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Abstract

We demonstrate that relational features
derived from dependency-syntactic and
semantic role structures are useful for the
task of detecting opinionated expressions
in natural-language text, significantly im-
proving over conventional models based
on sequence labeling with local features.
These features allow us to model the way
opinionated expressions interact in a sen-
tence over arbitrary distances.

While the relational features make the pre-
diction task more computationally expen-
sive, we show that it can be tackled effec-
tively by using a reranker. We evaluate
a number of machine learning approaches
for the reranker, and the best model re-
sults in a 10-point absolute improvement
in soft recall on the MPQA corpus, while
decreasing precision only slightly.

1 Introduction

The automatic detection and analysis of opinion-
ated text – subjectivity analysis – is potentially
useful for a number of natural language processing
tasks. Examples include retrieval systems answer-
ing queries about how a particular person feels
about a product or political question, and various
types of market analysis tools such as review min-
ing systems.

A primary task in subjectivity analysis is to
mark up the opinionated expressions, i.e. the
text snippets signaling the subjective content of
the text. This is necessary for further analysis,
such as the determination of opinion holder and
the polarity of the opinion. The MPQA corpus
(Wiebe et al., 2005), a widely used corpus anno-
tated with subjectivity information, defines two
types of subjective expressions: direct subjective
expressions (DSEs), which are explicit mentions

of opinion, and expressive subjective elements
(ESEs), which signal the attitude of the speaker
by the choice of words. DSEs are often verbs of
statement and categorization, where the opinion
and its holder tend to be direct semantic arguments
of the verb. ESEs, on the other hand, are less easy
to categorize syntactically; prototypical examples
would include value-expressing adjectives such
as beautiful, biased, etc. In addition to DSEs and
ESEs, the MPQA corpus also contains annotation
for non-subjective statements, which are referred
to as objective speech events (OSEs). Examples
(1) and (2) show two sentences from the MPQA
corpus where DSEs and ESEs have been manually
annotated.

(1) For instance, he [denounced]DSE as a [human
rights violation]ESE the banning and seizure of
satellite dishes in Iran.
(2) This [is viewed]DSE as the [main
impediment]ESE to the establishment of po-
litical order in the country .

The task of marking up these expressions has
usually been approached using straightforward
sequence labeling techniques using simple fea-
tures in a small contextual window (Choi et al.,
2006; Breck et al., 2007). However, due to the
simplicity of the feature sets, this approach fails
to take into account the fact that the semantic
and pragmatic interpretation of sentences is not
only determined by words but also by syntactic
and shallow-semantic relations. Crucially, taking
grammatical relations into account allows us to
model how expressions interact in various ways
that influence their interpretation as subjective
or not. Consider, for instance, the word said in
examples (3) and (4) below, where the interpre-
tation as a DSE or an OSE is influenced by the
subjective content of the enclosed statement.



(3) “We will identify the [culprits]ESE of these
clashes and [punish]ESE them,” he [said]DSE .
(4) On Monday, 80 Libyan soldiers disembarked
from an Antonov transport plane carrying military
equipment, an African diplomat [said]OSE .

In this paper, we demonstrate how syntactic
and semantic structural information can be used
to improve opinion detection. While this fea-
ture model makes it impossible to use the stan-
dard sequence labeling method, we show that with
a simple strategy based on reranking, incorporat-
ing structural features results in a significant im-
provement. We investigate two different reranking
strategies: the Preference Kernel approach (Shen
and Joshi, 2003) and an approach based on struc-
ture learning (Collins, 2002). In an evaluation
on the MPQA corpus, the best system we evalu-
ated, a structure learning-based reranker using the
Passive–Aggressive learning algorithm, achieved
a 10-point absolute improvement in soft recall,
and a 5-point improvement in F-measure, over the
baseline sequence labeler .

2 Motivation and Related Work

Most approaches to analysing the sentiment of
natural-language text have relied fundamentally
on purely lexical information (see (Pang et al.,
2002; Yu and Hatzivassiloglou, 2003), inter alia)
or low-level grammatical information such as part-
of-speech tags and functional words (Wiebe et al.,
1999). This is in line with the general consensus
in the information retrieval community that very
little can be gained by complex linguistic process-
ing for tasks such as text categorization and search
(Moschitti and Basili, 2004).

