Natural Language Processing and Information Retrieval

Indexing and Vector Space Models

Alessandro Moschitti

Department of Computer Science and Information Engineering
University of Trento
Email: moschitti@disi.unitn.it
Last lecture

- Dictionary data structures
- Tolerant retrieval
 - Wildcards
 - Spell correction
 - Soundex
 - Spelling Checking
 - Edit Distance
What we skipped

- IIR Book
 - Lecture 4: about index construction also in distributed environment
 - Lecture 5: index compression
This lecture; IIR Sections 6.2-6.4.3

- Ranked retrieval
- Scoring documents
- Term frequency
- Collection statistics
- Weighting schemes
- Vector space scoring
Ranked retrieval

- So far, our queries have all been Boolean.
 - Documents either match or don’t.

- Good for expert users with precise understanding of their needs and the collection.
 - Also good for applications: Applications can easily consume 1000s of results.

- Not good for the majority of users.
 - Most users incapable of writing Boolean queries (or they are, but they think it’s too much work).
 - Most users don’t want to wade through 1000s of results.
 - This is particularly true of web search.
Problem with Boolean search: feast or famine

- Boolean queries often result in either too few (=0) or too many (1000s) results.
- Query 1: “standard user dlink 650” → 200,000 hits
- Query 2: “standard user dlink 650 no card found”: 0 hits
- It takes a lot of skill to come up with a query that produces a manageable number of hits.
 - AND gives too few; OR gives too many
 Ranked retrieval models

- Rather than a set of documents satisfying a query expression, in **ranked retrieval**, the system returns an ordering over the (top) documents in the collection for a query.

- **Free text queries**: Rather than a query language of operators and expressions, the user’s query is just one or more words in a human language.

- In principle, there are two separate choices here, but in practice, ranked retrieval has normally been associated with free text queries and vice versa.
Feast or famine: not a problem in ranked retrieval

- When a system produces a ranked result set, large result sets are not an issue
 - Indeed, the size of the result set is not an issue
 - We just show the top $k \approx 10$ results
 - We don’t overwhelm the user

- Premise: the ranking algorithm works
Scoring as the basis of ranked retrieval

- We wish to return in order the documents most likely to be useful to the searcher
- How can we rank-order the documents in the collection with respect to a query?
- Assign a score – say in [0, 1] – to each document
- This score measures how well document and query “match”.

• Ch. 6
Query-document matching scores

- We need a way of assigning a score to a query/document pair
- Let’s start with a one-term query
- If the query term does not occur in the document: score should be 0
- The more frequent the query term in the document, the higher the score (should be)
- We will look at a number of alternatives for this.
Take 1: Jaccard coefficient

- Recall from last lecture: A commonly used measure of overlap of two sets A and B
 - $\text{jaccard}(A,B) = \frac{|A \cap B|}{|A \cup B|}$
 - $\text{jaccard}(A,A) = 1$
 - $\text{jaccard}(A,B) = 0$ if $A \cap B = 0$
- A and B don’t have to be the same size.
- Always assigns a number between 0 and 1.
What is the query-document match score that the Jaccard coefficient computes for each of the two documents below?

Query: *ides of march*

Document 1: *caesar died in march*

Document 2: *the long march*
Issues with Jaccard for scoring

- It doesn’t consider term frequency (how many times a term occurs in a document)
- Rare terms in a collection are more informative than frequent terms. Jaccard doesn’t consider this information
- We need a more sophisticated way of normalizing for length
- Later in this lecture, we’ll use $|A \cap B| / \sqrt{|A \cup B|}$ instead of $|A \cap B| / |A \cup B|$ (Jaccard) for length normalization.
Recall (Lecture 1): Binary term-document incidence matrix

<table>
<thead>
<tr>
<th></th>
<th>Antony and Cleopatra</th>
<th>Julius Caesar</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antony</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Brutus</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Caesar</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Calpurnia</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cleopatra</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mercy</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>worser</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- Each document is represented by a binary vector \(\in \{0,1\}^{|V|} \)
Term-document count matrices

Consider the number of occurrences of a term in a document:

Each document is a **count vector** in \mathbb{N}^v: a column below

<table>
<thead>
<tr>
<th>Antony and Cleopatra</th>
<th>Julius Caesar</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antony</td>
<td>157</td>
<td>73</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Brutus</td>
<td>4</td>
<td>157</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Caesar</td>
<td>232</td>
<td>227</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Calpurnia</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cleopatra</td>
<td>57</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mercy</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>worser</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Bag of words model

- Vector representation doesn’t consider the ordering of words in a document

- *John is quicker than Mary and Mary is quicker than John* have the same vectors

- This is called the *bag of words* model.

