MACHINE LEARNING

Vapnik-Chervonenkis (VC) Dimension

Alessandro Moschitti

Department of Information Engineering and Computer Science University of Trento Email: moschitti@disi.unitn.it

Computational Learning Theory

- The approach used in rectangular hypotheses is just one case:
	- **Medium-built people**
	- No general rule has been derived
- Is there any means to determine if a function is PAC learnable and derive the right bound?
- The answer is yes and it is based on the Vapnik-Chervonenkis dimension (VC-dimension, [Vapnik 95])

VC-Dimension definition (1)

■ Def.1: (*set shattering*): a subset S of instances of a set X is shattered by a collection of function *F* if ∀ S'⊆ S there is a function $f \in F$ such data:

$$
f(x) = \begin{cases} 1 & x \in S' \\ 0 & x \in S - S' \end{cases}
$$

VC-Dimension definition (2)

- Def. 2: the VC-dimension of a function set *F* (VC $dim(F)$) is the cardinality of the largest dataset that can be shattered by *F*.
- Observation: the type of the functions used for shattering data determines the VC-dim

VC-Dim of linear functions (hyperplane)

- In the plane (hyperplane $=$ line):
	- VC(Hiperlpanes) is at least 3
	- \blacksquare VC(Hiperlpanes)< 4 since there is no set of 4 points, which can be shattered by a line.
- \Rightarrow VC(H)=3. In general, for a k-dimension space VC(H)=k+1
- NB: It is useless selecting a set of linealy independent points

Upper Bound on Sample Complexity

Theorem 2.9 (upper bound on sample complexity, [Blumer et al., 1989]) Let H and F be two function classes such that $F \subseteq H$ and let A an algorithm that derives a function $h \in H$ consistent with m training examples. Then, $\exists c_0$ such that $\forall f \in F$, $\forall D$ distribution, $\forall \epsilon > 0$ and $\delta < 1$ if

$$
m > \frac{c_0}{\epsilon} \Big(VC(H) \times ln\frac{1}{\epsilon} + \frac{1}{\delta} \Big)
$$

then with a probability $1 - \delta$,

 $error_D(h) \leq \epsilon$,

where VC(H) is the VC dimension of H and $error_D(h)$ is the error of h according to the data distribution D .

Lower Bound on Sample Complexity

Theorem 2.10 (lower bound on sample complexity, [Blumer et al., 1989]) To learn a concept class F whose VC-dimension is d, any PAC algorithm requires $m = O(\frac{1}{\epsilon}(\frac{1}{\delta} + d))$ examples.

Bound on the Classification error using VC-dimension

Theorem 2.11 (Vapnik and Chervonenkis, [Vapnik, 1995])

Let H be a hypothesis space having VC dimension d . For any probability distribution D on $X \times \{-1,1\}$, with probability $1-\delta$ over m random examples S, any hypothesis $h \in H$ that is consistent with S has error no more than

$$
error(h) \le \epsilon(m, H, \delta) = \frac{2}{m} \left(d \times ln \frac{2e \times m}{d} + ln \frac{2}{\delta}\right),
$$

provided that $d \leq m$ and $m \geq 2/\epsilon$.

Example: Rectangles have VC-dim > 4

- We must choose 4-point set, which can be shattered in all possible ways
- Given such 4 points, we assign them the $\{+, -\}$ labels, in all possible ways.
- For each labeling it must exist a rectangle which produces such assignment, i.e. such classification

Example (cont'd)

- Our classifier: inside the recatagle positive and outside negative examples, respectively
- Given 4 points (linearly independent), we have the following \blacksquare assignments:
- a) All points are "+" \Rightarrow use a rectangle that includes them
- b) All points are "-" \Rightarrow use a empty rectangle
- c) 3 points "-" and 1 "+" \Rightarrow use a rectangle centered on the "+" points

Example (cont'd)

- d) 3 points "+" and one "-" \Rightarrow we can always find a rectangle which exclude the "-" points"
- e) 2 points "+" and 2 points " \rightarrow " \Rightarrow we can define a rectangle which includes the 2 "+" and excludes the 2 "-".
- To show d) and e) we should check all possibilities \mathbf{r}

For example, to prove e)

- For any 5-point set, we can define a rectangle which has the most extern points as vertices
- If we assign to such vertices the "+" label and to the internal point the "-" label, there will not be any rectangle which reproduces such assigment

Bound Comparison

- $m > (4/\epsilon) \cdot ln(4/\delta)$ (ad hoc bound)
- $m > (1/\epsilon) \cdot \ln(1/\delta) + 4/\epsilon =$ (lower bound based on VC-dim)
- $(4/\varepsilon) \cdot \ln(4/\delta)$ > $(1/\varepsilon) \cdot \ln(1/\delta)$ + 4/ ε
- $\ln(4/\delta) > \ln(1/\delta) + 4$
- $ln(4/\delta)$ > $ln((1/\delta)1/4) + 1$ \mathbf{r}
- $-4/\delta > (1/\delta)1/4 \cdot e$
- $-4 > \delta$ 3/4 · e
- \blacksquare 4 > (<1) · (<3) verified

References

- **VC-dimension:**
	- **MY SLIDES: http://disi.unitn.it/moschitti/ teaching.html**
	- **MY BOOK:**
		- **Automatic text categorization: from information retrieval to support vector learning**
		- **Roberto Basili and Alessandro Moschitti**

References

- *A tutorial on Support Vector Machines for Pattern Recognition* **Downlodable from the web**
- *The Vapnik-Chervonenkis Dimension and the Learning Capability of Neural Nets*

Downlodable from the web ٠.

- **Computational Learning Theory** (Sally A Goldman Washington University St. Louis Missouri) **Downlodable from the web**
- *AN INTRODUCTION TO SUPPORT VECTOR MACHINES (and other kernel-based learning methods)*
	- N. Cristianini and J. Shawe-Taylor Cambridge University Press
		- **You can buy it also on line** п.

