Natural Language Processing and Information Retrieval

Support Vector Machines

Alessandro Moschitti

Department of information and communication technology
University of Trento
Email: moschitti@disi.unitn.it

Summary

- Support Vector Machines
- Hard-margin SVMs
- Soft-margin SVMs

Which hyperplane choose?

Classifier with a Maximum Margin

Support Vector

Support Vector Machine Classifiers

The margin is equal to $\frac{2|k|}{\|w\|}$

Support Vector Machines

The margin is equal to $\frac{2|k|}{\|w\|}$
We need to solve
$\max \frac{2|k|}{\|\vec{w}\|}$
$\vec{w} \cdot \vec{x}+b \geq+k$, if \vec{x} is positive
$\vec{w} \cdot \vec{x}+b \leq-k$, if \vec{x} is negative

Support Vector Machines

There is a scale for which $k=1$.

The problem transforms in:
$\max \frac{2}{\|\vec{w}\|}$
$\vec{w} \cdot \vec{x}+b \geq+1$, if \vec{x} is positive $\vec{w} \cdot \vec{x}+b \leq-1$, if \vec{x} is negative

$$
\vec{w} \cdot \vec{x}+b=0
$$

Final Formulation

$$
\begin{array}{ll}
\max \frac{2}{\|\vec{w}\|} \\
\vec{w} \cdot \vec{x}_{i}+b \geq+1, y_{i}=1 \\
\vec{w} \cdot \vec{x}_{i}+b \leq-1, y_{i}=-1
\end{array} \quad \Rightarrow \quad \max \frac{2}{\|\vec{w}\|} \begin{aligned}
& y_{i}\left(\vec{w} \cdot \vec{x}_{i}+b\right) \geq 1
\end{aligned} \quad \Rightarrow
$$

$$
\begin{array}{rll}
\Rightarrow \quad \min \frac{\|\vec{w}\|}{2} \\
y_{i}\left(\vec{w} \cdot \vec{x}_{i}+b\right) \geq 1
\end{array} \Rightarrow \quad \begin{array}{ll}
\min \frac{\|\vec{w}\|^{2}}{2} \\
& y_{i}\left(\vec{w} \cdot \vec{x}_{i}+b\right) \geq 1
\end{array}
$$

Optimization Problem

- Optimal Hyperplane:
- Minimize $\tau(\vec{w})=\frac{1}{2}\|\vec{w}\|^{2}$
- Subject to $y_{i}\left(\left(\vec{w} \cdot \vec{x}_{i}\right)+b\right) \geq 1, i=1, \ldots, m$
- The dual problem is simpler

Lagrangian Definition

Def. 2.24 Let $f(\vec{w}), h_{i}(\vec{w})$ and $g_{i}(\vec{w})$ be the objective function, the equality constraints and the inequality constraints (i.e. \leq) of an optimization problem, and let $L(\vec{w}, \vec{\alpha}, \vec{\beta})$ be its Lagrangian, defined as follows:

$$
L(\vec{w}, \vec{\alpha}, \vec{\beta})=f(\vec{w})+\sum_{i=1}^{m} \alpha_{i} g_{i}(\vec{w})+\sum_{i=1}^{l} \beta_{i} h_{i}(\vec{w})
$$

Dual Optimization Problem

The Lagrangian dual problem of the above primal problem is

$$
\begin{aligned}
& \text { maximize } \theta(\vec{\alpha}, \vec{\beta}) \\
& \text { subject to } \vec{\alpha} \geq \overrightarrow{0} \\
& \text { where } \theta(\vec{\alpha}, \vec{\beta})=\inf f_{w \in W} \quad L(\vec{w}, \vec{\alpha}, \vec{\beta})
\end{aligned}
$$

Dual Transformation

- Given the Lagrangian associated with our problem

$$
L(\vec{w}, b, \vec{\alpha})=\frac{1}{2} \vec{w} \cdot \vec{w}-\sum_{i=1}^{m} \alpha_{i}\left[y_{i}\left(\vec{w} \cdot \overrightarrow{x_{i}}+b\right)-1\right]
$$

