
Fast Support Vector Machines for Structural
Kernels

Aliaksei Severyn and Alessandro Moschitti

Department of Computer Science and Engineering
University of Trento

Via Sommarive 5, 38123 POVO (TN) - Italy
{severyn,moschitti}@disi.unitn.it

Abstract. In this paper, we propose three important enhancements of
the approximate cutting plane algorithm (CPA) to train Support Vector
Machines with structural kernels: (i) we exploit a compact yet exact rep-
resentation of cutting plane models using directed acyclic graphs to speed
up both training and classification, (ii) we provide a parallel implemen-
tation, which makes the training scale almost linearly with the number
of CPUs, and (iii) we propose an alternative sampling strategy to handle
class-imbalanced problem and show that theoretical convergence bounds
are preserved. The experimental evaluations on three diverse datasets
demonstrate the soundness of our approach and the possibility to carry
out fast learning and classification with structural kernels.

1 Introduction

Various kernels have been successfully applied to different Natural Language
Processing (NLP) tasks, e.g. [13, 5, 17, 12, 6, 2]. However, previous work is limited
to relatively small datasets. Indeed, the major drawback of kernel methods is
the necessity to carry out learning in dual spaces, where training complexity
typically is quadratic in the number of instances.

Recently, a number of efficient CPA-based algorithms have been proposed [10,
8]. Unfortunately, these algorithms scale well only when linear kernels are used.
To address slow learning with non-linear kernels [12] propose to extract basis
vectors to compactly represent cutting plane models, which speeds up both clas-
sification and learning. However, this requires to solve a non-trivial optimization
problem when arbitrary kernel functions are used. Finding a set of basis vectors
in high-dimensional spaces produced by arbitrary kernels, structural kernels in
particular, is an open research area and is definitely worth further exploration.

Another approach of adapting CPA for non-linear kernels by reducing the
number of kernel evaluations is studied in [23], where sampling is used to reduce
the number of basis functions in the kernel expansion. [16] showed that the same
algorithm can be successfully applied to SVM learning with structural kernels on
very large data obtaining speedup up factors up to 10 over conventional SVMs.

In this paper, we provide three important improvements of the approximate
CPA with sampling. The proposed techniques make SVMs with structural ker-
nels a viable tool to tackle real-world tasks. In particular, we first present an idea

2 Aliaksei Severyn and Alessandro Moschitti

to use (Directed Acyclic Graphs) DAGs to compactly represent cutting plane
models computed at each iteration of the CPA algorithm. This has the benefit
of reducing the number of expensive kernel evaluations, since DAGs provide the
means to avoid redundant computations over shared substructures. We present
two algorithms that deliver impressive speedups for both training and testing.
We also parallelize the code improving scalability even further. Finally, we pro-
vide an effective and sound method to handle class imbalanced datasets, which
plays an important role to obtain the optimal balance between Precision and
Recall.

2 Preliminaries: Cutting Plane Algorithm with Sampling

In this section, we illustrate a re-elaborated version of the cutting plane method
(originally proposed in the context of structural SVMs) for binary classification.
After briefly explaining it for linear SVMs, we point out the main source of
inefficiency for the case when kernels are used. Next we present the idea of [23]
to use sampling to alleviate high training costs for SVMs with non-linear kernels.

2.1 Cutting-plane algorithm (primal)

Consider a slight modification of SVM training problem, known as a 1-slack
reformulation [10], to derive CPA for binary classification1:

minimize
w,ξ≥0

1

2
‖w‖2 + Cξ

subject to
1

n

n∑
i=1

ciyiw · xi ≥
1

n

n∑
i=1

ci − ξ, ∀c ∈ {0, 1}n
(1)

where binary vector c = (c1, . . . , cn) ∈ {0, 1}n forms a constraint that is a linear
combinations of the constraints yi(w · xi) ≥ 1− ξi.

The CPA is presented in Alg. 1. It starts with an empty set of constraints
S and computes the optimal solution to the unconstrained problem (1). Next,
the algorithm forms a binary vector c to compute a cutting plane model defined
by its offset d(t) = 1

n

∑n
i=1 ci and gradient g(t) = 1

n

∑n
i=1 ciyixi (lines 5-9). This

produces a constraint w · g(t) ≥ d(t)− ξ that is violated the most by the current
solution w, which is included in the set of active constraints S (line 10). This
way, a series of successively tightening approximations to the original problem
is constructed. The algorithm stops when no constraints are violated by more
than ε, which is formalized by the criteria in line 12.