However, it has been suggested that subjectiv-
ity analysis is inherently more subtle than cate-
gorization and that structural linguistic informa-
tion should therefore be given more attention in
this context. For instance, Karlgren et al. (2010)
argued from a Construction Grammar viewpoint
(Croft, 2005) that grammatical constructions not
only connect words, but can also be viewed as lex-
ical items in their own right. Starting from this
intuition, they showed that incorporating construc-
tion items into a bag-of-words feature representa-
tion resulted in improved results on a number of
coarse-grained opinion analysis tasks. These con-
structional features were domain-independent and
were manually extracted from dependency parse

trees. They found that the most prominent con-
structional feature for subjectivity analysis was the
Tense Shift construction.

While the position by Karlgren et al. (2010)
– that constructional features signal opinion –
originates from a particular theoretical framework
and may be controversial, syntactic and shallow-
semantic relations have repeatedly proven useful
for subtasks of subjectivity analysis that are in-
herently relational, above all for determining the
holder or topic of a given opinion. Works us-
ing syntactic features to extract topics and holders
of opinions are numerous (Bethard et al., 2005;
Kobayashi et al., 2007; Joshi and Penstein-Rosé,
2009; Wu et al., 2009). Semantic role analysis has
also proven useful: Kim and Hovy (2006) used
a FrameNet-based semantic role labeler to deter-
mine holder and topic of opinions. Similarly, Choi
et al. (2006) successfully used a PropBank-based
semantic role labeler for opinion holder extrac-
tion, and Wiegand and Klakow (2010) recently ap-
plied tree kernel learning methods on a combina-
tion of syntactic and semantic role trees for the
same task. Ruppenhofer et al. (2008) argued that
semantic role techniques are useful but not com-
pletely sufficient for holder and topic identifica-
tion, and that other linguistic phenomena must be
studied as well. One such linguistic pheonomenon
is the discourse structure, which has recently at-
tracted some attention in the opinion analysis com-
munity (Somasundaran et al., 2009).

3 Opinion Expression Detection Using
Syntactic and Semantic Structures

Previous systems for opinionated expression
markup have typically used simple feature sets
which have allowed the use of efficient off-the-
shelf sequence labeling methods based on Viterbi
search (Choi et al., 2006; Breck et al., 2007). This
is not possible in our case since we would like to
extract structural, relational features that involve
pairs of opinionated expressions and may apply
over an arbitrarily long distance in the sentence.

While it is possible that search algorithms for
exact or approximate inference can be construc-
tured for the arg max problem in this model, we
sidestepped this issue by using a reranking decom-
position of the problem: We first apply a standard
Viterbi-based sequence labeler using no structural
features and generate a small candidate set of size
k. Then, a second and more complex model picks



the top candidate from this set without having to
search the whole candidate space.

The advantages of a reranking approach com-
pared to more complex approaches requiring ad-
vanced search techniques are mainly simplicity
and efficiency: this approach is conceptually sim-
ple and fairly easy to implement provided that k-
best output can be generated efficiently, and fea-
tures can be arbitrarily complex – we don’t have
to think about how the features affect the algorith-
mic complexity of the inference step. A common
objection to reranking is that the candidate set may
not be diverse enough to allow for much improve-
ment unless it is very large; the candidates may
be trivial variations that are all very similar to the
top-scoring candidate (Huang, 2008).

3.1 Syntactic and Semantic Structures

We used the syntactic–semantic parser by Johans-
son and Nugues (2008a) to annnotate the sen-
tences with dependency syntax (Mel’čuk, 1988)
and shallow semantic structures in the PropBank
(Palmer et al., 2005) and NomBank (Meyers et
al., 2004) frameworks. Figure 1 shows an example
of the annotation: The sentence they called him a
liar, where called is a DSE and liar is an ESE, has
been annotated with dependency syntax (above the
text) and PropBank-based semantic role structure
(below the text). The predicate called, which is
an instance of the PropBank frame call.01, has
three semantic arguments: the Agent (A0), the
Theme (A1), and the Predicate (A2), which are re-
alized on the surface-syntactic level as a subject,
a direct object, and an object predicative comple-
ment, respectively.