- To solve the dual problem we need to evaluate:

$$
\theta(\vec{\alpha}, \vec{\beta})=i n f_{w \in W} L(\vec{w}, \vec{\alpha}, \vec{\beta})
$$

- Let us impose the derivatives to 0 , with respect to \vec{w}

$$
\frac{\partial L(\vec{w}, b, \vec{\alpha})}{\partial \vec{w}}=\vec{w}-\sum_{i=1}^{m} y_{i} \alpha_{i} \vec{x}_{i}=\overrightarrow{0} \quad \Rightarrow \quad \vec{w}=\sum_{i=1}^{m} y_{i} \alpha_{i} \vec{x}_{i}
$$

Dual Transformation (cont'd)

- and wrt b

$$
\frac{\partial L(\vec{w}, b, \vec{\alpha})}{\partial b}=\sum_{i=1}^{m} y_{i} \alpha_{i}=0
$$

- Then we substituted them in the Lagrange function

$$
\begin{aligned}
L(\vec{w}, b, \vec{\alpha}) & =\frac{1}{2} \vec{w} \cdot \vec{w}-\sum_{i=1}^{m} \alpha_{i}\left[y_{i}\left(\vec{w} \cdot \overrightarrow{x_{i}}+b\right)-1\right]= \\
& =\frac{1}{2} \sum_{i, j=1}^{m} y_{i} y_{j} \alpha_{i} \alpha_{j} \overrightarrow{x_{i}} \cdot \overrightarrow{x_{j}}-\sum_{i, j=1}^{m} y_{i} y_{j} \alpha_{i} \alpha_{j} \overrightarrow{x_{i}} \cdot \overrightarrow{x_{j}}+\sum_{i=1}^{m} \alpha_{i} \\
& =\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} y_{i} y_{j} \alpha_{i} \alpha_{j} \vec{x}_{i} \cdot \overrightarrow{x_{j}}
\end{aligned}
$$

Final Dual Problem

$$
\begin{aligned}
& \text { maximize } \sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} y_{i} y_{j} \alpha_{i} \alpha_{j} \overrightarrow{x_{i}} \cdot \overrightarrow{x_{j}} \\
& \text { subject to } \quad \alpha_{i} \geq 0, \quad i=1, \ldots, m \\
& \sum_{i=1}^{m} y_{i} \alpha_{i}=0
\end{aligned}
$$

Khun-Tucker Theorem

- Necessary and sufficient conditions to optimality

$$
\begin{aligned}
\frac{\partial L\left(\vec{w}^{*}, \vec{\alpha}^{*}, \vec{\beta}^{*}\right)}{\partial \vec{w}} & =\overrightarrow{0} \\
\frac{\partial L\left(\vec{w}^{*}, \vec{\alpha}^{*}, \vec{\beta}^{*}\right)}{\partial b} & =\overrightarrow{0} \\
\alpha_{i}^{*} g_{i}\left(\vec{w}^{*}\right) & =0, \quad i=1, . ., m \\
g_{i}\left(\vec{w}^{*}\right) & \leq 0, \quad i=1, . ., m \\
\alpha_{i}^{*} & \geq 0, \quad i=1, . ., m
\end{aligned}
$$

Properties coming from constraints

- Lagrange constraints: $\quad \sum_{i=1}^{m} \alpha_{i} y_{i}=0 \quad \vec{w}=\sum_{i=1}^{m} \alpha_{i} y_{i} \vec{x}_{i}$
- Karush-Kuhn-Tucker constraints

$$
\alpha_{i} \cdot\left[y_{i}\left(\vec{x}_{i} \cdot \vec{w}+b\right)-1\right]=0, \quad i=1, \ldots, m
$$

- Support Vectors have α_{i} not null
- To evaluate b, we can apply the following equation

$$
b^{*}=-\frac{\vec{w}^{*} \cdot \vec{x}^{+}+\vec{w}^{*} \cdot \vec{x}^{-}}{2}
$$

Warning!