1 Here we fix the bias term b at zero, as it could be easily incorporated in feature
vectors as an additional constant.

Fast Support Vector Machines for Structural Kernels 3

Algorithm 1 Cutting Plane Algorithm (primal)

1: Input: (x1, y1), . . . , (xn, yn), C, ε
2: S ← ∅; t = 0
3: repeat
4: (w, ξ)← optimize (1) over the constraints in S

/* find a cutting plane */
5: for i = 1 to n do

6: c
(t)
i ←

{
1 if

(
yi(w · xi) ≤ 1

)
0 otherwise

7: end for
8: d(t) ← 1

n

∑n
i=1 ci

9: g(t) ← 1
n

∑n
i=1 ciyiφ(xi)

/* add a constraint to the set of constraints */
10: S ← S ∪ {(d(t), g(t))}
11: t← t+ 1
12: until w · g(t) ≥ d(t) − ξ + ε
13: return w, ξ

2.2 Cutting-plane algorithm (dual)

To enable the use of kernels, we need to solve the Wolfe dual of the problem (1).
Its solution w lies in the feature space defined by a kernel K(xi,xk) = φ(xi) ·
φ(xi). It can be easily verified (by deriving the the dual from (1)) that primal
and dual variables are connected via:

w =

t∑
j=1

αjg
(j), (2)

where g(j) = 1
n

∑n
k=1 c

(j)
k ykφ(xk) denotes the gradient of the cutting plane

model added at iteration j and t is the size of the set S.
As one can see, with the use of kernels the gradient g(j) (that also defines

the most violated constraint (MVC) added at iteration j) cannot be compactly
represented as in the linear case by simply summing up n feature vectors since
it now lies in the feature space spanned by φ(·). We will address the problem of
compact representation of the cutting plane models in the next section.

Computing an inner product between the weight vector w and an example
xi involves the sum of kernel evaluations for each example xk in the constraint
j for each constraint in S. In particular, using the expansion of w from (2), the
inner product required to compute the MVC (steps 5-9 in the Alg. 1), renders
as:

w · φ(xi) =

t∑
j=1

αjg
(j) · φ(xi) =

n∑
k=1

(t∑
j=1

1

n
αjc

(j)
k yk

)
K(xi,xk), (3)

The analysis of the inner product given by (3) reveals that the number of kernel
evaluations at each iteration is O(tn2). Indeed, the number of non-zero elements
in each g(j) is proportional to the number of support vectors which grows linearly

4 Aliaksei Severyn and Alessandro Moschitti

with the training size n [19]. Summing over all constraints in the set S, the
complexity of (3) is O(tn). Since the inner product (3) needs to be computed
for each training example (lines 5-7 in Alg. 1) we obtain O(tn2) scaling behavior
at each iteration.

The obtained quadratic scaling in the number of examples makes cutting
plane training for non-linear SVMs prohibitively expensive for even medium-
sized datasets. To address this limitation [23] proposed to construct approximate
cuts by sampling r examples from the training set. The idea is to replace the
expensive computation of the MVC (lines 5-7, Alg. 1) over all training examples
n by a sum over a smaller sample r, s.t. the number of examples in g(j) is
reduced from O(n) to O(r). In this case the double sum of kernel evaluations
in (3) reduces from

∑n
i,j=1K(xi,xj) to a more tractable

∑r
i,j=1K(xi,xj).

3 Fast CPA for Structural Kernels

In this section we present an approach to significantly speed up the approximate
CPA for structural kernels. We observe that for convolution structural kernels,
e.g. tree kernels, the cutting plane model can be compactly represented as a
Directed Acyclic Graph (DAG). This helps to speed up both the training and
classification as the repeating kernel evaluations over shared substructures can
be avoided. Most interestingly this approach can be parallelized during training
thus making structural kernel learning practical on larger datasets.

3.1 Compacting cutting plane models using DAGs

In the previous section we have seen that computing an MVC at each itera-
tion involves quadratic number of kernel evaluations. Using smaller samples to
approximate the cutting plane helps to reduce the number of kernel evaluations.

Here we explore another avenue to reduce the number of kernel computations
when convolution structural kernels are used. Indeed, when applied to structural
data such as sequences, trees or graphs, we can take advantage of the fact that
many examples share common sub-structures. Hence, we can use a compact
representation of a cutting plane model to avoid redundant computations over
repeating sub-structures. In particular, when dealing with tree-structured data,
a collection of trees can be compactly represented as a DAG [1]. In the following
we briefly introduce the idea behind using DAGs to compactly represent a tree
forest and then show how it applies to speed up the learning algorithm.

3.2 DAG tree kernels

A DAG can efficiently represent a set of trees by including only the unique
subtrees and accounting for the frequency of the repeated substructures. Fig. 1
shows three syntactic trees on the left and the resulting DAG on the right. As
we can see, the subtree of the noun phrase [NP [D a][N car]] is repeated in
two trees, thus the frequency of the corresponding node is updated to 2. Also

Fast Support Vector Machines for Structural Kernels 5

VP,1VP,1

NP,2V,2 NP,1

D,3 JJ,1 N,3buy,2

a,3 red,1 car,3

VP

NPV

D JJ Nbuy

a red car

NP

D N

a car

VP

V

buy

NP

D N

a car

Fig. 1. Three syntactic trees and the resulting DAG.

smallesubtrees such as [D a] and [D car] are shared with a frequency of 3. The
two subtrees rooted in VP are different and require different roots but they can
still share some of their subparts, e.g. [V buy].

Given a collection of trees, there are various methods to efficiently build a
corresponding DAG and allow for fast access to its tree nodes, see for example [1].
In our approach, for each node in a tree, we generate a string representation
of its subtree. This requires linear time in the number of tree nodes and can
be done at the preprocessing step. These strings are unique identifiers of each
respective node and serve as keys in the hash table, whose values are pointers to
the corresponding nodes. To perform efficient search within a DAG, we maintain
a simple and efficient nested structure of two associative arrays. The first is a
hash table, which given a node retrieves the set of nodes associate with the same
production rule. Each entry in the retrieved set contains a tuple of a pointer to
the node and its current frequency. In this way we can efficiently enumerate all
the candidate substructures to compute the tree kernel [4] between a DAG and
a given tree.

