Natural Language Processing and Information Retrieval

Statistical Learning Theory: Linear Classifiers

Alessandro Moschitti

Department of information and communication technology University of Trento Email: moschitti@dit.unitn.it

Outline

- Computational Learning theory
 - Introduction to Statistical Learning
 - Perceptron Learning
 - Margins

What is Statistical Learning?

- Statistical Methods Algorithms that learn relations in the data from examples
- Simple relations are expressed by pairs of variables: $\langle x_1, y_1 \rangle$, $\langle x_2, y_2 \rangle$,..., $\langle x_n, y_n \rangle$
- Learning *f* such that evaluate y^* given a new value x^* , i.e. $\langle x^*, f(x^*) \rangle = \langle x^*, y^* \rangle$

You have already tackled the learning problem

Linear Regression

Degree 2

Degree

Machine Learning Problems

- Overfitting
- How dealing with millions of variables instead of only two?
- How dealing with real world objects instead of real values?

Objectives: defining a well defined statistical framework

- What can we learn and how can we decide if our learning is effective?
- Efficient learning with many parameters
- Trade-off (generalization/and training set error)
- How to represent real world objects

Objectives: defining a well defined statistical framework

- What can we learn and how can we decide if our learning is effective?
- Efficient learning with many parameters
- Trade-off (generalization/and training set error)
- How to represent real world objects

PAC Learning Definition (1)

- Let *c* be the function (i.e. a *concept*) we want to learn
- Let *h* be the learned concept and *x* an instance (e.g. a person)
- error(h) = Prob [c(x) < > h(x)]
- It would be useful if we could find:
- $Pr(error(h) > \varepsilon) < \delta$
- Given a target error ε , the probability to make a larger error is less δ

Definizione di PAC Learning (2)

- This methodology is called Probably Approximately Correct Learning
- The smaller ε and δ are the better the learning is
- Problem:
 - Given ε and δ , determine the size *m* of the training-set.
 - Such size may be independent of the learning algorithm
- Let us do it for a simple learning problem

Lower Bound on training-set size

- Let us reconsider a first general bound:
 - *h* is bad: $error(h) > \varepsilon$
 - P(f(x)=h(x)) for *m* examples is lower than $(1-\varepsilon)^m$
 - Multiplying by the number of bad hypotheses we calculate the probability of selecting a bad hypothesis
 - $P(bad hypothesis) < N \cdot (1 \varepsilon)^m < \delta$
 - $P(bad hypothesis) < N \cdot (e^{-\varepsilon})^m = N \cdot e^{-\varepsilon m} < \delta$
- $\Rightarrow m > (1/\varepsilon) (ln(1/\delta) + ln(N))$

This is a general lower bound

Example

- Suppose we want to learn a boolean function in *n* variable
- The maximum number of different functions are 2^{2^n}
- $\Rightarrow m > (1/\varepsilon) (ln(1/\delta) + ln(2^{2^n})) =$ $= (1/\varepsilon) (ln(1/\delta) + 2^n ln(2))$

Some Numbers

n		epsilon		delta	m
====	====		====	======	=====
5		0.1		0.1	245
5		0.1		0.01	268
5		0.01		0.1	2450
5		0.01		0.01	2680
10		0.1		0.1	7123
10		0.1		0.01	7146
10		0.01		0.1	71230
10		0.01		0.01	71460

Linear Classifier (1)

• The equation of a hyperplane is

$$f(\vec{x}) = \vec{x} \cdot \vec{w} + b = 0, \quad \vec{x}, \vec{w} \in \Re^n, b \in \Re$$

- \vec{x} is the vector representing the classifying example
- \vec{w} is the gradient to the hyperplane
- The classification function is $h(x) = \operatorname{sign}(f(x))$

Linear classifiers (2)

- Linear Functions are the simplest ones from an analytical point of view.
- The basic idea is to select a hypothesis with null error on the training-set.
- To learn a linear function a simple neural network of only one neuron is enough (Perceptron)

An animal neuron

The Perceptron

Useful Concepts

- *Functional Margin* of an example with respect to a hyperplane: $\gamma_i = y_i(\vec{w} \cdot \vec{x}_i + b)$
- *The distribution of functional margins* of a hyperplane with respect to a training set *S* is the distribution of the margins of the examples in *S wrt* the hyperplane (\vec{w}, b) .
- *The functional margin of a hyperplane* is the minimum margin of the distribution

Notations (con'td)

• If we normalize the hyperplane equation, i.e.