- On the graphical examples, we always consider normalized hyperplane (hyperplanes with normalized gradient)
- b in this case is exactly the distance of the hyperplane from the origin
- So if we have an equation not normalized we may have

$$
\vec{x} \cdot \vec{w}^{\prime}+b=0 \text { with } \vec{x}=(x, y) \text { and } \vec{w}^{\prime}=(1,1)
$$

- and b is not the distance

Warning!

- Let us consider a normalized gradient

$$
\begin{aligned}
& \vec{w}=(1 / \sqrt{2}, 1 / \sqrt{2}) \\
& (x, y) \cdot(1 / \sqrt{2}, 1 / \sqrt{2})+b=0 \Rightarrow x / \sqrt{2}+y / \sqrt{2}=-b \\
& \Rightarrow y=-x-b \sqrt{2}
\end{aligned}
$$

- Now we see that $-b$ is exactly the distance.
- For $x=0$, we have the intersection with $-b \sqrt{2}$. This distance projected on \vec{w} is $-b$

Soft Margin SVMs

ξ_{i} slack variables are added

Some errors are allowed but they should penalize the objective function

Soft Margin SVMs

The new constraints are

$$
\begin{aligned}
& y_{i}\left(\vec{w} \cdot \vec{x}_{i}+b\right) \geq 1-\xi_{i} \\
& \forall \vec{x}_{i} \text { where } \xi_{i} \geq 0
\end{aligned}
$$

The objective function penalizes the incorrect classified examples

$$
\min \frac{1}{2}\|\vec{w}\|^{2}+C \sum_{i} \xi_{i}
$$

C is the trade-off between margin and the error

Dual formulation

$$
\begin{gathered}
\left\{\begin{array}{l}
\left.\min \quad \frac{1}{2} \right\rvert\,\|\vec{w}\|+C \sum_{i=1}^{m} \xi_{i}^{2} \\
y_{i}\left(\vec{w} \cdot \overrightarrow{x_{i}}+b\right) \geq 1-\xi_{i}, \quad \forall i=1, . ., m \\
\xi_{i} \geq 0, \quad i=1, . ., m
\end{array}\right. \\
L(\vec{w}, b, \vec{\xi}, \vec{\alpha})=\frac{1}{2} \vec{w} \cdot \vec{w}+\frac{C}{2} \sum_{i=1}^{m} \xi_{i}^{2}-\sum_{i=1}^{m} \alpha_{i}\left[y_{i}\left(\vec{w} \cdot \overrightarrow{x_{i}}+b\right)-1+\xi_{i}\right]
\end{gathered}
$$

- By deriving wrt $\vec{w}, \vec{\xi}$ and b

Partial Derivatives

$$
\begin{aligned}
& \frac{\partial L(\vec{w}, b, \vec{\xi}, \vec{\alpha})}{\partial \vec{w}}=\vec{w}-\sum_{i=1}^{m} y_{i} \alpha_{i} \vec{x}_{i}=\overrightarrow{0} \quad \Rightarrow \quad \vec{w}=\sum_{i=1}^{m} y_{i} \alpha_{i} \vec{x}_{i} \\
& \frac{\partial L(\vec{w}, b, \vec{\xi}, \vec{\alpha})}{\partial \vec{\xi}}=C \vec{\xi}-\vec{\alpha}=\overrightarrow{0} \\
& \frac{\partial L(\vec{w}, b, \vec{\xi}, \vec{\alpha})}{\partial b}=\sum_{i=1}^{m} y_{i} \alpha_{i}=0
\end{aligned}
$$

Substitution in the objective function

$$
\begin{aligned}
& =\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} y_{i} y_{j} \alpha_{i} \alpha_{j} \overrightarrow{x_{i}} \cdot \overrightarrow{x_{j}}+\frac{1}{2 C} \vec{\alpha} \cdot \vec{\alpha}-\frac{1}{C} \vec{\alpha} \cdot \vec{\alpha}= \\
& =\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} y_{i} y_{j} \alpha_{i} \alpha_{j} \overrightarrow{x_{i}} \cdot \overrightarrow{x_{j}}-\frac{1}{2 C} \vec{\alpha} \cdot \vec{\alpha}= \\
& =\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} y_{i} y_{j} \alpha_{i} \alpha_{j}\left(\overrightarrow{x_{i}} \cdot \overrightarrow{x_{j}}+\frac{1}{C} \delta_{i j}\right)
\end{aligned}
$$