Tree Kernels (TKs). Convolution TKs compute the number of common sub-
structures between two trees T1 and T2 without explicitly considering the whole
fragment space. For this purpose, let the set T = {t1, t2, . . . , t|T |} be the sub-
structure space and χi(n) be an indicator function, equal to 1 if the target ti is
rooted at node n and equal to 0 otherwise. A tree-kernel function over T1 and T2
is TK(T1, T2) =

∑
n1∈NT1

∑
n2∈NT2

∆(n1, n2), NT1
and NT2

are the sets of the

T1’s and T2’s nodes, respectively and ∆(n1, n2) =
∑|T |
i=1 χi(n1)χi(n2). The latter

is equal to the number of common fragments rooted in the n1 and n2 nodes.

Theorem 1. Let D be a DAG representing a tree forest F and Kdag(D,T2) =∑
n1∈ND

∑
n2∈NT2

f(n1)∆(n1, n2) then∑
T1∈F

TK(T1, T2) = Kdag(D,T2), (4)

where f(n1) is the frequency associated with n1 in the DAG.

6 Aliaksei Severyn and Alessandro Moschitti

Proof. Let S(F) the set of possible subtrees of F , i.e. the substructures whose
leaves coincide with those of the original tree (in general T 6= S), then

∑
T1∈F TK(T1, T2)

=
∑
T1∈F

∑
n1∈NT1

∑
n2∈NT2

∆(n1, n2)=
∑
T1∈F

∑
n1:t∈S(T1)
n1=r(t)

∑
n2∈NT2

∆(n1, n2),

where r(t) is the root of the subtree t. The last expression is equal to
∑
n1:t∈S(F)
n1=r(t)∑

n2∈NT2
∆(n1, n2). Let S ′ the unique subtrees of S, we can rewrite the above

equation as:
∑
n1:t∈S′(F)
n1=r(t)

f(n1)
∑
n2∈NT2

∆(n1, n2)=
∑
n1:t∈D
n1=r(t)

∑
n2∈NT2

f(n1)

∆(n1, n2)=
∑
n1∈D

∑
n2∈NT2

f(n1)∆(n1, n2). �

3.3 Fast Computation of the MVC on Structural Data

Having introduced the DAG tree kernel, we redefine the inner product (3) re-
quired to compute the MVC by compacting g(j) into a single DAG model dag(j):

w · φ(xi) =

t∑
j=1

αjKdag(dag(j),xi) (5)

Unlike (3), where each cutting plane g(j) is an arithmetic sum of training
examples, here we take advantage of the fact that a collection of trees can be
efficiently put into an equivalent DAG. Please note that computing a kernel
Kdag(·, ·) between an example and a DAG that represents a collection of trees
yields an exact kernel value as shown in Th. 1. The benefit of such representation
comes from the efficiency gains obtained by speeding up kernel evaluations over
the sum of examples compacted into a single DAG.

Now we are ready to present the new cutting plane algorithm (see Alg. 2)
adapted for the use of structural kernels. The weight vector w (line 6) is now
expanded over the dual variables αj obtained by solving Wolfe dual of (1) (line 5)
and cutting plane models, each compactly represented by dag(j). To compute
the MVC we use a smaller set of examples uniformly sampled from the original
training set. A binary vector c formed in (lines 8-12) defines the examples that
are inserted into a DAG model (line 11). The obtained algorithm preserves all
the theoretical benefits of the approximate CPA with sampling, while reducing
the number of expensive kernel evaluations to compute the MVC.

To benefit even more from the compact representation offered by DAGs, we
can put all cutting planes from the set S into a single DAG, such that the inner
product (3) is reduced to a single kernel evaluation:

w · φ(xi) = Kdag(d̂ag(t),xi) (6)

where d̂ag(t) at iteration t is built by inserting nodes from dag(j) together
with the frequency counts multiplied by the value of the corresponding dual
variable αj . This ensures that a single Kdag evaluation over the full DAG model
makes Eq. 6 equivalent to computing a weighted sum of Kdag using individual

dag(j) in Eq. 5. Even though d̂ag(t) has to be re-built at each iteration to

Fast Support Vector Machines for Structural Kernels 7

Algorithm 2 Cutting Plane Algorithm (dual) using DAG model representation

1: Input: (x1, y1), . . . , (xn, yn), C, ε
2: S ← ∅; dag ← 0; t = 0;
3: repeat
4: Update the Gram matrix G with a new constraint
5: α← argmaxα≥0h

Tα− 1
2
αTGα, s.t. αT1 ≤ C where hi = d(i) and G = g(i) ·g(j)

6: w =
∑|t|

j=1 αjdag
(j)

7: Sample r examples from the training set
/* find a cutting plane */

8: for i = 1 to r do

9: c
(t)
i ←

{
1 if

(
yi
∑t

j=1 αjKdag(dagj ,xi) ≤ 1
)

0 otherwise
10: end for
11: dag(t) = build dag(c)
12: d(t) = 1

r

∑r
i=1 ci

13: /* add dag to the active set */
14: S ← S ∪ {(dt,dagt)}
15: t = t+ 1
16: until d(t) −w · dag(t) ≤ ξ + ε
17: return w, ξ

accommodate updated vector α, this imposes little computational overhead in
practice. Another computational drawback of using full DAG model compared
to the set of dag(j) is that in the former case we need to compute the update

of the Gram matrix column (line 4 in Alg.2) Git = g(i) · g(t) for 1 ≤ i ≤ t, while
in the latter case it is obtained automatically from computing Eq. 5.

