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ABSTRACT
In recent years, natural language processing techniques have been
used more and more in IR. Among other syntactic and semantic
parsing are effective methods for the design of complex applica-
tions like for example question answering and sentiment analy-
sis. Unfortunately, extracting feature representations suitable for
machine learning algorithms from linguistic structures is typically
difficult. In this paper, we describe one of the most advanced
piece of technology for automatic engineering of syntactic and se-
mantic patterns. This method merges together convolution depen-
dency tree kernels with lexical similarities. It can efficiently and
effectively measure the similarity between dependency structures,
whose lexical nodes are in part or completely different. Its use
in powerful algorithm such as Support Vector Machines (SVMs)
allows for fast design of accurate automatic systems. We report
some experiments on question classification, which show an un-
precedented result, e.g. 41% of error reduction of the former state-
of-the-art, along with the analysis of the nice properties of the ap-
proach.

1. INTRODUCTION
Recent years have shown that syntactic and semantic structures

are becoming essential for solving complex IR tasks, e.g., in ques-
tion answering [17, 15, 2, 16] and opinion mining [10, 9, 11].

Tree kernels are a valid approach to avoid the difficulty of man-
ually designing effective features from linguistic structures [14].
Indeed, they can directly define a similarity between data points
in terms of all possible substructures in an implicit vector space.
However, when the availability of training data is scarce, lexical
data in the structures above should be generalized to obtain more
general structural patterns.

In this perspective, one interesting approach, proposed in [3, 4],
encoded lexical similarity in tree kernels. The model is essentially
the Syntactic Tree Kernel (STK) proposed in [6], in which syntactic
fragments from constituency trees can be matched even if they dif-
fer in the leaf nodes (i.e., they are constituted by related words with
different surface forms). This kernel uses matching scores between
fragments (i.e., features) lower than one, depending on the semantic
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Figure 1: The Constituent Tree (CT) of a question.

similarity of the corresponding leaves in the syntactic fragments.
Although, such idea is promising and interesting, shows clear

limitations: (i) rather limited possibility to exploit semantic smooth-
ing, e.g., trivially the syntactic structure associated with the big
beautiful apple will only match apple/orange when compared to
a nice large orange; and (ii) STK cannot be effectively applied
to dependency structures, e.g., see experiments and motivation in
[14]. To overcome such issues, in [7], we augmented the tree ker-
nel in [14], namely the Partial Tree Kernel (PTK), which gener-
alizes STK, with node similarity, e.g. between the lexical nodes.
This allows for using any tree and any similarity between nodes in
any position of the tree (not just on the leaves as in [4]). In other
words, the new Smoothed PTK (SPTK) can automatically provide
the learning algorithm, e.g. Support Vector Machines (SVMs), with
a huge set of generalized structural patterns by simply applying it
to the structural representation of instances of the target task.

In this paper, we analyze SPTK in terms of accuracy, efficiency
and error analysis by also comparing it with previous kernels. The
extensive experimentation on the question classification (QC) dataset
shows that SPTK:

• outperforms any previous kernels achieving an unprecedented
result of 41% of error reduction with respect to the former
state-of-the-art; and

• is rather efficient to be applied to typical machine learning
tasks.

It should be also noted that the most important property of SPTK
is its generalization ability, which of course is extremely useful in
scarce training data condition.

In the reminder of this paper, Section 2 illustrates our repre-
sentation of questions by means of syntactic structures. Section 3
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Figure 2: Lexical Only Centered Tree (LOCT).
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Figure 3: Lexical Centered Tree (LCT).
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Figure 4: Lexical and PoS-Tag Sequences Tree (LPST).

presents the experimental evaluation for QC and Section 4 derives
the conclusions.

2. COMPUTATIONAL STRUCTURES FOR
QUESTION CLASSIFICATION

Thanks to structural kernel similarity, a question classification
(QC) task can be easily modeled by representing questions, i.e.,
the classification objects, with their parse trees. Several syntactic
representations exist, we report the most interesting and effective
structures that we proposed in [7]. Given the following sentence:

(s1) What is the width of a football field?

the representation tree according to a phrase structure paradigm,
i.e. constituency tree (CT), is in Figure 1. We apply lemmatiza-
tion to the lexicals to improve generalization and, at the same time,
we add a generalized PoS-tag, i.e. noun (n::), verb (v::), adjective
(::a), determiner (::d) and so on, to them. This is useful to mea-
sure similarity between lexicals belonging to the same grammatical
category. Our conversion of dependency structures in dependency
trees is done in two steps:

• we generate the tree that includes only lexicals, where the
edges encode their dependencies. We call it the Lexical Only
Centered Tree (LOCT), e.g. see Figure 2.