]
ESE

They called

call.01

SBJ

OPRD

liarhim[ [a

A1A0 A2

]
DSE

NMODOBJ

Figure 1: Syntactic and shallow semantic struc-
ture.

3.2 Sequence Labeler

We implemented a standard sequence labeler fol-
lowing the approach of Collins (2002), while
training the model using the Passive–Aggressive

algorithm (Crammer et al., 2006) instead of the
perceptron. We encoded the opinionated expres-
sion brackets using the IOB2 encoding scheme
(Tjong Kim Sang and Veenstra, 1999). Figure 2
shows an example of a sentence with a DSE and
an ESE and how they are encoded in the IOB2 en-
coding.

This O
is O
viewed B-DSE
as O
the O
main B-ESE
impediment I-ESE

Figure 2: Sequence labeling example.

The sequence labeler used word, POS tag, and
lemma features in a window of size 3. In addi-
tion, we used prior polarity and intensity features
derived from the lexicon created by Wilson et al.
(2005). In the example, viewed is listed as hav-
ing strong prior subjectivity but no polarity, and
impediment has strong prior subjectivity and neg-
ative polarity. Note that prior subjectivity does not
always imply subjectivity in a particular context;
this is why contextual features are essential for this
task.

This sequence labeler is used to generate the
candidate set for the reranker; the Viterbi algo-
rithm is easily modified to give k-best output. To
generate training data for the reranker, we carried
out a 5-fold cross-validation procedure: We split
the training set into 5 pieces, trained a sequence
labeler on pieces 1 to 4, applied it to piece 5 and
so on.

3.3 Reranker Features

The rerankers use two types of structural fea-
tures: syntactic features extracted from the depen-
dency tree, and semantic features extracted from
the predicate–argument (semantic role) graph.

The syntactic features are based on paths
through the dependency tree. This creates a small
complication for multiword opinionated expres-
sions; we select the shortest possible path in such
cases. For instance, in Example (1), the path will
be computed between denounced and violation,
and in Example (2) between viewed and impedi-
ment.

We used the following syntactic features:



SYNTACTIC PATH. Given a pair of opinion ex-
pressions, we use a feature representing the
labels of the two expressions and the path be-
tween them through the syntactic tree. For
instance, for the DSE called and the ESE liar
in Figure 1, we represent the syntactic config-
uration using the feature DSE:OPRD↓:ESE,
meaning that the path from the DSE to the
ESE consists of a single link, where the de-
pendency edge label is OPRD (object predica-
tive complement).

LEXICALIZED PATH. Same as above,
but with lexical information attached:
DSE/called:OPRD↓:ESE/liar.

DOMINANCE. In addition to the features based
on syntactic paths, we created a more generic
feature template describing dominance re-
lations between expressions. For instance,
from the graph in Figure 1, we extract the
feature DSE/called→ESE/liar, mean-
ing that a DSE with the word called domi-
nates an ESE with the word liar.

The semantic features were the following:

PREDICATE SENSE LABEL. For every predi-
cate found inside an opinion expression, we
add a feature consisting of the expression la-
bel and the predicate sense identifier. For in-
stance, the verb call which is also a DSE is
represented with the feature DSE/call.01.

PREDICATE AND ARGUMENT LABEL. For
every argument of a predicate inside an
opinion expression, we create a feature
representing the predicate–argument pair:
DSE/call.01:A0.

CONNECTING ARGUMENT LABEL. When a
predicate inside some opinion expression is
connected to some argument inside another
opinion expression, we use a feature con-
sisting of the two expression labels and the
argument label. For instance, the ESE liar
is connected to the DSE call via an A2 la-
bel, and we represent this using a feature
DSE:A2:ESE.

Apart from the syntactic and semantic features,
we also used the score output from the base se-
quence labeler as a feature. We normalized the
scores over the k candidates so that their exponen-
tials summed to 1.

3.4 Preference Kernel Approach

The first reranking strategy we investigated was
the Preference Kernel approach (Shen and Joshi,
2003). In this method, the reranking problem –
learning to select the correct candidate h1 from a
candidate set {h1, . . . , hk} – is reduced to a bi-
nary classification problem by creating pairs: pos-
itive training instances 〈h1, h2〉, . . . , 〈h1, hk〉 and
negative instances 〈h2, h1〉, . . . , 〈hk, h1〉. This ap-
proach has the advantage that the abundant tools
for binary machine learning can be exploited.