Even though the worst-case complexity for computing the MVC using both
variants of using DAGs is still O(r2), it is highly unlikely to observe in practice,
where input examples tend to share many common substructures. This speeds
up both training and classification by avoiding redundant kernel computations.

3.4 Parallelization

The modular nature of the CPA suggests easy parallelization. In fact, in our
experiments, we observed that at each iteration 95% of the total learning time
is spent on computing the MVC (steps 8-12, Alg. 2). This involves computing
Eq. 5 over the set of individual DAGs or Eq. 6 using full DAG model for r
training examples in the sample. This observation suggests high parallelizability
of the code: using p processors the complexity of this pre-dominant part can be
brought down from O(r2) to O(r2/p).

4 Handling Class-Imbalanced data

In this section, we extend the theory of cutting-plane algorithm to tackle class-
imbalance problem. Our approach is based on an alternative sampling strategy

8 Aliaksei Severyn and Alessandro Moschitti

that is effective for tuning up Precision and Recall on class-imbalanced data. We
also provide a convergence proof of the proposed algorithm.

4.1 Cost-proportionate sampling

Conventional SVM problem formulation allows for natural incorporation of ex-
ample dependent importance weights into the optimization problem. We can
modify the objective function to include example dependent cost factors:

minimize
w,ξi≥0

1

2
‖w‖2 +

C

n

n∑
i

ziξi

subject to yi(w · xi) ≥ 1− ξi, 1 ≤ i ≤ n
(7)

where zi is the importance weight of example i and 1
n

∑n
i ziξi serves as an upper

bound on the total cost-sensitive empirical risk. This problem formulation where
there is an individual slack variable ξi for each example is typically referred to
as “n-slack” formulation.

In the dual space, the example-dependent costs captured by cost factors zi
translate into the box constraints imposed on each dual variables: 0 ≤ αi ≤
ziC, 1 ≤ i ≤ n such that the ziC sets an upper bound on the values of αi.
This feature to integrate importance weights zi in the problem formulation is
implemented in SVM-light software.

This natural modification of the quadratic problem, is, however, difficult
to incorporate in the case of 1-slack formulation (1). Indeed, in the case of 1-
slack formulation we have a single slack variable ξ that is shared among all the
constraints. More importantly, moving to the dual space, the box constraints
0 ≤ αi ≤ C are no longer for each individual dual variable but for a sum:

∑
i αi.

This makes the 1-slack problem formulation difficult to incorporate importance
weights directly. Nevertheless, the idea of approximating the cutting plane model
at each iteration via sampling suggests a straightforward solution.

Indeed, we can extend the original CPA to the case of cost-sensitive classifi-
cation. A straight-forward way to do this is instead of using uniform sampling to
build an approximation to the cutting plane model at each iteration (steps 8-12
in Alg. 2), we can draw examples according to their importance weights using
the cost-proportionate rejection sampling technique (Alg. 3).

Algorithm 3 Cost-proportionate rejection sampling

1: Pick example (xi, yi, zi) at random
2: Flip a coin with bias zi/Z
3: if heads then
4: keep the example
5: else
6: discard it
7: end if

Fast Support Vector Machines for Structural Kernels 9

Here zi is the importance weight of the i-th example and Z is an upper bound
on any importance value in the dataset. This process is repeated until we sample
the required number of examples r. This modification enables the control over
the proportion of examples from different classes that will form a sample used
to compute the MVC.

Unlike the conventional approaches for addressing the class-imbalance prob-
lem, that either under-sample the majority class or over-sample the minority
class from the training data, the rejection sampling coupled with CPA does not
completely discard examples from the training set. At each iteration it forms a
sample according to the pre-assigned importance weights for each example, such
that examples from both the majority and minority classes enter the sample in
the desired proportion. This process is repeated until the algorithm converges.
Thus, the learner has the chance to incorporate relevant information present in
the data over a number of iterations before it converges. This way, the method
preserves the global view on the dataset and no relevant information is lost during
the iterative optimization process unlike in the “one-shot” sampling methods.

Another benefit of this approach is that by increasing the importance weight
of the minority class, we give its examples more chance to end up in the MVC and
hence, become support vectors. This way the imbalanced support-vector ratio
is automatically tuned to include more examples from the minority class, which
gives more control over the class-imbalance problem. Proving this property could
be an interesting theoretical result.

4.2 Theoretical Analysis of the Algorithm

Cost proportionate rejection sampling allows for natural extension of the binary
classification to importance weighted binary classification. It achieves this task
by re-weighting the original distribution of examples D according to the impor-
tance weights of examples such that the training is effectively carried out under
the new distribution D̂.

