dependency analyses and
achieved a much higher result. However, the tree
structure they used contains multiple nodes for a sin-
gle word and this does not comply with the con-
straints usually applied to dependency tree structures
(refer to Section 2.3). It would be interesting to ex-
amine why such type of tree representation leads to
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DT DT DT DT MEDT-1 MEDT-2 MEDT-3 PST
(SOGRPL) (OGRL) (SOGRW) (SOGRL) (SOGRL) (SOGRL) (SOGRPL) (PET)

SST P: 57.59 P: 54.38 P: 51.49 P: 54.08 P: 58.15 P: 54.46 P: 59.55 P: 52.72
R: 33.0 R: 33.5 R: 31.2 R: 33.8 R: 34.6 R: 33.6 R: 37.1 R: 35.9
F: 41.96 F: 41.46 F: 38.86 F: 41.6 F: 43.39 F: 41.56 F: 45.72 F: 42.71

SST P: 60.31 P: 53.22 P: 50.08 P: 53.26 P: 58.84 P: 52.87 P: 59.35 P: 52.88
+ R: 30.7 R: 33.1 R: 30.9 R: 32.7 R: 32.6 R: 32.2 R: 34.9 R: 37.7

bow F: 40.69 F: 40.82 F: 38.22 F: 40.52 F: 41.96 F: 40.02 F: 43.95 F: 44.02
PT P: 55.45 P: 49.78 P: 51.05 P: 51.61 P: 52.94 P: 50.89 P: 54.1 P: 58.39

R: 34.6 R: 34.6 R: 34.1 R: 36.9 R: 36.0 R: 37.0 R: 38.9 R: 36.9
F: 42.61 F: 40.82 F: 40.89 F: 43.03 F: 42.86 F: 42.85 F: 45.26 F: 45.22

uPT P: 56.2 P: 50.87 P: 50.0 P: 52.74 P: 55.0 P: 52.17 P: 56.85 P: 56.6
R: 32.2 R: 35.0 R: 33.0 R: 35.6 R: 34.1 R: 34.8 R: 39.0 R: 38.6
F: 40.94 F: 41.47 F: 39.76 F: 42.51 F: 42.1 F: 41.75 F: 46.26 F: 45.9

Table 2: Performance of the other improved versions of DT kernel structures (including MEDT kernels) as well as
PST (PET) kernel (Moschitti, 2004; Nguyen et al., 2009) on the converted AIMed corpus.

a better result.

In this work, we compare the performance of tree
kernels applied of DT with that of PST. Previously,
Tikk et al. (2010) applied similar kernels on PST for
exactly the same task and data set. They reported
that SST and PTK (on PST) achieved F-scores of
26.2 and 34.6, respectively on the converted AIMed
corpus (refer to Table 2 in their paper). Such results
do not match our figures obtained with the same
kernels on PST. We obtain much higher results for
those kernels. It is difficult to understand the rea-
son for such differences between our and their re-
sults. A possible explanation could be related to pa-
rameter settings. Another source of uncertainty is
given by the tool for tree kernel computation, which
in their case is not mentioned. Moreover, their de-
scription of PT and SST (in Figure 1 of their paper)
appears to be imprecise: for example, in (partial or
complete) phrase structure trees, words can only ap-
pear as leaves but in their figure they appear as non-
terminal nodes.

The comparison with other kernel approaches (i.e.
not necessarily tree kernels on DT or PST) shows
that there are model achieving higher results (e.g.
Giuliano et al. (2006), Kim et al. (2010), Airola et
al. (2008), etc). State-of-the-art results on most of
the PPI data sets are obtained by the hybrid kernel
presented in Miwa et al. (2009). As noted earlier,
our work focuses on the design of an effective DTK

for PPI that can be combined with others and that
can hopefully be used to design state-of-the-art hy-
brid kernels.

6 Conclusion
In this paper, we have proposed a study of PPI ex-
traction from specific biomedical data based on tree
kernels. We have modeled and experimented with
new kernels and DT structures, which can be ex-
ploited for RE tasks in other domains too.

More specifically, we applied four different tree
kernels on existing and newly proposed DT and PST
structures. We have introduced some extensions of
DT kernel structures which are linguistically moti-
vated. We call these as mildly extended DT kernels.
We have also shown that in PPI extraction lexical
information can lead to overfitting as uPTK outper-
forms PTK. In general, the empirical results show
that our DT structures perform better than the previ-
ously proposed PST and DT structures.

The ultimate objective of our work is to improve
tree kernels applied to DT and then combine them
with other types of kernels and data to produce more
accurate models.
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