It is also easy to show (Shen and Joshi, 2003)
that if we have a kernelK over the candidate space
T , we can construct a valid kernel PK over the
space of pairs T × T as follows:

PK(h1, h2) = K(h1
1, h

1
2) +K(h2

1, h
2
2)

− K(h1
1, h

2
2)−K(h2

1, h
1
2),

where hi are the pairs of hypotheses 〈h1
i , h

2
i 〉 gen-

erated by the base model. This makes it possible
to use kernel methods to train the reranker. We
tried two types of kernels: linear kernels and tree
kernels.

3.4.1 Linear Kernel
We created feature vectors extracted from the can-
didate sequences using the features described in
Section 3.3. We then trained linear SVMs using
the LIBLINEAR software (Fan et al., 2008), using
L1 loss and L2 regularization.

3.4.2 Tree Kernel
Tree kernels have been successful for a number of
structure extraction tasks, such as relation extrac-
tion (Zhang et al., 2006; Nguyen et al., 2009) and
opinion holder extraction (Wiegand and Klakow,
2010). A tree kernel implicitly represents a large
space of fragments extracted from trees and could
thus reduce the need for manual feature design.
Since the paths that we extract manually (Sec-
tion 3.3) can be expressed as tree fragments, this
method could be an interesting alternative to the
manually extracted features used with the linear
kernel.

We therefore implemented a reranker using
the Partial Tree Kernel (Moschitti, 2006), and
we trained it using the SVMLight-TK software1,
which is a modification of SVMLight (Joachims,

1Available at http://dit.unitn.it/∼moschitt



1999)2. It is still an open question how depen-
dency trees should be represented for use with
tree kernels (Suzuki et al., 2003; Nguyen et al.,
2009); we used the representation shown in Fig-
ure 3. Note that we have concatenated the opinion
expression labels to the POS tag nodes. We did not
use any of the features from Section 3.3 except for
the base sequence labeler score.

TOP

ROOT

OBJSBJ

PRP

they him

OPRD

PRP

NMOD

DT

NN−ES

VBD−DS

called

a

liar

Figure 3: Representation of a dependency tree
with opinion expressions for tree kernels.

3.5 Structure Learning Approach

The Preference Kernel approach reduces the
reranking problem to a binary classification task
on pairs, after which a standard SVM optimizer is
used to train the reranker. A problem with this
method is that the optimization problem solved
by the SVM – maximizing the classification ac-
curacy on a set of independent pairs – is not di-
rectly related to the performance of the reranker.
Instead, the method employed by many rerankers
following Collins and Duffy (2002) directly learn
a scoring function that is trained to maximize per-
formance on the reranking task. We will refer to
this approach as the structure learning method.

While there are batch learning algorithms that
work in this setting (Tsochantaridis et al., 2005),
online learning methods have been more popular
for efficiency reasons. We investigated two online
learning algorithms: the popular structured per-
ceptron Collins and Duffy (2002) and the Passive–
Aggressive (PA) algorithm (Crammer et al., 2006).
To increase robustness, we averaged the weight
vectors seen during training as in the Voted Per-
ceptron (Freund and Schapire, 1999).

The difference between the two algorithms is
the way the weight vector is incremented in each
step. In the perceptron, for a given input x, we up-
date based on the difference between the correct

2http://svmlight.joachims.org

output y and the predicted output ŷ, where Φ is
the feature representation function:

ŷ ← arg maxhw · Φ(x, h)
w ← w + Φ(x, y)− Φ(x, ŷ)

In the PA algorithm, which is based on the the-
ory of large-margin learning, we instead find the
ŷ that violates the margin constraints maximally.
The update step length τ is computed based on the
margin; this update is bounded by a regularization
constant C:

ŷ ← arg maxhw · Φ(x, h) +
√
ρ(y, h)

τ ← min

(
C,

w(Φ(x,ŷ)−Φ(x,y))+
√
ρ(y,ŷ)

‖Φ(x,ŷ)−Φ(x,y)‖2

)
w ← w + τ(Φ(x, y)− Φ(x, ŷ))

The algorithm uses a cost function ρ. We used
the function ρ(y, ŷ) = 1 − F (y, ŷ), where F is
the soft F-measure described in Section 4.1. With
this approach, the learning algorithm thus directly
optimizes the measure we are interested in, i.e. the
F-measure.