In [24] it is shown that by transforming the original distribution D to a
training set under D̂, one can effectively train a cost-insensitive classifier on
a dataset D̂ such that it will minimize the expected risk under the original
distribution D.

Theorem 2. (Translation Theorem; [24]) Learning a classifier h to minimize
the expected cost-sensitive risk under the original distribution D is equivalent
to learning a decision function to minimize the expected cost-insensitive risk
under the distribution D̂(x, y, z) ≡ z

E(x,y,z)∼D[z]D(x, y, z).

The proof is a straight-forward application of the definitions and simply follows
by establishing an equivalence relationship between the expected cost-sensitive
risk E(x,y,z)∼D[z∆(y, h(x))] under the original distribution D and the expected

cost-insensitive risk E(x,y,z)∼D̂[∆(y, h(x))] under the transformed distribution D̂.
The theorem produces an important implication that by transforming the orig-
inal distribution D to D̂ according to example-dependent importance weights,

10 Aliaksei Severyn and Alessandro Moschitti

a classifier for the cost-sensitive problem over D can be obtained with a cost-
insensitive learning algorithm over D. We can use this finding to show that the
convergence proof for the original CPA with uniform sampling naturally applies
to the proposed version of the algorithm that uses cost-proportionate rejection
sampling:

Theorem 3. (Convergence) Assume R = max1≤i≤n‖φ(xi)‖, i.e. R is an upper
bound on the norm of any φ(xi), and ∆ = max1≤i≤n‖ ∆(y, yi)‖, the number of
steps required by Alg. 2 using the sampling strategy of Alg. 3 is upper bounded
by 8C∆R2/ε2.

Proof. We first note that the cost-proportionate rejection sampling (Alg. 3), used
to build the approximate cutting plane model, at each step re-weights the original
distribution D according to the importance weights of the examples. This means
that we are effectively training a cost insensitive classifier that draws examples
to build the cutting plane model from the transformed distribution D̂. By in-
voking the Translation Theorem (2), we establish that, to obtain a cost-sensitive
classifier that minimizes the expected risk under the original distribution D, it is
sufficient to learn a cost-insensitive classifier under the transformed distribution
D̂. The CPA that draws examples from D using rejection sampling is equivalent
to the original CPA applying uniform sampling to the transformed distribution
D̂. Thus, we can reutilize the proof in [23] of the convergence bounds for the
original CPA with uniform sampling over D̂. This states that CPA with uni-
form sampling terminates after at most 8C∆R2/ε2 iterations. By applying such
bound, we have proved the thesis of the theorem.

Remarks. The main idea to obtain convergence bounds in [23] is to set an upper
bound on the value of the dual objective and if there exists a lower bound on the
minimal improvement of the dual objective at each iteration, then the algorithm
will terminate in a finite number of steps.

Indeed, using the relationship between primal and dual problems, we have
that a feasible solution of the primal problem (1), such as, for example: w = 0,
ξ = ∆, forms an upper bound C∆ on the dual objective of 1. Next, in [20] it is
shown that the inclusion of ε-violated constraint at each iteration improves the
dual objective by at least ε/8R2 . Since the dual objective is upper bounded by
C∆, the algorithm terminates after at most 8C∆R2/ε2 iterations.

The derivation of the bound on the minimal improvement of the dual ob-
jective obtained at each step only depends on the values of ε and R and does
not rely on the assumption about distribution of the examples. Also note that
each cutting plane model built via rejection sampling is a valid constraint for
the optimization problem (1).

5 Experiments

In our experiments we pursue a three-fold goal: (i) study the effects of compact-
ing the cutting plane model by using DAGs on both training and classification

Fast Support Vector Machines for Structural Kernels 11

runtimes; (ii) demonstrate the speedup factors one can obtain after straight-
forward parallelization offered by the CPA; and (iii) demonstrate the ability of
the cost-proportionate sampling scheme to tune up Precision and Recall;

5.1 Experimental setup

We integrated CPA with uniform sampling as described in [23] within the frame-
work of SVM-Light-TK [14, 9] to enable the use of structural kernels, e.g. tree
kernels. For the DAG implementation we employ highly efficient Judy arrays2.
For brevity, we refer to the CPA with uniform sampling as uSVM; uSVM where
each cutting plane g(j) is compacted into a dag(j) as SDAG; uSVM with a sin-
gle DAG that fits all active constraints in the set S as SDAG+; uSVM with
rejection sampling as uSVM+j (Alg. 3), and SVM-light-TK as SVM. Parallel
implementation relies on the OpenMP library.

To carry out learning, we used the subset tree (SST) kernel [4] since it has
been indicated as the most accurate in similar tasks, e.g. [14]. As the stop-
ping criteria of the algorithms, we fix the precision parameter ε at 0.001. The
margin trade off parameter is fixed at 1.0. To measure the classification perfor-
mance, we use Precision, Recall and F 1-score. We ran all the experiments on
machines equipped with Intel R© Xeon R© 2.33GHz CPUs carrying 6Gb of RAM
under Linux.

5.2 Data and models

To evaluate the efficiency of the compact model representation offered by SDAG
and SDAG+ algorithms with respect to uSVM, we use Semantic Role Labeling
(SRL) benchmark, using PropBank annotations [15] and automatic Charniak
parse trees [3]. SRL dataset has already been used to extensively test uSVM for
structural kernels and we follow the same setting as described in [16].