 $\left(\frac{\vec{w}}{\|\vec{w}\|}, \frac{b}{\|\vec{w}\|}\right), \text{ we obtain the geometric margin}$

- The *geometric margin* measure the Euclidean distance between the target point and the hyperplane.
- *The training set Margin* is the maximum geometric (functional) margin among all hyperplanes which separates the examples in S.
- The hyperplane associated with the above quantity is called *maximal margin hyperplane*

Basic Concepts

From
$$\cos(\vec{x}, \vec{w}) = \frac{\vec{x} \cdot \vec{w}}{\|\vec{x}\| \cdot \|\vec{w}\|}$$

• It follows that

$$\|\vec{x}\|\cos(\vec{x},\vec{w}) = \frac{\vec{x}\cdot\vec{w}}{\|\vec{w}\|} = \vec{x}\cdot\frac{\vec{w}}{\|\vec{w}\|}$$

Norm of \vec{x} times the cosine between \vec{x} and \vec{w} , i.e. the projection of \vec{x} on \vec{w}

Geometric Margin

Geometric margins of 2 points and hyperplane margin

Maximal margin vs other margins

Perceptron training on a data set (on-line algorthm)

$$\vec{w}_{0} \leftarrow \vec{0}; b_{0} \leftarrow 0; k \leftarrow 0; R \leftarrow \max_{1 \le i \le l} || \vec{x}_{i} ||$$
Repeat
for i = 1 to m
if $y_{i}(\vec{w}_{k} \cdot \vec{x}_{i} + b_{k}) \le 0$ then
$$\vec{w}_{k+1} = \vec{w}_{k} + \eta y_{i} \vec{x}_{i}$$

$$b_{k+1} = b_{k} + \eta y_{i} R^{2}$$

$$k = k + 1$$
endif
endfor
until no error is found
return k, (\vec{w}_{k}, b_{k})

Novikoff's Theorem

Let S be a non-trivial training-set and let

$$R = \max_{i=1,\dots,m} ||x_i||.$$

Let us suppose there is a vector \mathbf{w}^* , $||\mathbf{w}^*|| = 1$ and $y_i(\langle \mathbf{w}^*, \mathbf{x}_i \rangle + b^*) \ge \gamma$, i = 1, ..., m,

with $\gamma > 0$. Then the maximum number of errors of the perceptron is:

$$t^* = \left(\frac{2R}{\gamma}\right)^2,$$

Observations

- The theorem states that independently of the margin size, if data is linearly separable the perceptron algorithm finds the solution in a finite amount of steps.
- This number is inversely proportional to the square of the margin.
- The bound is invariant with respect to the scale of the *patterns* (i.e. only the relative distances count).
- The learning rate is not essential for the convergence.

Dual Representation

• The decision function can be rewritten as:

$$h(x) = \operatorname{sgn}(\vec{w} \cdot \vec{x} + b) = \operatorname{sgn}(\sum_{j=1..m} \alpha_j y_j \vec{x}_j \cdot \vec{x} + b) =$$

$$\operatorname{sgn}(\sum_{i=1..m} \alpha_j y_j \vec{x}_j \cdot \vec{x} + b)$$

as well as the updating function

if
$$y_i (\sum_{j=1..m} \alpha_j y_j \vec{x}_j \cdot \vec{x}_i + b) \le 0$$
 then $\alpha_i = \alpha_i + \eta$

• The learning rate η only affects the re-scaling of the hyperplane, it does not affect the algorithm, so we can fix $\eta = 1$.

DUALITY is the first feature of Support Vector Machines
SVMs are learning machines using the following function:

$$f(x) = \operatorname{sgn}(\vec{w} \cdot \vec{x} + b) = \operatorname{sgn}(\sum_{j=1..m} \alpha_j y_j \vec{x}_j \cdot \vec{x} + b)$$

- Note that data appears only as scalar product (for both testing and learning phases)
- The Matrix $G = (\vec{x}_i \cdot \vec{x}_j)_{i,j=1}^m$ is called Gram matrix

- Data must be linearly separable
- Noise (almost all classifier types)
- Data must be in vectorial format

Solutions

- Multi-Layers Neural Network: back-propagation learning algorithm.
- SVMs: kernel methods.
 - The learning algorithm is decoupled by the application domain which is encoded by a kernel function