4 Experiments

We carried out the experiments on version 2 of the
MPQA corpus (Wiebe et al., 2005), which we split
into a test set (150 documents, 3,743 sentences)
and a training set (541 documents, 12,010 sen-
tences).

4.1 Evaluation Metrics
Since expression boundaries are hard to define ex-
actly in annotation guidelines (Wiebe et al., 2005),
we used soft precision and recall measures to score
the quality of the system output. To derive the soft
precision and recall, we first define the span cov-
erage c of a span s with respect to another span s′,
which measures how well s′ is covered by s:

c(s, s′) =
|s ∩ s′|
|s′|

In this formula, the operator | · | counts tokens, and
the intersection ∩ gives the set of tokens that two
spans have in common. Since our evaluation takes
span labels (DSE, ESE, OSE) into account, we set
c(s, s′) to zero if the labels associated with s and
s′ are different.

Using the span coverage, we define the span set
coverage C of a set of spans S with respect to a
set S′:

C(S,S′) =
∑
sj∈S

∑
s′
k
∈S′

c(sj , s
′
k)



We now define the soft precision P and recallR
of a proposed set of spans Ŝ with respect to a gold
standard set S as follows:

P (S, Ŝ) = C(S,Ŝ)

|Ŝ| R(S, Ŝ) = C(Ŝ,S)
|S|

Note that the operator | · | counts spans in this for-
mula.

Conventionally, when measuring the quality of
a system for an information extraction task, a pre-
dicted entity is counted as correct if it exactly
matches the boundaries of a corresponding en-
tity in the gold standard; there is thus no reward
for close matches. However, since the boundaries
of the spans annotated in the MPQA corpus are
not strictly defined in the annotation guidelines
(Wiebe et al., 2005), measuring precision and re-
call using exact boundary scoring will result in fig-
ures that are too low to be indicative of the use-
fulness of the system. Therefore, most work us-
ing this corpus instead use overlap-based preci-
sion and recall measures, where a span is counted
as correctly detected if it overlaps with a span in
the gold standard (Choi et al., 2006; Breck et al.,
2007). As pointed out by Breck et al. (2007), this
is problematic since it will tend to reward long
spans – for instance, a span covering the whole
sentence will always be counted as correct if the
gold standard contains any span for that sentence.

The precision and recall measures proposed
here correct the problem with overlap-based mea-
sures: If the system proposes a span covering the
whole sentence, the span coverage will be low and
result in a low soft precision. Note that our mea-
sures are bounded below by the exact measures
and above by the overlap-based measures.

4.2 Reranking Approaches
We compared the reranking architectures and the
machine learning methods described in Section 3.
In these experiments, we used a candidate set size
k of 8. Table 1 shows the results of the evaluations
using the precision and recall measures described
above. The baseline is the result of taking the top-
scoring output from the sequence labeler without
applying any reranking.

The results show that the rerankers using man-
ual feature extraction outperform the tree-kernel-
based reranker, which obtains a score just above
the baseline. It should be noted that the mas-
sive training time of kernel-based machine learn-
ing precluded a detailed tuning of parameters and

System P R F

Baseline 63.36 46.77 53.82
Pref-linear 64.60 50.17 56.48
Pref-TK 63.97 46.94 54.15
Struct-Perc 62.84 48.13 54.51
Struct-PA 63.50 51.79 57.04

Table 1: Evaluation of reranking architectures and
learning methods.

representation – on the other hand, we did not need
to spend much time on parameter tuning and fea-
ture design for the other rerankers.

In addition, we note that the best performance
was obtained using the PA algorithm and the struc-
ture learning architecture. The PA algorithm is
a simple online learning method and still out-
performs the SVM used in the preference-kernel
reranker. This suggests that the structure learning
approach is superior for this task. It is possible
that a batch learning method such as SVMstruct

(Tsochantaridis et al., 2005) could improve the re-
sults even further.

4.3 Candidate Set Size

In any method based on reranking, it is important
to study the influence of the candidate set size on
the quality of the reranked output. In addition, an
interesting question is what the upper bound on
reranker performance is – the oracle performance.
Table 2 shows the result of an experiment that in-
vestigates these questions. We used the reranker
based on the Passive–Aggressive method in this
experiment since this reranker gave the best results
in the previous experiment.