- $\delta_{i j}$ of Kronecker

Final dual optimization problem

$$
\begin{aligned}
& \sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} y_{i} y_{j} \alpha_{i} \alpha_{j}\left(\overrightarrow{x_{i}} \cdot \overrightarrow{x_{j}}+\frac{1}{C} \delta_{i j}\right) \\
& \alpha_{i} \geq 0, \quad \forall i=1, . ., m \\
& \sum_{i=1}^{m} y_{i} \alpha_{i}=0
\end{aligned}
$$

Soft Margin Support Vector Machines

$$
\min \frac{1}{2}\|\vec{w}\|^{2}+C \sum_{i} \xi_{i} \quad \begin{aligned}
& y_{i}\left(\vec{w} \cdot \vec{x}_{i}+b\right) \geq 1-\xi_{i} \quad \forall \vec{x}_{i} \\
& \\
& \xi_{i} \geq 0
\end{aligned}
$$

- The algorithm tries to keep ξ_{i} low and maximize the margin
- NB: The number of error is not directly minimized (NP-complete problem); the distances from the hyperplane are minimized
- If $C \rightarrow \infty$, the solution tends to the one of the hard-margin algorithm
- Attention !!!: if $C=0$ we get $\|\vec{w}\|=0$, since $y_{i} b \geq 1-\xi_{i} \quad \forall \vec{x}_{i}$
- If C increases the number of error decreases. When C tends to infinite the number of errors must be 0 , i.e. the hard-margin formulation

Robusteness of Soft vs. Hard Margin SVMs

Soft Margin SVM
Hard Margin SVM

Soft vs Hard Margin SVMs

- Soft-Margin has ever a solution
- Soft-Margin is more robust to odd examples
- Hard-Margin does not require parameters

Parameters

$$
\begin{aligned}
\min \frac{1}{2}\|\vec{w}\|^{2} & +C \sum_{i} \xi_{i}=\min \frac{1}{2}\|\vec{w}\|^{2}+C^{+} \sum_{i} \xi_{i}^{+}+C^{-} \sum_{i} \xi_{i}^{-} \\
& =\min \frac{1}{2}\|\vec{w}\|^{2}+C\left(J \sum_{i} \xi_{i}^{+}+\sum_{i} \xi_{i}^{-}\right)
\end{aligned}
$$

- C: trade-off parameter
- J: cost factor

Theoretical Justification

Definition of Training Set error

- Training Data

$$
f: R^{N} \rightarrow\{ \pm 1\} \quad\left(\vec{x}_{1}, y_{1}\right), \ldots,\left(\vec{x}_{m}, y_{m}\right) \in R^{N} \times\{ \pm 1\}
$$

- Empirical Risk (error)

$$
\underset{\text { emp }}{R_{\text {ero }}}[f]=\frac{1}{m} \sum_{i=1}^{m} \frac{1}{2}\left|f\left(\vec{x}_{i}\right)-y_{i}\right|
$$

- Risk (error)

$$
R[f]=\int \frac{1}{2}|f(\vec{x})-y| d P(\vec{x}, y)
$$

Error Characterization (part 1)

- From PAC-learning Theory (Vapnik):

$$
\begin{aligned}
& R(\alpha) \leq R_{e m p}(\alpha)+\varphi\left(\frac{d}{m}, \frac{\log (\delta)}{m}\right) \\
& \varphi\left(\frac{d}{m}, \frac{\log (\delta)}{m}\right)=\sqrt{\frac{d\left(\log \frac{2 m}{d}+1\right)-\log \left(\frac{\delta}{4}\right)}{m}}
\end{aligned}
$$

where d is theVC-dimension, m is the number of examples, δ is a bound on the probability to get such error and α is a classifier parameter.

