
UIMA: Unstructured Information
 Management Architecture

Alessandro Moschitti
Department of Computer Science and Information

Engineering
University of Trento

Email: moschitti@disi.unitn.it

Motivations

!   Nowadays, natural language processing systems

are becoming more and more complex

!   Many linguistic processors:
! Tokenizers, Sentence Splitter, Topic Categorization,

Pos-Tagging, Syntactic Parsing, Shallow Semantic
Parsing, Coreference Resolution, Relation
Extraction, Textual Entailment, Semantic Role
Labeling, Opinion Miners, Disambiguation Module,
Named Entity Recognition and Normalization…

Motivations

!   Many formalisms paradigms, e.g., just for

syntactic parsing
!   Shallow and full syntactic parsers

!   Rule-based vs. machine learning based

!   Constituency, Dependency, Combinatory
Categorical Grammar, Tree-adjoining grammar and
so on

!   Many implementation: Charniak, Stanford,
Berkeley,..

!   How to combine the different methods in a

pipeline to build the desired NLP system?

UIMA

!   UIMA supports the development, composition and

deployment of multi-modal analytics
!   for the analysis of unstructured information and

!   its integration with search technologies

!   Apache UIMA includes
!   APIs and tools for creating analysis components, e.g.

! tokenizers, summarizers, categorizers, parsers, named-entity
detectors etc.

!   Tutorial examples are provided with Apache UIMA

UIMA Conceptual Overview 17

Chapter 2. UIMA Conceptual Overview
UIMA is an open, industrial-strength, scaleable and extensible platform for creating, integrating
and deploying unstructured information management solutions from powerful text or multi-modal
analysis and search components.

The Apache UIMA project is an implementation of the Java UIMA framework available under
the Apache License, providing a common foundation for industry and academia to collaborate and
accelerate the world-wide development of technologies critical for discovering vital knowledge
present in the fastest growing sources of information today.

This chapter presents an introduction to many essential UIMA concepts. It is meant to provide a
broad overview to give the reader a quick sense of UIMA's basic architectural philosophy and the
UIMA SDK's capabilities.

This chapter provides a general orientation to UIMA and makes liberal reference to the other
chapters in the UIMA SDK documentation set, where the reader may find detailed treatments of
key concepts and development practices. It may be useful to refer to Glossary, to become familiar
with the terminology in this overview.

2.1. UIMA Introduction

Figure 2.1. UIMA helps you build the bridge between the unstructured and structured worlds

Unstructured information represents the largest, most current and fastest growing source of
information available to businesses and governments. The web is just the tip of the iceberg.
Consider the mounds of information hosted in the enterprise and around the world and across
different media including text, voice and video. The high-value content in these vast collections of
unstructured information is, unfortunately, buried in lots of noise. Searching for what you need or
doing sophisticated data mining over unstructured information sources presents new challenges.

An unstructured information management (UIM) application may be generally characterized as
a software system that analyzes large volumes of unstructured information (text, audio, video,

UIMA: General Purpose IE Pipeline

The Architecture, the Framework
and the SDK

!   UIMA is a software architecture:
!   component interfaces, data representations, design

patterns

!   creates, describes, discovers, composes and
deploys multi-modal analysis capabilities

!   The UIMA framework provides a run-time

environment
!   developers can plug in their components

!   these compose UIM applications

The Architecture, the Framework
and the SDK

!   The framework is not specific to any IDE or

platform
!   Apache hosts a Java and (soon) a C++

implementation of the UIMA Framework

!   The UIMA Software Development Kit (SDK)
!   includes the UIMA framework

!   tools and utilities for using UIMA

!   tools supporting an Eclipse-based (http://
www.eclipse.org/) development environment

Analysis Engines, Annotators &
Results

!   UIMA basic building blocks are called Analysis

Engines (AEs)
!   analyze a document and infer and record of

descriptive attributes

!   these refer to generally as analysis results (meta-
data)

!   Multi-modal analysis: text, audio and video

Primitives of UIMA: begin-end

Analysis Basics

UIMA Version 2.4.0 UIMA Conceptual Overview 19

The framework is not specific to any IDE or platform. Apache hosts a Java and (soon) a C++
implementation of the UIMA Framework.

The UIMA Software Development Kit (SDK) includes the UIMA framework, plus tools and
utilities for using UIMA. Some of the tooling supports an Eclipse-based (http://www.eclipse.org/)
development environment.

2.3. Analysis Basics
Analysis Engine, Document, Annotator, Annotator Developer, Type, Type System, Feature,
Annotation, CAS, Sofa, JCas, UIMA Context.