- In a sense, this is a step back: The positional index was able to distinguish these two documents.

- We will look at “recovering” positional information later in this course.

- For now: bag of words model
Term frequency tf

- The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- We want to use tf when computing query-document match scores. But how?
- Raw term frequency is not what we want:
 - A document with 10 occurrences of the term is more relevant than a document with 1 occurrence of the term.
 - But not 10 times more relevant.
- Relevance does not increase proportionally with term frequency.

NB: frequency = count in IR
Log-frequency weighting

- The log frequency weight of term t in d is
 \[
 w_{t,d} = \begin{cases}
 1 + \log_{10} tf_{t,d}, & \text{if } tf_{t,d} > 0 \\
 0, & \text{otherwise}
 \end{cases}
 \]

- $0 \rightarrow 0$, $1 \rightarrow 1$, $2 \rightarrow 1.3$, $10 \rightarrow 2$, $1000 \rightarrow 4$, etc.

- Score for a document-query pair: sum over terms t in both q and d:
 \[
 \text{score} = \sum_{t \in q \cap d} (1 + \log tf_{t,d})
 \]

- The score is 0 if none of the query terms is present in the document.
Document frequency

- Rare terms are more informative than frequent terms
 - Recall stop words

- Consider a term in the query that is rare in the collection
 (e.g., *arachnocentric*)

- A document containing this term is very likely to be relevant to the query *arachnocentric*

- → We want a high weight for rare terms like *arachnocentric*.
Document frequency, continued

- Frequent terms are less informative than rare terms.
- Consider a query term that is frequent in the collection (e.g., *high*, *increase*, *line*).
- A document containing such a term is more likely to be relevant than a document that doesn’t.
- But it’s not a sure indicator of relevance.
- → For frequent terms, we want high positive weights for words like *high*, *increase*, and *line*.
- But lower weights than for rare terms.
- We will use document frequency (df) to capture this.
idf weight

- df_t is the document frequency of t: the number of documents that contain t
 - df_t is an inverse measure of the informativeness of t
 - $df_t \leq N$

- We define the idf (inverse document frequency) of t by

\[
idf_t = \log_{10} \left(\frac{N}{df_t} \right)
\]

- We use $\log (N/df_t)$ instead of N/df_t to “dampen” the effect of idf.

Will turn out the base of the log is immaterial.
idf example, suppose \(N = 1 \) million

\[
\text{idf}_t = \log_{10} \left(\frac{N}{\text{df}_t} \right)
\]

There is one idf value for each term \(t \) in a collection.

<table>
<thead>
<tr>
<th>term</th>
<th>(\text{df}_t)</th>
<th>(\text{idf}_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>calpurnia</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>animal</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>sunday</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>fly</td>
<td>10,000</td>
<td>10,000</td>
</tr>
<tr>
<td>under</td>
<td>100,000</td>
<td>100,000</td>
</tr>
<tr>
<td>the</td>
<td>1,000,000</td>
<td>1,000,000</td>
</tr>
</tbody>
</table>
Effect of idf on ranking

- Does idf have an effect on ranking for one-term queries, like iPhone

- idf has no effect on ranking one term queries
 - idf affects the ranking of documents for queries with at least two terms
 - For the query capricious person, idf weighting makes occurrences of capricious count for much more in the final document ranking than occurrences of person.
Collection vs. Document frequency

- The collection frequency of t is the number of occurrences of t in the collection, counting multiple occurrences.

- Example:

<table>
<thead>
<tr>
<th>Word</th>
<th>Collection frequency</th>
<th>Document frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>insurance</td>
<td>10440</td>
<td>3997</td>
</tr>
<tr>
<td>try</td>
<td>10422</td>
<td>8760</td>
</tr>
</tbody>
</table>

- Which word is a better search term (and should get a higher weight)?
tf-idf weighting

- The tf-idf weight of a term is the product of its tf weight and its idf weight.

\[
W_{t,d} = \log(1 + tf_{t,d}) \times \log_{10}(N / df_t)
\]

- Best known weighting scheme in information retrieval
 - Note: the “-” in tf-idf is a hyphen, not a minus sign!
 - Alternative names: tf.idf, tf x idf

- Increases with the number of occurrences within a document

- Increases with the rarity of the term in the collection
Score for a document given a query

\[
\text{Score}(q,d) = \sum_{t \in q \cap d} \text{tf} \cdot \text{idf}_{t,d}
\]

There are many variants

- How “tf” is computed (with/without logs)
- Whether the terms in the query are also weighted
- ...