Reranked Oracle
k P R F P R F
1 63.36 46.77 53.82 63.36 46.77 53.82
2 63.70 48.17 54.86 72.66 55.18 62.72
4 63.57 49.78 55.84 79.12 62.24 69.68
8 63.50 51.79 57.04 83.72 68.14 75.13
16 63.00 52.94 57.54 86.92 72.79 79.23
32 62.15 54.50 58.07 89.18 76.76 82.51
64 61.02 55.67 58.22 91.08 80.19 85.28
128 60.22 56.45 58.27 92.63 83.00 87.55
256 59.87 57.22 58.51 94.01 85.27 89.43

Table 2: Oracle and reranker performance as a
function of candidate set size.

As is common in reranking tasks, the reranker
can exploit only a fraction of the potential im-
provement – the reduction of the F-measure error



is between 10 and 15 percent of the oracle error
reduction for all candidate set sizes.

The most visible effect of the reranker is that
the recall is greatly improved. However, this does
not seem to have an adverse effect on the precision
until the candidate set size goes above 8 – in fact,
the precision actually improves over the baseline
for small candidate set sizes. After the size goes
above 8, the recall (and the F-measure) still rises,
but at the cost of decreased precision.

4.4 Impact of Features

We studied the impact of syntactic and seman-
tic structural features on the performance of the
reranker. Table 3 shows the result of the inves-
tigation for syntactic features. Using all the syn-
tactic features (and no semantic features) gives an
F-measure roughly 4 points above the baseline, us-
ing the PA reranker with a k of 64. We then mea-
sured the F-measure obtained when each one of
the three syntactic features had been removed. It
is clear that the unlexicalized syntactic path is the
most important syntactic feature; the effect of the
two lexicalized features seems to be negligible.

System P R F

Baseline 63.36 46.77 53.82
All syntactic 62.45 53.19 57.45
No SYN PATH 64.40 48.69 55.46
No LEX PATH 62.62 53.19 57.52
No DOMINANCE 62.32 52.92 57.24

Table 3: Effect of syntactic features.

A similar result was obtained when studying the
semantic features (Table 4). Removing the CON-
NECTING ARGUMENT LABEL feature, which is
unlexicalized, has a greater effect than removing
the other two semantic features, which are lexical-
ized.

System P R F

Baseline 63.36 46.77 53.82
All semantic 61.26 53.85 57.31
No PREDICATE SL 61.28 53.81 57.30
No PRED+ARGLBL 60.96 53.61 57.05
No CONN ARGLBL 60.73 50.47 55.12

Table 4: Effect of semantic features.

Since our most effective structural features
combine a pair of opinion expression labels with

a tree fragment, it is interesting to study whether
the expression labels alone would be enough. If
this were the case, we could conclude that the
improvement is caused not by the structural fea-
tures, but just by learning which combinations
of labels are common in the training set, such
as that DSE+ESE would be more common than
OSE+ESE. We thus carried out an experiment
comparing a reranker using label pair features
against rerankers based on syntactic features only,
semantic features only, and the full feature set. Ta-
ble 5 shows the results. We see that the reranker
using label pairs indeed achieves a performance
well above the baseline. However, its performance
is below that of any reranker using structural fea-
tures. In addition, we see no improvement when
adding label pair features to the structural feature
set; this is to be expected since the label pair infor-
mation is subsumed by the structural features.

System P R F

Baseline 63.36 46.77 53.82
Label pairs 62.05 52.68 56.98
All syntactic 62.45 53.19 57.45
All semantic 61.26 53.85 57.31
Syn + sem 61.02 55.67 58.22
Syn + sem + pairs 61.61 54.78 57.99

Table 5: Structural features compared to label
pairs.

4.5 Comparison with Breck et al. (2007)

Comparison of systems in opinion expression de-
tection is often nontrivial since evaluation settings
have differed widely. Since our problem setting
– marking up and labeling opinion expressions in
the MPQA corpus – is most similar to that de-
scribed by Breck et al. (2007), we carried out an
evaluation using the setting used in their experi-
ment.