2.3.1. Analysis Engines, Annotators & Results

Figure 2.2. Objects represented in the Common Analysis Structure (CAS)

UIMA is an architecture in which basic building blocks called Analysis Engines (AEs) are
composed to analyze a document and infer and record descriptive attributes about the document as
a whole, and/or about regions therein. This descriptive information, produced by AEs is referred to
generally as analysis results. Analysis results typically represent meta-data about the document
content. One way to think about AEs is as software agents that automatically discover and record
meta-data about original content.

UIMA supports the analysis of different modalities including text, audio and video. The majority
of examples we provide are for text. We use the term document, therefore, to generally refer to
any unit of content that an AE may process, whether it is a text document or a segment of audio,
for example. See the section Chapter 6, Multiple CAS Views of an Artifact for more information on
multimodal processing in UIMA.

Analysis results include different statements about the content of a document. For example, the
following is an assertion about the topic of a document:

(1) The Topic of document D102 is "CEOs and Golf".

Analysis results may include statements describing regions more granular than the entire document.
We use the term span to refer to a sequence of characters in a text document. Consider that a
document with the identifier D102 contains a span, “Fred Centers” starting at character position

(1) The Topic of document D102 is "CEOs and Golf". (2) The span from position 101 to 112 in document D102 denotes a Person

(3) The Person denoted by span 101 to 112 and the Person denoted by span 141
to 143 in document D102 refer to the same Entity.

Primitives of UIMA:
Type Annotators

!   Basic component types for analysis algorithms

running inside AEs

!   UIMA framework provides the necessary

methods for taking annotators and creating

analysis engines

!   AEs add the necessary APIs and infrastructure

for the composition and deployment of

annotators within the UIMA framework.

Representing Analysis Results in
the CAS

!   Annotators represent and share their results with

the Common Analysis Structure (CAS)

!   The CAS is an object-based data structure:
!   represents objects, properties and values

!   object types may be related to each other in a
single-inheritance hierarchy.

!   logically (if not physically) contains the document
being analyzed.

!   analytics store results in terms of an object model
within the CAS

Example

!   For the statement

!   AE creates a Person object in the CAS and links

it to the span of text where the person was

mentioned in the document.

!   Any type system can be defined in CAS
!   annotation in the document

!   entity as non annotation type

(2) The span from position 101 to 112 in document D102
denotes a Person

Multiple Views within a CAS

!   UIMA supports multiple views of a document
!   for example, the audio and the closed captioned

views of a single speech stream

!   the tagged and detagged views of an HTML
document

!   AEs analyze one or more views of a document,

which includes
!   a specific subject of analysis (Sofa)

!   metadata indexed by that view

!   The CAS holds Views and the analysis results

Interacting with the CAS and
External Resources

!   Main interfaces: CAS and the UIMA Context

!   UIMA provides an efficient implementation of the

CAS with multiple programming interfaces
!   read and write analysis results.

!   methods for indexed iterators to the different objects
in the CAS, e.g.,
!   a specialized iterator to all Person objects associated with a

particular view

jCAS: Java CAS

!   JCAS provides a natural interface to CAS objects

in Java
!   Each type declared in the type system appears as a

Java class, e.g.

!   Person type as a Person class in Java

UIMA Context:

!   It’s the framework's resource manager interface

!   Allows for accessing external resources

!   Can ensure that different annotators working

together in an aggregate flow may share the

same instance of an external file or remote

resource accessed via its URL

Component Descriptors

!   Every UIMA component requires:
1.  the declarative part and

2.  the code part

!   Component Descriptor is the declarative part
!   contains metadata describing the component, its

identity, structure and behavior

!   it is represented in XML

!   The code part implements the algorithm, e.g.,
!   a Java program

!   the code may be already provided in reusable
subcomponents

Component Descriptors (cont’d)

!   Aid in component discovery, reuse, composition

and development tooling

!   Compose an aggregate engine by pointing to

other components

!   The UIMA SDK provides tools for easily creating

and maintaining the component descriptors
!   relieve the developer from editing XML directly

Component Descriptors (cont’d)

!   Contain standard metadata:
!   name, author, version, and a reference to the class

that implements the component

!   Identify the type system the component uses:
!   the required types from the input CAS

!   and the types it plans to produce in an output CAS

!   For example, an AE that detects person types:
!   may require tokenization and deep parse

Component Descriptors (cont’d)

!   The description refers to a type system:
!   input requirements and output types