Sec. 6.2.2
Binary → count → weight matrix

<table>
<thead>
<tr>
<th></th>
<th>Antony and Cleopatra</th>
<th>Julius Caesar</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antony</td>
<td>5.25</td>
<td>3.18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.35</td>
</tr>
<tr>
<td>Brutus</td>
<td>1.21</td>
<td>6.1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Caesar</td>
<td>8.59</td>
<td>2.54</td>
<td>0</td>
<td>1.51</td>
<td>0.25</td>
<td>0</td>
</tr>
<tr>
<td>Calpurnia</td>
<td>0</td>
<td>1.54</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cleopatra</td>
<td>2.85</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mercy</td>
<td>1.51</td>
<td>0</td>
<td>1.9</td>
<td>0.12</td>
<td>5.25</td>
<td>0.88</td>
</tr>
<tr>
<td>worser</td>
<td>1.37</td>
<td>0</td>
<td>0.11</td>
<td>4.15</td>
<td>0.25</td>
<td>1.95</td>
</tr>
</tbody>
</table>

Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$
Documents as vectors

- So we have a $|V|$-dimensional vector space
- Terms are axes of the space
- Documents are points or vectors in this space
- Very high-dimensional: tens of millions of dimensions
 when you apply this to a web search engine
- These are very sparse vectors - most entries are zero.
Queries as vectors

- **Key idea 1:** Do the same for queries: represent them as vectors in the space.

- **Key idea 2:** Rank documents according to their proximity to the query in this space.

 - proximity = similarity of vectors

 - proximity ≈ inverse of distance

- Recall: We do this because we want to get away from the you’re-either-in-or-out Boolean model.

- Instead: rank more relevant documents higher than less relevant documents.
Formalizing vector space proximity

- First cut: distance between two points
 - (= distance between the end points of the two vectors)

- Euclidean distance?

- Euclidean distance is a bad idea . . .

- . . . because Euclidean distance is large for vectors of different lengths.
Why distance is a bad idea

The Euclidean distance between \vec{q} and \vec{d}_2 is large even though the distribution of terms in the query \vec{q} and the distribution of terms in the document \vec{d}_2 are very similar.
Use angle instead of distance

- Thought experiment: take a document d and append it to itself. Call this document d'.
- “Semantically” d and d' have the same content.
- The Euclidean distance between the two documents can be quite large.
- The angle between the two documents is 0, corresponding to maximal similarity.

- Key idea: Rank documents according to angle with query.
From angles to cosines

- The following two notions are equivalent.
 - Rank documents in **decreasing** order of the angle between query and document
 - Rank documents in **increasing** order of cosine(query, document)

- Cosine is a monotonically decreasing function for the interval $[0^\circ, 180^\circ]$
From angles to cosines

But how – *and why* – should we be computing cosines?
Length normalization

- A vector can be (length-) normalized by dividing each of its components by its length – for this we use the L_2 norm:
 \[\| \vec{x} \|_2 = \sqrt{\sum x_i^2} \]

- Dividing a vector by its L_2 norm makes it a unit (length) vector (on surface of unit hypersphere)

- Effect on the two documents d and d' (d appended to itself) from earlier slide: they have identical vectors after length-normalization.
 - Long and short documents now have comparable weights
\[
\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{\|\vec{q}\| \|\vec{d}\|} = \frac{\vec{q}}{\|\vec{q}\|} \cdot \frac{\vec{d}}{\|\vec{d}\|} = \frac{\sum_{i=1}^{V} q_i d_i}{\sqrt{\sum_{i=1}^{V} q_i^2} \sqrt{\sum_{i=1}^{V} d_i^2}}
\]

\(q_i\) is the tf-idf weight of term \(i\) in the query
\(d_i\) is the tf-idf weight of term \(i\) in the document

\(\cos(\vec{q}, \vec{d})\) is the cosine similarity of \(\vec{q}\) and \(\vec{d}\) ... or, equivalently, the cosine of the angle between \(\vec{q}\) and \(\vec{d}\).
Cosine for length-normalized vectors

For length-normalized vectors, cosine similarity is simply the dot product (or scalar product):

$$\cos(\vec{q}, \vec{d}) = \vec{q} \cdot \vec{d} = \sum_{i=1}^{V} q_i d_i$$

for q, d length-normalized.
Cosine similarity illustrated
Cosine similarity amongst 3 documents

How similar are the novels

SaS: Sense and Sensibility

PaP: Pride and Prejudice, and

WH: Wuthering Heights?