There are many versions for different bounds

Theorem 2.11 (Vapnik and Chervonenkis, [Vapnik, 1995])
Let H be a hypothesis space having $V C$ dimension d. For any probability distribution D on $X \times\{-1,1\}$, with probability $1-\delta$ over m random examples S, any hypothesis $h \in H$ that is consistent with S has error no more than

$$
\operatorname{error}(h) \leq \epsilon(m, H, \delta)=\frac{2}{m}\left(d \times \ln \frac{2 e \times m}{d}+\ln \frac{2}{\delta}\right),
$$

provided that $d \leq m$ and $m \geq 2 / \epsilon$.

Error Characterization (part 2)

Lemma 1. [Vapnik, 1982] Consider hyperplanes $h(\vec{d})=\operatorname{sign}\{\vec{w} \cdot \vec{d}+b\}$ as hypotheses. If all example vectors \vec{d}_{i} are contained in a ball of radius R and it is required that for all examples \vec{d}_{i}

$$
\begin{equation*}
\left|\vec{w} \cdot \vec{d}_{i}+b\right| \geq 1 \text {, with }\|\vec{w}\|=A \tag{5}
\end{equation*}
$$

then this set of hyperplane has a VCdim d bounded by

$$
\begin{equation*}
d \leq \min \left(\left[R^{2} A^{2}\right], n\right)+1 \tag{6}
\end{equation*}
$$

Ranking, Regression

 andMulticlassification

The Ranking SVM

[Herbrich et al. 1999, 2000; Joachims et al. 2002]

- The aim is to classify instance pairs as correctly ranked or incorrectly ranked
- This turns an ordinal regression problem back into a binary classification problem
- We want a ranking function f such that

$$
\boldsymbol{x}_{i}>\boldsymbol{x}_{j} \text { iff } f\left(\boldsymbol{x}_{i}\right)>f\left(\boldsymbol{x}_{j}\right)
$$

- ... or at least one that tries to do this with minimal error
- Suppose that f is a linear function

$$
f\left(x_{i}\right)=\mathbf{w} \cdot \boldsymbol{x}_{i}
$$

The Ranking SVM

- Ranking Model: $f\left(\boldsymbol{x}_{i}\right)$

The Ranking SVM

- Then (combining the two equations on the last slide):
$\boldsymbol{x}_{i}>\boldsymbol{x}_{j}$ iff $\mathbf{w} \cdot \boldsymbol{x}_{i}-\mathbf{w} \bullet \boldsymbol{x}_{j}>0$
$x_{i}>x_{j}$ iff $\mathbf{w} \cdot\left(x_{i}-x_{j}\right)>0$
- Let us then create a new instance space from such pairs:

$$
\begin{aligned}
z_{k} & =x_{i}-x_{k} \\
y_{k} & =+1,-1 \text { as } \boldsymbol{x}_{i} \geq,<\boldsymbol{x}_{k}
\end{aligned}
$$

Support Vector Ranking

$$
\left\{\begin{array}{l}
\min \quad \frac{1}{2}\|\vec{w}\|+C \sum_{i=1}^{m} \xi_{i}^{2} \\
y_{k}\left(\vec{w} \cdot\left(\vec{x}_{i}-\vec{x}_{j}\right)+b\right) \geq 1-\xi_{k}, \quad \forall i, j=1, . ., m \\
\xi_{k} \geq 0, \quad k=1, . ., m^{2}
\end{array}\right.
$$

$y_{k}=1$ if $\operatorname{rank}\left(\overrightarrow{x_{i}}\right)>\operatorname{rank}\left(\overrightarrow{x_{j}}\right),-1$ otherwise, where $k=i \times m+j$

- Given two examples we build one example $\left(x_{i}, x_{j}\right)$

Support Vector Regression (SVR)

Support Vector Regression (SVR)