!   a declarative description of the component's
behavior

!   used in component discovery and composition
based on desired results

!   UIMA analysis engines provide an interface for
accessing the component metadata represented in
their descriptors

Aggregate Analysis Engines (AAE)

!   A simple AE contains a single annotator

!   AEs can contain other AEs organized in a

workflow: AAE

!   Annotators can be organized in a workflow of

component engines and may be orchestrated to

perform more complex tasks

An example of AAE

Aggregate Analysis Engines

24 UIMA Conceptual Overview UIMA Version 2.4.0

2.4. Aggregate Analysis Engines
Aggregate Analysis Engine, Delegate Analysis Engine, Tightly and Loosely Coupled, Flow
Specification, Analysis Engine Assembler

Figure 2.3. Sample Aggregate Analysis Engine

A simple or primitive UIMA Analysis Engine (AE) contains a single annotator. AEs, however, may
be defined to contain other AEs organized in a workflow. These more complex analysis engines are
called Aggregate Analysis Engines.

Annotators tend to perform fairly granular functions, for example language detection, tokenization
or part of speech detection. These functions typically address just part of an overall analysis task. A
workflow of component engines may be orchestrated to perform more complex tasks.

An AE that performs named entity detection, for example, may include a pipeline of annotators
starting with language detection feeding tokenization, then part-of-speech detection, then deep
grammatical parsing and then finally named-entity detection. Each step in the pipeline is required
by the subsequent analysis. For example, the final named-entity annotator can only do its analysis if
the previous deep grammatical parse was recorded in the CAS.

Aggregate AEs are built to encapsulate potentially complex internal structure and insulate it from
users of the AE. In our example, the aggregate analysis engine developer acquires the internal
components, defines the necessary flow between them and publishes the resulting AE. Consider
the simple example illustrated in Figure 2.3, “Sample Aggregate Analysis Engine” [24] where
“MyNamed-EntityDetector” is composed of a linear flow of more primitive analysis engines.

Users of this AE need not know how it is constructed internally but only need its name and
its published input requirements and output types. These must be declared in the aggregate
AE's descriptor. Aggregate AE's descriptors declare the components they contain and a flow
specification. The flow specification defines the order in which the internal component AEs should
be run. The internal AEs specified in an aggregate are also called the delegate analysis engines.
The term "delegate" is used because aggregate AE's are thought to "delegate" functions to their
internal AEs.

In UIMA 2.0, the developer can implement a "Flow Controller" and include it as part of an
aggregate AE by referring to it in the aggregate AE's descriptor. The flow controller is responsible
for computing the "flow", that is, for determining the order in which of delegate AE's that will
process the CAS. The Flow Contoller has access to the CAS and any external resources it may
require for determining the flow. It can do this dynamically at run-time, it can make multi-
step decisions and it can consider any sort of flow specification included in the aggregate AE's
descriptor. See Chapter 4, Flow Controller Developer's Guide for details on the UIMA Flow
Controller interface.

We refer to the development role associated with building an aggregate from delegate AEs as the
Analysis Engine Assembler .

Interesting aspects of AAE

!   Users of MyNE do not need to know the internal

structure
!   only need its name and its published input

requirements and output types

!   AAE are declared in an AAE descriptors
!   components they contain

!   flow specification: defines the execution order

!   sub AE are called delegate analysis engines

Flow Controller

!   Users can define it and include it as part of an

aggregate AE by referring to it in the aggregate

AE's descriptor

!   Determines the order in which delegate AEs that

will process the CAS

!   Can access to the CAS and any external needed

resources
!   dynamically at run-time, it can make multi-step

decisions and it can consider any sort of flow
specification

Flow Parallelization

!   UIMA framework will run all delegate AEs,

ensuring that each one gets access to the CAS in

the sequence produced by the flow controller
!   tightly-coupled (running in the same process)

!   loosely-coupled (running in separate processes or
even on different machines).

!   UIMA supports a number of remote protocols for

loose coupling:
!   SOAP (which stands for Simple Object Access

Protocol, a standard Web Services communications
protocol)

More on Flow Control

!   UIMA can deploy AEs as remote services by

using an adapter layer activated by a declaration

in the component's descriptor

!   Two built-in flow implementations:
!   a linear flow between components

!   conditional branching based on the document
attributes/data

!   User-provided flow controllers
!   create multiple AEs and provide their own logic to

combine the AEs in arbitrarily complex flows

Example of Interaction with an
analysis engine

Application Building and Collection Processing

UIMA Version 2.4.0 UIMA Conceptual Overview 25

The UIMA framework, given an aggregate analysis engine descriptor, will run all delegate AEs,
ensuring that each one gets access to the CAS in the sequence produced by the flow controller.
The UIMA framework is equipped to handle different deployments where the delegate engines,
for example, are tightly-coupled (running in the same process) or loosely-coupled (running in
separate processes or even on different machines). The framework supports a number of remote
protocols for loose coupling deployments of aggregate analysis engines, including SOAP (which
stands for Simple Object Access Protocol, a standard Web Services communications protocol).

