NLP and IR

Lab02: SVM reranking

Aliaksei Severyn

University of Trento, Italy

April 26, 2012

Plan for the lab

Quick Recap
SVM re-ranker
Modeling QA pairs

= Simple bag-of-features approach
" Linear and sequence kernels

Evaluating results
Possible ideas for improvement

Quick Recap - goal

= What is our ultimate goal?
" Build some of QA system components

= QA answer retrieval
= QA answer re-ranker
= No answer identification yet

= As course project you will get to implement
some of the other modules:

" For example, various linguistic annotators

- N AT
' SR
& Uk s &
:wf('%*i*‘ 7
TRz L
ONSHEAS
O 72
o

Quick Recap — our data

= We used Answerbag QA collection scraped
from the web to build and test our QA
models ~ 180k QA pairs

" Fairly high quality, since we consider only
“professionally researched” questions

" The link for the data is in the slides of the
previous lecture (you will also need for
today’s lecture)

N f".],
— ' ST
) (%)
Sl A7
NS
P07 A
o

Quick Recap — retrieval module

= We used Lucene as a search engine to
retrieve most relevant answer candidates

guiven a guery guestion
= Two main steps:

" |ndex
" Retrieve

S A7
] ' ST
7 P w2
S A
oXE = P
GINNTS
SENFEA
o

Quick Recap — retrieval module

" This is the very first step

= Uses very simple scoring model, e.g. cosine
similarity (by default)

= We used evalSearchEngine.py to evaluate
the quality of our retrieval module

= Can try more advanced scoring models

Next steps — SVM reranker

= Use are-ranker to improve the rankings
output by the search engine

" Experiment with several natural language
models of QA pairs to capture salient
features between questions and answers

= Evaluate if we can improve the rankings of
the search engine

Recap on SVMs

N /margin
N

‘ N\
N
‘ N\

- S A7
' SR
AT
Sl A7
RE =
OSENTELS

LRIy

o

Getting practical with using SVM

" |nput format
= Feature vectors
= (QObjects, e.g. sequences, trees

= Learning
= (lassification, regression, re-ranking
= Kernels: sequence kernels and tree kernels

= (Classifying

Question classification on DESC data

1 |BT| (ROOT (SBARQ (WHADVP (WRB When))(SQ
(VBD did)(NP (NNP Charles)(NNP Lindbergh))(VP
(VB die)))(. ?))) |ET|

ROOT
|
SBARQ
__— \ T
WHADVP SQ .
| | T |
WRB VBD NP VP 7
When did NNP NNP VB
|

\ |

Charles Lindbergh die

10

Let’s practice

Train an SVM model to classify questions
$./svm_learn -t 5 demo-data/NUM train.dat model

Now test our model
$./svm _classify demo-data/NUM test.dat model

11

SHEA
— ' STMARL
) (A%
Sl A7
O NURAHEAY

NENEA

o

Various input formats are possible

<label> |BV| <feature vector> |EV]|

More comp
<label> | BT

ex
(tree) |ET| <feature vector> |EV]

12

SVM for reranking

" |nstead of classifying points, we want to
learn a classifier on QA pairs

= Correct QA pair is scored higher than incorrect

" Provided prediction scores — reorder the
rankings of the search engine

13

- A7
' SR
& Uk s &
S A
RE =

SIS

O 72

oS

Reranking: bag of words features

" The simplest model

" Bag of words + the similarity score from the
search engine

" |mportant to show how to setup the data
for the reranker

" How to train and classify the data
= Evaluate the results

- NS AT
' SR
& Uk s &
Sl A7
CRE = P
SIS
OV
RO

Download the materials

Download the materials for the lab01 and lab02 from
the course web site

The step by step instructions are in the README.txt
Open the archive

$ tar xvfz lab02.tar.gz
$ cd 1ab02

15

Build SVM

go under SVM directory

$ cd SVM-Light-1.5-rer/
type make to build the code

$ make

go back to the previous directory
$ cd ..

16

Generating QA pairs

Generate QA pairs for training:

$ python generate reranking pairs.py
gquestions.5k.txt answers. txt
results.train. 15k

Generate QA pairs for testing:

$ python generate reranking pairs.py -m
test questions.5k.txt answers.txt
results.test. 15k

17

- N AT
' SR
& T ud O
:‘_ﬂxég;'\v 7
oRE T
SIS
SIS
RO

Looking at the SVM examples file

+1 |BT| (BOX (the) (cell) (phone) (used) (tony)
(stark) (the) (movie) (iron) (man) (was) (vx9400)
(slider) (phone) (which) (was) (just) (one) (the)
(mobile) (phones) (used) (the) (movie.)) |BT| (BOX
(the) (average) (person) (cannot) (trace) (prepaid)
(cell) (phone) (however) (the) (federal) (government)
(and) (police) (force) (have) (this) (capability.)
(while) (they) (cannot) (determine) (person) (exact)
(location) (they) (can) (find) (what) (cell) (phone)
(towers) (are) (being) (used) (and) (use) (this)
(information) (trace) (the) (phone.)) |ET|
1:2.28489184 |BV| 1:0.65760440 |EV|

Training SVM

Learn

$./SVM-Light-1.5-rer/svm _learn -t 5 -F 2 -C + -W
R -VR -50 -N1 svm.train model

Classify

$./SVM-Light-1.5-rer/svm classify svm.test model
pred

Training and classification should take a few minutes (depending on your
machine)

19

Comments on SVM options

-F 2 — linear kernel on the bag of words

-C + - combine contribution from trees and
vectors

-W R - apply reranking on trees
-V R - apply reranking on vectors
-S 0 - linear kernel on the feature vector;

-N 1 - no normalization on the feature vector;

Evaluate the results

Run the evaluation script
$ python evReranker.py svm.test.res pred

The file svm.test.res contains the output of the search
engine and the golden standard (correct QA pairs),
which we use to evaluate how well we did w.r.t.
search engine

We also use the file pred containing SVM predictions
to rerank the output of the search engine

We improve only slightly

MRR

REC-1@01:
REC-1@02:
REC-1@03:
REC-1@04:
REC-1@05:
REC-1@06:
REC-1@07:
REC-1@08:
REC-1@09:
REC-1@10:

MRR - mean reciprocal rank (http://en.wikipedia.org/wiki/

72

73

93

IR

.48

.44
84.
89.
90.
.64
95.
96.
97.
97.
98.

34
33
92

23
25
28
50
18

SVM

72

73

92

.71

.67
85.
89.
91.
.96
94.
95.
96.
97.
98.

47
44
37

32
35
59
39
07

Mean _reciprocal_rank)

REC-1 - percentage of questions with at least 1 correct answer in the
top @X positions (useful for tasks were questions have at most one
correct answer)