For compatibility with their experimental setup,
this experiment differed from the ones described
in the previous sections in the following ways:

• The system did not need to distinguish DSEs
and ESEs and did not have to detect the
OSEs.

• The results were measured using the overlap-
based precision and recall, although this is
problematic as pointed out in Section 4.1.



• Instead of the training/test split we used in the
previous evaluations, the systems were evalu-
ated using a 10-fold cross-validation over the
same set of 400 documents as used in Breck’s
experiment.

Again, our reranker uses the PA method with a
k of 64. Table 6 shows the results.

System P R F

Breck et al. (2007) 71.64 74.70 73.05
Baseline 80.85 64.38 71.68
Reranked 76.40 78.23 77.30

Table 6: Results using the Breck et al. (2007) eval-
uation setting.

We see that the performance of our system is
clearly higher – in both precision and recall – than
that reported by Breck et al. (2007). This shows
again that the structural features are effective for
the task of finding opinionated expressions.

We note that the performance of our base-
line sequence labeler is lower than theirs; this
is to be expected since they used a more com-
plex batch learning algorithm (conditional random
fields) while we used an online learner, and they
spent more effort on feature design. This indicates
that we should be able to achieve even higher per-
formance using a stronger base model.

5 Conclusion

We have shown that features derived from gram-
matical and semantic role structure can be used to
improve the detection of opinionated expressions
in subjectivity analysis. Most significantly, the re-
call is drastically increased (10 points) while the
precision decreases only slightly (3 points). This
result compares favorably with previously pub-
lished results, which have been biased towards
precision and scored low on recall.

The long-distance structural features gives us a
model that has predictive power as well as being of
theoretical interest: this model takes into account
the interactions between opinion expressions in a
sentence. While these structural features give us
a powerful model, they come at a computational
cost; prediction is more complex than in a stan-
dard sequence labeler based on purely local fea-
tures. However, we have shown that a prediction
strategy based on reranking suffices for this task.

We analyzed the impact of the syntactic and se-
mantic features and saw that the best model in-
cludes both types of features. The most effective
features we have found are purely structural, i.e.
based on tree fragments in a syntactic or seman-
tic tree. Features involving words did not seem to
have the same impact. We also showed that the im-
provement is not explainable by mere correlations
between opinion expression labels.

We investigated a number of implementation
strategies for the reranker and concluded that the
structural learning framework seemed to give the
best performance. We were not able to achieve
the same performance using tree kernels as with
manually extracted features. It is possible that this
could be improved with a better strategy for rep-
resenting dependency structure for tree kernels, or
if the tree kernels could be incorporated into the
structural learning framework.

The flexible architecture we have presented en-
ables interesting future research: (i) a straight-
forward improvement is the use of lexical simi-
larity to reduce data sparseness, e.g. (Basili et
al., 2005; Basili et al., 2006; Bloehdorn et al.,
2006). However, the similarity between subjective
words, which have multiple senses against other
words may negatively impact the system accu-
racy. Therefore, the use of the syntactic/semantic
kernels, i.e. (Bloehdorn and Moschitti, 2007a;
Bloehdorn and Moschitti, 2007b), to syntactically
contextualize word similarities may improve the
reranker accuracy. (ii) The latter can be fur-
ther boosted by studying complex structural ker-
nels, e.g. (Moschitti, 2008; Nguyen et al., 2009;
Dinarelli et al., 2009). (iii) More specific pred-
icate argument structures such those proposed in
FrameNet, e.g. (Baker et al., 1998; Giuglea and
Moschitti, 2004; Giuglea and Moschitti, 2006; Jo-
hansson and Nugues, 2008b) may be useful to
characterize the opinion holder and the sentence
semantic context.

Finally, while the strategy based on reranking
resulted in a significant performance boost, it re-
mains to be seen whether a higher accuracy can
be achieved by developing a more sophisticated
inference algorithm based on dynamic program-
ming. However, while the development of such
an algorithm is an interesting problem, it will not
necessarily result in a more usable system – when
using a reranker, it is easy to trade accuracy for
efficiency.
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eralizing dependency features for opinion mining.
In Proceedings of ACL/IJCNLP 2009, Short Papers
Track.

Jussi Karlgren, Gunnar Eriksson, Magnus Sahlgren,
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