In the next set of experiments to study the ability of uSVM+j to tune up
Precision and Recall we used two different natural language datasets: TREC 10
QA3 (training: 5,483, test: 500) and Yahoo! Answers (YA)4(train: up to 300k,
test: 10k) to perform two similar tasks of QA classification. The task for the first
dataset is to select the most appropriate type of the answer from a set of given
possibilities. The goal of the experiments on these relatively small datasets is to
demonstrate that rejection sampling is able to effectively handle class imbalance
similar to SVM. For Yahoo! Answers dataset the classification task was set up
as follows. Given pairs of questions and corresponding answers learn if in a given
pair the answer is the ’best’ answer for a question. The goal of this experiment is
to have a large classification task (300k examples in our experiments) to demon-
strate that class-imbalance problem can be handled effectively at a scale where
SVM becomes too slow.
2 http://judy.sourceforge.net
3 http://l2r.cs.uiuc.edu/cogcomp/Data/QA/QC/
4 retrieved through the Yahoo! Webscope program.

12 Aliaksei Severyn and Alessandro Moschitti

Table 1. Runtime comparison between uSVM, SDAG and SDAG+. Training on 100k
subset of SRL across multiple values of the sample size (left) and classification on 10k
subset when learning on SRL subsets of varying size (right). Time indicated in seconds;
values in parenthesis for SDAG and SDAG+ are speedups w.r.t uSVM; #SVs- number
of support vectors.

Training

sample uSVM SDAG SDAG+

1000 2196 312 (7.0) 283 (7.8)
2000 8282 1127 (7.3) 752 (11.0)
3000 18189 2509 (7.2) 1275 (14.3)
4000 31012 4306 (7.2) 1802 (17.2)
5000 50060 6591 (7.6) 2497 (20.0)

Classification

Data #SVs uSVM SDAG SDAG+

10k 1686 11 9 (1.1) 1 (24.0)
25k 3392 41 25 (1.6) 1 (33.2)
50k 5876 82 40 (2.1) 3 (28.3)
75k 7489 112 55 (2.0) 5 (20.5)
100k 8674 131 59 (2.2) 7 (19.5)

5.3 Results and Analysis

Compact model representation using DAGs. The goal of this set of ex-
periments is to study computational savings that come from using a compact
representation of individual (SDAG) or the full set (SDAG+) of cutting plane
models in S. As the baseline for the learning and classification runtime compar-
ison we use plain uSVM algorithm. To carry out training we use 100k of SRL
dataset. The number of iterations for the algorithms is fixed at 300 and the rest
of the parameters are kept at default values. For evaluating speedups obtained
during classification phase we carry out learning on SRL subsets of increasing
size and then test trained models on 10k of data.

Runtime results for SDAG, SDAG+ and uSVM are reported in Table 1 (since
SDAG and SDAG+ produce exact kernel evaluations, hence they train the same
model as uSVM, accuracy is not of concern and is omitted). As one can see both
SDAG and SDAG+ deliver significant speedups during the learning. SDAG+ is
a clear winner here delivering speedups up to 20 when a large sample size is used.
Regarding classification, SDAG+ is also the fastest, although as the number of
support vectors of the learned model increases, the speedup factor decreases.
This is due to the increased overhead of maintaining a single large DAG. As the
number of elements in the DAG grows the inefficiencies from the implementation
of the underlying data structure slow down the node lookup time. We plan to
address this problem in the future.

Tuning up Precision and Recall. We first report experimental results on
question classification corpus on six different categories in Table 2 (since the
dataset is small, we only report the accuracy). For both uSVM and uSVM+j,
we fixed the sample size to 100. For uSVM+j, we picked the value of j from
{1, 2, 3, 4, 5, 10} and use the best results obtained on the validation set. For
SVM, we carried out tuning of j parameter on a validation set. It is important to
note that such parameter has slightly different meaning for uSVM+j and SVM.
For the former, it controls the bias to reject negative examples during sampling
(Alg. 3) to compute MVC, while for the latter it defines the factor by which
training errors on positive examples outweigh errors on negative examples.

Fast Support Vector Machines for Structural Kernels 13

Table 2. Handling class-imbalance problem on TREC 10 (top) YA (bottom). Ratio
- proportion of negative examples w.r.t. positive; P/R - precision (P) and recall (R).
The bottom row in YA is the performance using bag-of-words features on 75k subset.

Trec 10

Data Ratio uSVM uSVM+j SVM
F-1 P/R F-1 P/R F-1 P/R

ABBR 1:60 87.5 100.0/77.8 84.2 80.0/88.9 84.2 80.0/88.9
DESC 1:4 96.1 95.0/97.1 96.1 95.0/97.1 94.8 97.7/92.0
ENTY 1:3 72.3 91.8/59.6 79.1 79.6/78.7 80.4 82.2/78.7
HUM 1:3 88.1 98.1/80.0 90.3 94.9/86.2 87.5 88.9/86.2
LOC 1:3 81.4 96.6/70.4 87.0 87.5/86.4 82.6 86.5/79.0
NUM 1:5 86.0 98.9/76.1 91.2 96.1/86.7 89.9 98.9/82.3