The UIMA framework facilitates the deployment of AEs as remote services by using an adapter
layer that automatically creates the necessary infrastructure in response to a declaration in the
component's descriptor. For more details on creating aggregate analysis engines refer to Chapter 2,
Component Descriptor Reference The component descriptor editor tool assists in the specification
of aggregate AEs from a repository of available engines. For more details on this tool refer to
Chapter 1, Component Descriptor Editor User's Guide.

The UIMA framework implementation has two built-in flow implementations: one that support
a linear flow between components, and one with conditional branching based on the language of
the document. It also supports user-provided flow controllers, as described in Chapter 4, Flow
Controller Developer's Guide. Furthermore, the application developer is free to create multiple AEs
and provide their own logic to combine the AEs in arbitrarily complex flows. For more details on
this the reader may refer to Section 3.2, “Using Analysis Engines”.

2.5. Application Building and Collection Processing
Process Method, Collection Processing Architecture, Collection Reader, CAS Consumer, CAS
Initializer, Collection Processing Engine, Collection Processing Manager.

2.5.1. Using the framework from an Application

Figure 2.4. Using UIMA Framework to create and interact with an Analysis Engine

As mentioned above, the basic AE interface may be thought of as simply CAS in/CAS out.

The application is responsible for interacting with the UIMA framework to instantiate an AE,
create or acquire an input CAS, initialize the input CAS with a document and then pass it to the

Collection Processing

!   Collection Processing Engine (CPE) is an

aggregate component
!   specifies a “source to sink” flow from a Collection

Reader

!   process it through a set of analysis engines and

!   set of CAS Consumers

!   Collection Processing Manager reads CPE

descriptor, and deploys and runs the specified

CPE

Steps of a Collection Processing

1.  Connect to a physical source

2.  Acquire a document from the source

3.  Initialize a CAS with the document to be analyzed

4.  Send the CAS to a selected analysis engine

5.  Process the resulting CAS

6.  Go back to 2 until the collection is processed

7.  Do any final processing required after all the

documents in the collection have been analyzed

Collection Processing

Graduating to Collection Processing

26 UIMA Conceptual Overview UIMA Version 2.4.0

AE through the process method. This interaction with the framework is illustrated in Figure 2.4,
“Using UIMA Framework to create and interact with an Analysis Engine” [25].

The UIMA AE Factory takes the declarative information from the Component Descriptor and the
class files implementing the annotator, and instantiates the AE instance, setting up the CAS and the
UIMA Context.

The AE, possibly calling many delegate AEs internally, performs the overall analysis and its
process method returns the CAS containing new analysis results.

The application then decides what to do with the returned CAS. There are many possibilities. For
instance the application could: display the results, store the CAS to disk for post processing, extract
and index analysis results as part of a search or database application etc.

The UIMA framework provides methods to support the application developer in creating and
managing CASes and instantiating, running and managing AEs. Details may be found in Chapter 3,
Application Developer's Guide.

2.5.2. Graduating to Collection Processing

Figure 2.5. High-Level UIMA Component Architecture from Source to Sink

Many UIM applications analyze entire collections of documents. They connect to different
document sources and do different things with the results. But in the typical case, the application
must generally follow these logical steps:

1. Connect to a physical source
2. Acquire a document from the source
3. Initialize a CAS with the document to be analyzed
4. Send the CAS to a selected analysis engine
5. Process the resulting CAS
6. Go back to 2 until the collection is processed
7. Do any final processing required after all the documents in the collection have been

analyzed

UIMA supports UIM application development for this general type of processing through its
Collection Processing Architecture.

As part of the collection processing architecture UIMA introduces two primary components in
addition to the annotator and analysis engine. These are the Collection Reader and the CAS
Consumer. The complete flow from source, through document analysis, and to CAS Consumers

Collection Processing Engine

Graduating to Collection Processing

UIMA Version 2.4.0 UIMA Conceptual Overview 27

supported by UIMA is illustrated in Figure 2.5, “High-Level UIMA Component Architecture from
Source to Sink” [26].