<table>
<thead>
<tr>
<th>term</th>
<th>SaS</th>
<th>PaP</th>
<th>WH</th>
</tr>
</thead>
<tbody>
<tr>
<td>affection</td>
<td>115</td>
<td>58</td>
<td>20</td>
</tr>
<tr>
<td>jealous</td>
<td>10</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>gossip</td>
<td>2</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>wuthering</td>
<td>0</td>
<td>0</td>
<td>38</td>
</tr>
</tbody>
</table>

Term frequencies (counts)

Note: To simplify this example, we don’t do idf weighting.
3 documents example contd.

<table>
<thead>
<tr>
<th>term</th>
<th>SaS</th>
<th>PaP</th>
<th>WH</th>
</tr>
</thead>
<tbody>
<tr>
<td>affection</td>
<td>3.06</td>
<td>2.76</td>
<td>2.30</td>
</tr>
<tr>
<td>jealous</td>
<td>2.00</td>
<td>1.85</td>
<td>2.04</td>
</tr>
<tr>
<td>gossip</td>
<td>1.30</td>
<td>0</td>
<td>1.78</td>
</tr>
<tr>
<td>wuthering</td>
<td>0</td>
<td>0</td>
<td>2.58</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>term</th>
<th>SaS</th>
<th>PaP</th>
<th>WH</th>
</tr>
</thead>
<tbody>
<tr>
<td>affection</td>
<td>0.789</td>
<td>0.832</td>
<td>0.524</td>
</tr>
<tr>
<td>jealous</td>
<td>0.515</td>
<td>0.555</td>
<td>0.465</td>
</tr>
<tr>
<td>gossip</td>
<td>0.335</td>
<td>0</td>
<td>0.405</td>
</tr>
<tr>
<td>wuthering</td>
<td>0</td>
<td>0</td>
<td>0.588</td>
</tr>
</tbody>
</table>

\[
\cos(SaS,PaP) \approx 0.789 \times 0.832 + 0.515 \times 0.555 + 0.335 \times 0.0 + 0.0 \times 0.0 \approx 0.94
\]

\[
\cos(SaS,WH) \approx 0.79
\]

\[
\cos(PaP,WH) \approx 0.69
\]
Computing cosine scores

CosineScore(q)

1. `float Scores[N] = 0`
2. `float Length[N]`
3. `for each` query term t
4. `do` calculate $w_{t,q}$ and fetch postings list for t
5. `for each` pair $(d, tf_{t,d})$ in postings list
6. `do` $Scores[d] + = w_{t,d} \times w_{t,q}$
7. `Read the array Length`
8. `for each` d
10. `return` Top K components of $Scores[]$
tf-idf weighting has many variants

<table>
<thead>
<tr>
<th>Term frequency</th>
<th>Document frequency</th>
<th>Normalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (natural)</td>
<td>n (no)</td>
<td>n (none)</td>
</tr>
<tr>
<td>tf(_{t,d})</td>
<td>1 (logarithm)</td>
<td>1</td>
</tr>
<tr>
<td>1 + \log(tf(_{t,d}))</td>
<td>t (idf)</td>
<td>c (cosine)</td>
</tr>
<tr>
<td>a (augmented)</td>
<td>0.5 + \frac{0.5 \times tf({t,d})}{\max_t(tf({t,d}))}</td>
<td>p (prob idf)</td>
</tr>
<tr>
<td>\max_t(tf(_{t,d}))</td>
<td>\max{0, \log \frac{N}{df_t}}</td>
<td>\max{0, \log \frac{N_{-df_t}}{df_t}}</td>
</tr>
<tr>
<td>b (boolean)</td>
<td>\begin{cases} 1 & \text{if } tf(_{t,d}) > 0 \ 0 & \text{otherwise} \end{cases}</td>
<td>u (pivoted unique)</td>
</tr>
<tr>
<td>L (log ave)</td>
<td>\frac{1+\log(tf({t,d}))}{1+\log(\text{ave}{t\in d}(tf(_{t,d})))}</td>
<td>b (byte size)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>\frac{1}{\sqrt{w_1^2+w_2^2+...+w_M^2}}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/u</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/\text{CharLength}^\alpha, \alpha < 1</td>
</tr>
</tbody>
</table>

Columns headed ‘n’ are acronyms for weight schemes.