• To each lexical node, we add two leftmost children, which
encode the grammatical function and POS-Tag, i.e. node fea-
tures. We call this structure the Lexical Centered Tree (LCT),
e.g. see Figure 3.

Additionally, for comparative purposes, we define a flat struc-
ture, the Lexical and PoS-tag Sequences Tree (LPST), e.g. see Fig-
ure 4, which ignores the syntactic structure of the sentence being a

STK PTK SPTK(LSA)
CT 91.20% 90.80% 91.00%
LOCT - 89.20% 93.20%
LCT - 90.80% 94.80%
LPST - 89.40% 89.60%
BOW 88.80%

Table 1: Accuracy of structural kernels applied to different
structures on QC

simple sequence of PoS-tag nodes, where lexicals are simply added
as children.

3. EXPERIMENTS
The aim of the experiments is to analyze the role of lexical simi-

larity embedded in syntactic structures. For this purpose, we present
results on QC and the related error analysis.

3.1 Setup
Our referring corpus is the UIUC dataset [13]. It is composed

by a training set of 5,452 questions and a test set of 500 questions1.
The latter are organized in six coarse-grained classes, i.e., ABBRE-
VIATION, ENTITY, DESCRIPTION, HUMAN, LOCATION and
NUMBER.

For learning our models, we extended the SVM-LightTK soft-
ware2 [14, 15] (which includes structural kernels, i.e., STK and
PTK in SVMLight [8]) with the smooth match between tree nodes,
i.e. the SPTK defined in [7].

For generating constituency trees, we used Charniak’s parser [5]
whereas we applied LTH syntactic parser (described in [12]) to gen-
erate dependency trees.

The lexical similarity was designed with LSA applied to uk-
Wak [1], which is a large scale document collection made by 2
billion tokens (see [7] for more details). We implemented multi-
classification using one-vs-all scheme and selecting the category
associated with the maximum SVM margin.

3.2 Classification Results
The F1 of SVMs using (i) STK applied to CT and (ii) PTK and

SPTK applied to the several structures for QC is reported in Ta-
ble 1. The first column shows the different structures described
in Section 2. The first row lists the tree kernel models. The last
row reports the accuracy of bag-of-words (BOW), which is a linear
kernel applied to lexical vectors.

It is worth nothing that:

• BOW produces high accuracy, i.e. 88.8% but it is improved
by STK, current state-of-the-art3 in QC [18, 17];

• PTK applied to the same tree of STK (i.e. CT) produces a
slightly lower value (non-statistically significant difference);
and

• PTK applied to LCT, which contains structures but also gram-
matical functions and PoS-tags, achieves higher accuracy than
when applied to LOCT (no grammatical/syntactic features)
or to LPST (no structure).

1http://cogcomp.cs.illinois.edu/Data/QA/QC/
2http://disi.unitn.it/moschitti/Tree-Kernel.htm
3Note that higher accuracy values for smoothed STK are shown in
[4] but the one optimizing a validation set is not shown.



Most importantly, SPTK (using LSA similarity):

• improves PTK on all the syntactic-based structures;

• (ii) gets the lowest improvement when applied to CT; and

• (iii) achieves the impressive result of 94.80% with LCT, i.e
more than 41% of relative error reduction.

This suggests that the sequences of similar lexicals when selected
by syntactic structures produce accurate features. Indeed, when
syntax is missing such as for the unstructured lexical sequences of
LPST, the accuracy does not highly improve.

To better understand the role of lexical similarity in syntactic
structures, in the next section, we will outline the benefit of SPTK
over the other models by analyzing the classification outcome.

3.3 Error Analysis
Table 2 shows four questions (from 1 to 4) along with: the flags

+/- asserting the presence or not of an error, the classification model,
the true label of the question and the one given by the classifier.

The first question is not correctly classified by BOW, which as-
signed ENTITY category. Indeed, from a bag-of-words perspective
ENTITY and LOCATION are equally probable for question (1),
e.g., the question What is the French cognac produced in province?
uses the same words but asks for an entity. However, it is enough to
add some syntactic cues to solve the above ambiguity. For exam-
ple, the previous question would generate a dependency between
What and is whereas question (1) generates a dependency between
What and French province. These syntactic features are contained
in both tree representations; indeed, all the syntactic based models
correctly classify this example.

The second question is mistaken by all models but SPTK. The
explanation is that without knowing that ruler is a person, it is not
possible to infer the expected category of the answer. Indeed, if
ruler had been a synonym of army or region the expected answer
type would have been ENTITY. SPTK can disambiguate between
ENTITY and HUMAN by exploiting the similarity with the train-
ing question What Mexican leader was shot dead in 1923 ?. This
shows some structural similarity, which is reinforced by the lexical
similarity between French and Mexican, between ruler and leader,
and between defeat and shot.