The Collection Reader's job is to connect to and iterate through a source collection, acquiring
documents and initializing CASes for analysis.

CAS Consumers, as the name suggests, function at the end of the flow. Their job is to do the final
CAS processing. A CAS Consumer may be implemented, for example, to index CAS contents in a
search engine, extract elements of interest and populate a relational database or serialize and store
analysis results to disk for subsequent and further analysis.

A Semantic Search engine that works with UIMA is available from IBM's alphaWorks site2 which
will allow the developer to experiment with indexing analysis results and querying for documents
based on all the annotations in the CAS. See the section on integrating text analysis and search in
Chapter 3, Application Developer's Guide.

A UIMA Collection Processing Engine (CPE) is an aggregate component that specifies a “source
to sink” flow from a Collection Reader though a set of analysis engines and then to a set of CAS
Consumers.

CPEs are specified by XML files called CPE Descriptors. These are declarative specifications that
point to their contained components (Collection Readers, analysis engines and CAS Consumers)
and indicate a flow among them. The flow specification allows for filtering capabilities to, for
example, skip over AEs based on CAS contents. Details about the format of CPE Descriptors may
be found in Chapter 3, Collection Processing Engine Descriptor Reference.

Figure 2.6. Collection Processing Manager in UIMA Framework

The UIMA framework includes a Collection Processing Manager (CPM). The CPM is capable of
reading a CPE descriptor, and deploying and running the specified CPE. Figure 2.5, “High-Level
UIMA Component Architecture from Source to Sink” [26] illustrates the role of the CPM in
the UIMA Framework.

Key features of the CPM are failure recovery, CAS management and scale-out.

2 http://www.alphaworks.ibm.com/tech/uima

Basic Search Engine
Implementation

!   A Collection Reader reads documents from the

file system and initializes CASs with their content

!   AE annotates tokens and sentences in the CASs

!   CAS Consumer populates a search engine index

!   A search engine query processor use the token

index to provide basic key-word search.

Semantic Search Engine

!   Supposed to have the AE for NER

!   The CAS Consumer will, e.g.,
!   add person and organizations to the CASs by the

NER

!   feed these into the semantic search engine's index

!   The semantic search engine that is available

from http://www.alphaworks.ibm.com/tech/uima

supports a query language called XML

Fragments

Semantic Search Engine (cont’d)

!   Queries with meta-data:
!   <organization> center </organization>

!   Queries with relations:
!   <ceo_of> <person> center </person> <organization>

center </organization> <ceo_of>

Multimodal Processing in UIMA

Databases

UIMA Version 2.4.0 UIMA Conceptual Overview 29

will produce first only documents that contain “center” where it appears as part of a mention
annotated as an organization by the name-entity recognizer. This will likely be a much shorter list
of documents more precisely matching the user's interest.

Consider taking this one step further. We add a relationship recognizer that annotates mentions of
the CEO-of relationship. We configure the CAS Consumer so that it sends these new relationship
annotations to the semantic search index as well. With these additional analysis results in the index
we can submit queries like

<ceo_of>
 <person> center </person>
 <organization> center </organization>
<ceo_of>

This query will precisely target documents that contain a mention of an organization with “center”
as part of its name where that organization is mentioned as part of a CEO-of relationship annotated
by the relationship recognizer.

For more details about using UIMA and Semantic Search see the section on integrating text
analysis and search in Chapter 3, Application Developer's Guide.

2.6.2. Databases
Search engine indices are not the only place to deposit analysis results for use by applications.
Another classic example is populating databases. While many approaches are possible with varying
degrees of flexibly and performance all are highly dependent on application specifics. We included
a simple sample CAS Consumer that provides the basics for getting your analysis result into a
relational database. It extracts annotations from a CAS and writes them to a relational database,
using the open source Apache Derby database.

2.7. Multimodal Processing in UIMA
In previous sections we've seen how the CAS is initialized with an initial artifact that will be
subsequently analyzed by Analysis engines and CAS Consumers. The first Analysis engine may
make some assertions about the artifact, for example, in the form of annotations. Subsequent
Analysis engines will make further assertions about both the artifact and previous analysis results,
and finally one or more CAS Consumers will extract information from these CASs for structured
information storage.

Figure 2.7. Multiple Sofas in support of multi-modal analysis of an audio Stream.
Some engines work on the audio “view”, some on the text “view” and some on both.!   Several Sofas associated with multiple CAS views

!   Components written in multiple-view mode
!   analyze CAS according to different Sofas