Why is the base of the log in idf immaterial?
Weighting may differ in queries vs documents

- Many search engines allow for different weightings for queries vs. documents
- SMART Notation: denotes the combination in use in an engine, with the notation $ddd.qqq$, using the acronyms from the previous table
- A very standard weighting scheme is: Inc.ltc
- Document: logarithmic tf (l as first character), no idf and cosine normalization
- Query: logarithmic tf (l in leftmost column), idf (t in second column), no normalization ...
tf-idf example: Inc.ltc

Document: car insurance auto insurance
Query: best car insurance

<table>
<thead>
<tr>
<th>Term</th>
<th>Query</th>
<th>Document</th>
<th>Prod</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tf-raw</td>
<td>tf-wt</td>
<td>df</td>
</tr>
<tr>
<td>auto</td>
<td>0</td>
<td>0</td>
<td>5000</td>
</tr>
<tr>
<td>best</td>
<td>1</td>
<td>1</td>
<td>50000</td>
</tr>
<tr>
<td>car</td>
<td>1</td>
<td>1</td>
<td>10000</td>
</tr>
<tr>
<td>insurance</td>
<td>1</td>
<td>1</td>
<td>10000</td>
</tr>
</tbody>
</table>

Exercise: what is N, the number of docs?

Doc length = \(\sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92 \)

Score = 0 + 0 + 0.27 + 0.53 = 0.8
Summary – vector space ranking

- Represent the query as a weighted tf-idf vector
- Represent each document as a weighted tf-idf vector
- Compute the cosine similarity score for the query vector and each document vector
- Rank documents with respect to the query by score
- Return the top K (e.g., $K = 10$) to the user
End Lesson
The Vector Space Model

\[\text{d}_1: \text{Politic} \]
- Bush declares war.
- Berlusconi gives support.

\[\text{d}_2: \text{Sport} \]
- Wonderful Totti in the yesterday match against Berlusconi’s Milan.

\[\text{d}_3: \text{Economic} \]
- Berlusconi acquires Inzaghi before elections.

\[\text{q}_1: \text{Berlusconi visited Bush} \]

\[\text{q}_2: \text{Totti will not play against Berlusconi’s Milan} \]
VSM: formal definition

- VSM (Salton89’)
 - Features are dimensions of a Vector Space.
 - Documents and Queries are vectors of feature weights.
 - A set of documents is retrieved based on $\vec{d} \cdot \vec{q}$
 - where \vec{d}, \vec{q} are the vectors representing documents and query and th is
Feature Vectors

- Each example is associated with a vector of n feature (e.g. unique words)

\[\tilde{x} = (0, \ldots, 1, \ldots, 0, \ldots, 1, \ldots, 0, \ldots, 0, \ldots) \]

acquisition buy market sell stocks

- The dot product $\tilde{X} \cdot \tilde{Z}$ This provides a sort of similarity
Feature Selection

Some words, i.e. features, may be irrelevant

For example, “function words” as: “the”, “on”, ”those”…

Two benefits:
- efficiency
- Sometime the accuracy

Sort features by relevance and select the m-best
Document weighting: an example

- \(N \), the overall number of documents,
- \(N_f \), the number of documents that contain the feature \(f \)
- \(o_f^d \), the occurrences of the features \(f \) in the document \(d \)

The weight \(f \) in a document is:

\[
\omega_f^d = \left(\log \frac{N}{N_f} \right) \times o_f^d = IDF(f) \times o_f^d
\]

The weight can be normalized:

\[
\omega_f^{\text{norm}} = \frac{\omega_f^d}{\sqrt{\sum_{t \in d} (\omega_t^d)^2}}
\]
Relevance Feedback and query expansion: the Rocchio’s formula

- ω_f^d, the weight of f in d
 - Several weighting schemes (e.g. TF * IDF, Salton 91’)

- q_f, the profile weights of f in C_i:
 \[
 q_f = \max \left\{ 0, \frac{\beta}{|T|} \sum_{d \in T} \omega_f^d - \frac{\gamma}{|T|} \sum_{d \in \overline{T}} \omega_f^d \right\}
 \]

- T_i, the training documents in q
Similarity estimation between query and documents

Given the document and the category representation

\[
\vec{d} = \langle \omega^d_{f_1}, ..., \omega^d_{f_n} \rangle, \quad \vec{q} = \langle \Omega^i_{f_1}, ..., \Omega^i_{f_n} \rangle
\]

It can be defined the following similarity function (cosine measure)

\[
s_{d,i} = \cos(\vec{d}, \vec{q}) = \frac{\vec{d} \cdot \vec{q}}{\|\vec{d}\| \times \|\vec{q}\|} = \frac{\sum_{f} \omega^d_f \times \Omega^i_f}{\|\vec{d}\| \times \|\vec{q}\|}
\]

\(d \) is assigned to \(\vec{q} \) if \(\vec{d} \cdot \vec{q} > \sigma \)
Performance Measurements

- Given a set of document T
- Precision = $\frac{\# \text{Correct Retrieved Document}}{\# \text{Retrieved Documents}}$
- Recall = $\frac{\# \text{Correct Retrieved Document}}{\# \text{Correct Documents}}$