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Computational Learning Theory 


   The approach used in rectangular hypotheses is just 
one case: 

   Medium-built people 

   No general rule has been derived 


   Is there any means to determine if a function is PAC 
learnable and derive the right bound? 


   The answer is yes and it is based on theVapnik-
Chervonenkis dimension  (VC-dimension,  [Vapnik 
95]) 



VC-Dimension definition (1) 


   Def.1: (set shattering): a subset S of instances of a set 
X is shattered by a collection of function F if ∀ S'⊆ S 
there is a function f ∈ F such data: 

€ 

f (x) = 0   x ∈ S − ′ S 
1    x ∈ ′ S {



VC-Dimension definition (2) 


   Def. 2: the VC-dimension of a function set F (VC-
dim(F)) is the cardinality of the largest dataset that can 
be shattered by F. 


   Observation: the type of the functions used for 
shattering data determines the VC-dim 



VC-Dim of linear functions (hyperplane) 


   In the plane (hyperplane = line): 

   VC(Hiperlpanes) is at least 3 

   VC(Hiperlpanes)< 4 since there is no set of 4 points, which can be shattered by a 

line. 
⇒ VC(H)=3. In general,  for a  k-dimension space VC(H)=k+1 

   NB: It is useless selecting a set of linealy independent points 



Upper Bound on Sample Complexity 



Lower Bound on Sample Complexity 



Bound on the Classification error using 
VC-dimension 



Example: Rectangles have VC-dim > 4 


   We must choose 4-point set, which can be shattered in 
all possible ways 


   Given such 4 points, we assign them the {+,-} labels, 
in all possible ways. 


   For each labeling it must exist a rectangle which 
produces such assignment, i.e. such classification 



Example (cont’d) 


   Our classifier: inside the recatagle positive and outside negative 
examples, respectively 


   Given 4 points (linearly independent), we have the following 
assignments: 

a)  All points are “+” ⇒ use a rectangle that includes them 
b)  All points are “-” ⇒ use a empty rectangle 
c)  3 points “-” and 1 “+” ⇒ use a rectangle centered on the “+” 

points  



Example (cont’d) 

d)  3 points “+” and one “-” ⇒ we can always find a rectangle 
which exclude the “-” points 

e)  2 points “+” and 2 points “-” ⇒ we can define a rectangle 
which includes the 2 “+” and excludes the 2 “-”. 


   To show d) and e) we should check all possibilities 



For example, to prove e) 

Given 4 points 



VC-dim cannot be 5 


   For any 5-point set, we can define a rectangle which 
has the most extern points as vertices 


   If we assign to such vertices the “+” label and to the 
internal point the “-” label, there will not be any 
rectangle which reproduces such assigment 



Bound Comparison 


   m > (4/ ε) ⋅ ln(4/δ)   (ad hoc bound) 


   m > (1/ ε) ⋅ ln(1/δ) + 4/ ε =  (lower bound based on VC-dim) 


    (4/ ε) ⋅ ln(4/δ) > (1/ ε) ⋅ ln(1/δ) + 4/ ε  


    4 ⋅ ln(4/δ) >  ln(1/δ) + 4 


    ln(4/δ) > ln((1/δ)1/4) + 1 


     4/δ > (1/δ)1/4 ⋅ e 


     4 > δ 3/4 ⋅ e  


     4 >  (<1) ⋅ (<3)  verified 
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