Yahoo Answers

10k 1:1.5 37.4 33.5/42.2 39.1 29.6/57.7 37.9 24.2/87.7
50k 1:2.0 36.5 36.0/36.9 40.6 30.0/62.5 39.6 25.7/86.9
100k 1:2.4 33.4 36.2/31.1 40.2 30.2/59.9 40.3 26.6/83.5
150k 1:2.8 33.5 36.9/30.7 41.0 30.2/64.0 - -
300k 1:3.4 23.8 40.1/16.9 41.4 30.7/63.8 - -

BOW 1:2.0 34.2 33.2/35.3 38.1 27.5/61.7 36.3 22.5/93.5

Analyzing the results from Table 2 (top), we can see that uSVM algorithm
that uses uniform sampling obtains high Precision, as it minimizes the training
error dominated by examples from negative class. This results in lower values of
the Recall. Its rather high F1 for ABBR dataset shows that the model simply
misclassifies the examples from the minority class saturating the Precision. On
the other hand, uSVM+j is able to establish a much better balance between
Precision and Recall resulting in high F1 scores across the majority of categories.
Also the performance of SVM with the optimal set of parameters suggests that
our method has a better capacity to control the imbalance problem than SVM.
This can be explained by the fact, as suggested in [22], that ziC imposes only an
upper bound on dual variables αi, which results in poorer flexibility to control
the class-imbalance with the j parameter of SVM.

The results on Yahoo! Answers are displayed in Table 2 (bottom). For uSVM
and uSVM+j, we fix the sample size at 500. Due to the constant time scaling
behavior of uSVM [23], the training time for both uSVM and uSVM+j was
slightly less than 10 hours across all subsets reported here. While being faster
on small subsets of 5k, 10k and 25k, SVM begins to scale poorly on the subsets
larger than 50k. Indeed, as studied in [23, 16], CPA with sampling begins to
outperform SVM starting from datasets of moderate size (around 50k in our
experiments). SVM did not finish the training within 5 days for 150k and 300k
subsets, hence there are missing values. We set the value of j parameter for
uSVM+j equal to the ratio of negative to positive examples. This natural setting
of j parameter for uSVM+j is driven by the intuition to make the distribution of
examples from different classes approximately balanced inside each sample, such
that the classifier learns on a balanced data. As one can see, this gives much

14 Aliaksei Severyn and Alessandro Moschitti

Fig. 2. Speedups due to parallelizing SDAG/SDAG+ on 50k Yahoo! Answers dataset.

sp
ee

du
p

1

2

3

4

5

6

7

number of CPUs
87654321

sample size = 100
sample size = 250
sample size = 500
sample size = 1000

better trade-off between Precision and Recall compared to uSVM. Looking at
the results of SVM, we conjecture that here j parameter, similar to the results
in previous experiments, is not flexible enough to deliver the optimal P/R trade-
off. Also note that training SVM on 100k subset requires almost 4 days, which
makes uSVM+j a viable tool for advanced text classification on large datasets,
where obtaining optimal balance between Precision and Recall is hindered by
the class imbalance problem.

The bottom row of Table 2 reports the results using bag-of-words (BOW)
feature representation on 75k subset. We note that SST kernel delivers an in-
teresting 12% of relative improvement over BOW model on SVM. However, the
main goal of this experiment was not to obtain the top classification performance
on such noisy web data but rather to demonstrate that uSVM+j can efficiently
deal with large imbalanced data.
Parallelization. To assess the effects of parallelization, we tested parallel ver-
sions of SDAG and SDAG+ on 50k subset of Yahoo! Answers dataset using up
to 8 CPUs. The achieved speedups over the sequential algorithm are reported in
Figure 2, where each curve corresponds to runtimes using different sample sizes:
{100, 250, 500, 1000}. Increasing the sample size leads to the increase of the time
spent to compute MVC, which makes the speedup achieved by parallelization for
large sample sizes even more significant. Using the maximum number of 8 CPUs,
we are able to achieve the speedup factor of about 7.0 (using sample size equal
to 1000). Since classification can also be easily parallelized, we could experiment
with larger sample sizes to obtain a more accurate model.

6 Related work

To improve the scaling properties of SVM-light, a number of efficient algorithms
using CPA-based algorithms have been proposed. For example, SVMperf [10] ex-
hibits linear computational complexity in the number of examples when linear

Fast Support Vector Machines for Structural Kernels 15

kernels are used. While CPA-based approaches deliver state of the art perfor-
mance w.r.t. accuracy and training time, they scale well only when linear ker-
nels are used. The problem of efficient kernel learning for CPA has been studied
in [11], where cutting plane models are compacted by extracting basis vectors.
This, however, leads to a non-trivial optimization problem when arbitrary kernel
functions are applied.

Regarding learning with structural kernels, compact representation of tree
forests offered by DAGs was applied for speeding up training of the voted per-
ceptron algorithm in [1]. Another interesting idea of hash kernels for structured
data is proposed in [18], where hashing can generate explicit vector represen-
tation such that linear learning methods can be applied. However, it is likely
that hashing all possible substructures generated by SST kernel, which is expo-
nential in the tree length, will make the preprocessing step too expensive. Also,
due to hash collisions, this method computes approximate kernel values and its
implications on the accuracy need to be studied more extensively.