Support Vector Regression

$$
\begin{aligned}
\min _{\mathbf{w}, b, \xi, \xi^{*}} & \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n}\left(\xi_{i}+\xi_{i}^{*}\right) \\
\text { s.t. } y_{i}-\mathbf{w}^{\top} \mathbf{x}_{i}-b \leq \epsilon+\xi_{i}, \xi_{i} \geq 0 & \forall 1 \leq i \leq n ; \\
\mathbf{w}^{\top} \mathbf{x}_{i}+b-y_{i} \leq \epsilon+\xi_{i}^{*}, \xi_{i}^{*} \geq 0 & \forall 1 \leq i \leq n .
\end{aligned}
$$

- y_{i} is not -1 or 1 anymore, now it is a value
- ε is the tollerance of our function value

From Binary to Multiclass classifiers

- Three different approaches:
- ONE-vs-ALL (OVA)
- Given the example sets, $\{\mathrm{E} 1, \mathrm{E} 2, \mathrm{E} 3, \ldots\}$ for the categories: $\{\mathrm{C} 1, \mathrm{C} 2$, $\mathrm{C} 3, \ldots\}$ the binary classifiers: $\{\mathrm{b} 1, \mathrm{~b} 2, \mathrm{~b} 3, \ldots\}$ are built.
- For $\mathrm{b} 1, \mathrm{E} 1$ is the set of positives and E2 E E3 $\cup \ldots$ is the set of negatives, and so on
- For testing: given a classification instance x, the category is the one associated with the maximum margin among all binary classifiers

From Binary to Multiclass classifiers

- ALL-vs-ALL (AVA)
- Given the examples: $\{\mathrm{E} 1, \mathrm{E} 2, \mathrm{E} 3, \ldots\}$ for the categories $\{\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \ldots\}$
- build the binary classifiers:

$$
\left\{b 1 _2,\right. \text { b1_3,..., b1_n, b2_3, b2_4,..., b2_n,...,bn-1_n\} }
$$

- by learning on E1 (positives) and E2 (negatives), on E1 (positives) and E3 (negatives) and so on...
- For testing: given an example x,
- all the votes of all classifiers are collected
- where $b_{E 1 E 2}=1$ means a vote for C1 and $b_{E 1 E 2}=-1$ is a vote for C2
- Select the category that gets more votes

From Binary to Multiclass classifiers

- Error Correcting Output Codes (ECOC)
- The training set is partitioned according to binary sequences (codes) associated with category sets.
- For example, 10101 indicates that the set of examples of C1,C3 and C5 are used to train the C_{10101} classifier.
- The data of the other categories, i.e. C2 and C4 will be negative examples
- In testing: the code-classifiers are used to decode one the original class, e.g.
$\mathrm{C}_{10101}=1$ and $\mathrm{C}_{11010}=1$ indicates that the instance belongs to C 1
That is, the only one consistent with the codes

SVM-light: an implementation of SVMs

- Implements soft margin
- Contains the procedures for solving optimization problems
- Binary classifier
- Examples and descriptions in the web site:
http://www.joachims.org/
(http://svmlight.joachims.org/)

Structured Output

Multi-classification

References

- A tutorial on Support Vector Machines for Pattern Recognition
- Downloadable article (Chriss Burges)
- The Vapnik-Chervonenkis Dimension and the Learning Capability of Neural Nets
- Downloadable Presentation
- Computational Learning Theory
(Sally A Goldman Washington University St. Louis Missouri)
- Downloadable Article
- AN INTRODUCTION TO SUPPORT VECTOR MACHINES
(and other kernel-based learning methods)
N. Cristianini and J. Shawe-Taylor Cambridge University Press
- Check our library
- The Nature of Statistical Learning Theory

Vladimir Naumovich Vapnik - Springer Verlag (December, 1999)

- Check our library

Exercise

- 1. The equations of SVMs for Classification, Ranking and Regression (you can get them from my slides).
- 2. The perceptron algorithm for Classification, Ranking and Regression (the last two you have to provide by looking at what you wrote in point (1)).
- 3. The same as point (2) by using kernels (write the kernel definition as introduction of this section).