A similar rationale applies to the third question: without know-
ing that peninsula indicates a geographic location the most proba-
ble category could be ENTITY. In contrast, SPTK can provide the
correct answer by measuring the structural similarity of question
(3) with the training question: What island group is Guadalcanal
a part of ? along with the lexical similarity between peninsula and
island and between Spain and Guadalcanal.

The last question is correctly classified only using the depen-
dency structure. The BOW model is too influenced by words such
as least, amount and per. The costituency structure fails as well,
probably because it does not contain structures encoding lexical
trigrams like what-state-have, which instead are subtrees of LCT.

Finally, the errors of SPTK refer to questions like What did Jesse
Jackson organize?, where the classifier selected ENTITY instead of
HUMAN category, or What is the melting point of copper ? where
ENTITY is selected instead of the correct NUMBER. These are
clear examples where specific background knowledge is needed to
provide the correct answer.

3.4 Kernel generalization and efficiency
To understand the role of syntactic/semantic kernels, it is inter-

esting to study their impact on the SVM generalization. For this
purpose, Fig. 5 reports the learning curve of BOW, of STK and

What French province is cognac produced in? (1)
- BOW

LOC

ENTY
+ CT-STK LOC
+ LCT-PTK LOC
+ LCT-SPTK LOC
What French ruler was defeated at the battle of Waterloo? (2)
- BOW

HUM

ENTY
- CT-STK ENTY
- LCT-PTK ENTY
+ LCT-SPTK HUM

What peninsula is Spain part of? (3)
- BOW

LOC

ENTY
- CT-STK ENTY
- LCT-PTK ENTY
+ LCT-SPTK LOC

What state has the least amount of rain per year? (4)
- BOW

LOC

NUM
- CT-STK NUM
+ LCT-PTK LOC
+ LCT-SPTK LOC

Table 2: Some interesting question classification case
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PTK applied to CT and of PTK and SPTK applied to LCT. We note
that:

• BOW learning curve is clearly below those of syntactic-based
models;

• LCT and CT (dependency and constituency paradigms) show
very similar curves, suggesting that the two syntactic repre-
sentations are equivalent; and

• when SPTK is used (i.e., CT-SPTK and LCT-SPTK) the gen-
eralization of SVMs meaningful increases.

• SPTK applied to LCT shows the steepest curve, achieving
with just 1/5 of the available data the same accuracy of BOW
on all data.

The benefits in terms of accuracy of SPTK are clear thus it is
important to demonstrate that it can be efficiently applied to large
datasets. For this purpose, we plotted the average running time of
each computation of PTK and SPTK applied to the different struc-
tures. We divided the examples from QC based on the number of
nodes in each example. Figure 6 shows the elapsed time in func-
tion of the number of nodes for different tree representations. We
note that: (i) LCT-PTK is very fast as we used the fast algorithm
designed in [14]; (ii) LCT-SPTK is also very fast as it uses the same
algorithm of PTK but it tends to match many more tree fragments
thus its complexity increases. However, the equation of the curve
fit, shown in the figure, suggests that the trend is sub-quadratic , i.e.,
x1.7. This efficiency is due to the tree structure, which imposes hi-
erarchical matching of subtrees. (iii) Only when SPTK is applied to
LPST, which has no structure, it matches all possible similar sub-
sequences of nodes. This increases its computational complexity,
which results in an order higher than 2.

4. CONCLUSIONS
This paper has investigated the properties of a novel tree ker-

nel, namely SPTK, which can encode generalized syntactic patterns
from dependency or constituency structures. The main characteris-
tic of SPTK is its ability to measure the similarity between syntac-
tic structures, which are partially similar and whose lexical nodes
can be different but related, e.g., Mexican and Spain. This allows
SVMs to exploit large feature spaces, automatically generated from
dependency substructures.

We have tested SPTK on the question classification (QC) task by
also comparing with previous state-of-the-art models. The results
show that SPTK with SVMs achieves an unprecedented result for
QC, i.e., 94.8% of accuracy.

The error analysis has revealed that syntactic structures are needed
to disambiguate the lexical semantic of questions. However, they
may be either too general if lexicals are not part of them or too
sparse if they are based on several lexicals. Therefore, SPTK, gen-
eralizing the latter, provides a compromise that improves accuracy
and generalization ability of SVMs.

Finally, we have also investigated the computational complexity
of SPTK by empirically showing that it can easily scale to large
datasets. Such result enables many promising future research di-
rections: the most important being the use of SPTK for many IR
tasks with many different similarities. It is also interesting to note
that SPTK can be applied to trees completely different from syntac-
tic parses, e.g., XML trees, on which a general semantic similarity
can be defined between nodes.
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