Concerning class-imbalance problem for SVM learning, the most widely adopted
method is to introduce different cost factors in the objective function s.t. the
training errors for positive and negative examples receive different penalties [21].
This approach is implemented as the j option in SVM-light [9] that has a super-
linear scaling behavior, which prohibits its use on large datasets. Our approach
to accomplish cost-sensitive classification shares the idea of reductions put for-
ward in [24] together with the benefit of the conventional approach in SVMs [21]
to incorporate importance weights directly into the optimization process.

7 Conclusions and Future Work

In this paper we have presented a set of techniques to make SVMs with struc-
tural kernels a more useful tool to apply in real-world tasks. First, we derive
two learning algorithms SDAG and SDAG+ that compact cutting plane mod-
els using DAGs. This makes both learning and classification much faster when
compared to the original CPA with sampling. Next, we present parallelized ver-
sions of both algorithms to deliver even faster runtimes. Finally, we propose an
alternative sampling strategy to efficiently handle class-imbalanced data. The
distinctive property of the proposed method is that it directly integrates the
cost-proportionate sampling into the CPA optimization process, unlike the other
sampling approaches based on the reductions idea of [24]. In other words, sam-
pling is carried out iteratively, such that no information is discarded from train-
ing examples as in “one-shot” sampling methods.

Acknowledgements

This work has been partially supported by the EC project FP247758: Trustwor-
thy Eternal Systems via Evolving Software, Data and Knowledge (EternalS).

16 Aliaksei Severyn and Alessandro Moschitti

References

1. Aiolli, F., Martino, G.D.S., Sperduti, A., Moschitti, A.: Efficient kernel-based learn-
ing for trees. In: CIDM. pp. 308–315 (2007)

2. Cancedda, N., Gaussier, E., Goutte, C., Renders, J.M.: Word sequence kernels.
Journal of Machine Learning Research 3, 1059–1082 (2003)

3. Charniak, E.: A maximum-entropy-inspired parser. In: ANLP. pp. 132–139 (2000)
4. Collins, M., Duffy, N.: New ranking algorithms for parsing and tagging: Kernels

over discrete structures, and the voted perceptron. In: ACL. pp. 263–270 (2002)
5. Cumby, C., Roth, D.: Kernel Methods for Relational Learning. In: Proceedings of

ICML 2003 (2003)
6. Daumé III, H., Marcu, D.: A tree-position kernel for document compression. In:

Proceedings of the DUC. Boston, MA (May 6 – 7 2004)
7. Fan, R., Chen, P., Lin, C.: Working set selection using the second order information

for training svm. Journal of Machine Learning Research 6, 1889–1918 (2005)
8. Franc, V., Sonnenburg, S.: Optimized cutting plane algorithm for support vector

machines. In: ICML. pp. 320–327 (2008)
9. Joachims, T.: Making large-scale SVM learning practical. In: Advances in Kernel

Methods - Support Vector Learning, chap. 11, pp. 169–184. MIT Press, Cambridge,
MA (1999)

10. Joachims, T.: Training linear SVMs in linear time. In: KDD (2006)
11. Joachims, T., Yu, C.N.J.: Sparse kernel svms via cutting-plane training. Machine

Learning 76(2-3), 179–193 (2009), eCML
12. Kate, R.J., Mooney, R.J.: Using string-kernels for learning semantic parsers. In:

ACL (July 2006)
13. Kudo, T., Matsumoto, Y.: Fast methods for kernel-based text analysis. In: Pro-

ceedings of ACL’03 (2003)
14. Moschitti, A.: Making tree kernels practical for natural language learning. In:

EACL. The Association for Computer Linguistics (2006)
15. Palmer, M., Kingsbury, P., Gildea, D.: The proposition bank: An annotated corpus

of semantic roles. Computational Linguistics 31(1), 71–106 (2005)
16. Severyn, A., Moschitti, A.: Large-scale support vector learning with structural

kernels. In: ECML/PKDD (3). pp. 229–244 (2010)
17. Shen, L., Sarkar, A., Joshi, A.k.: Using LTAG Based Features in Parse Reranking.

In: Proceedings of EMNLP’06 (2003)
18. Shi, Q., Petterson, J., Dror, G., Langford, J., Smola, A.J., Vishwanathan, S.V.N.:

Hash kernels for structured data. JMLR 10, 2615–2637 (2009)
19. Steinwart, I.: Sparseness of support vector machines. Journal of Machine Learning

Research 4, 1071–1105 (2003)
20. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods

for structured and interdependent output variables. Journal of Machine Learning
Research 6, 1453–1484 (2005)

21. Veropoulos, K., Campbell, C., Cristianini, N.: Controlling the sensitivity of support
vector machines. In: Proceedings of the IJCAI. pp. 55–60 (1999)

22. Wu, G., Chang, E.: Class-boundary alignment for imbalanced dataset learning.
ICML 2003 workshop on learning from imbalanced data sets II, Washington, DC
pp. 49–56 (2003)

23. Yu, C.N.J., Joachims, T.: Training structural svms with kernels using sampled
cuts. In: KDD. pp. 794–802 (2008)

24. Zadrozny, B., Langford, J., Abe, N.: Cost-sensitive learning by cost-proportionate
example weighting. In: Proceedings of ICDM (2003)

