Natural Language Processing and Information Retrieval

Indexing and Vector Space Models

Alessandro Moschitti

Department of Computer Science and Information
Engineering
University of Trento
Email: moschitti@disi.unitn.it

Outline

- Preprocessing for Inverted index production
- Vector Space

Stop words

- With a stop list, you exclude from the dictionary entirely the commonest words. Intuition:
 - They have little semantic content: the, a, and, to, be
 - There are a lot of them: ~30% of postings for top 30 words
- But the trend is away from doing this:
 - Good compression techniques means the space for including stopwords in a system is very small
 - Good query optimization techniques mean you pay little at query time for including stop words.
 - You need them for:
 - Phrase queries: "King of Denmark"
 - Various song titles, etc.: "Let it be", "To be or not to be"
 - "Relational" queries: "flights to London"

Normalization to terms

- We need to "normalize" words in indexed text as well as query words into the same form
 - We want to match U.S.A. and USA
- Result is terms: a term is a (normalized) word type,
 which is an entry in our IR system dictionary
- We most commonly implicitly define equivalence classes of terms by, e.g.,
 - deleting periods to form a term
 - U.S.A., USA → USA
 - deleting hyphens to form a term
 - anti-discriminatory, antidiscriminatory \rightarrow antidiscriminatory

Case folding

- Reduce all letters to lower case
 - exception: upper case in mid-sentence?
 - e.g., General Motors
 - Fed vs. fed
 - SAIL vs. sail
 - Often best to lower case everything, since users will use lowercase regardless of 'correct' capitalization...
- Google example:
 - Query C.A.T.
 - #1 result was for "cat" (well, Lolcats) not Caterpillar Inc.

Normalization to terms

- An alternative to equivalence classing is to do asymmetric expansion
- An example of where this may be useful

Enter: window
Search: window, windows

Enter: windows Search: Windows, windows, window

Enter: Windows Search: Windows

Potentially more powerful, but less efficient

Lemmatization

- Reduce inflectional/variant forms to base form
- E.g.,
 - \blacksquare am, are, is \rightarrow be
 - \blacksquare car, cars, car's, cars' \rightarrow car
- the boy's cars are different colors → the boy car be different color
- Lemmatization implies doing "proper" reduction to dictionary headword form

Stemming

- Reduce terms to their "roots" before indexing
- "Stemming" suggest crude affix chopping
 - language dependent
 - e.g., automate(s), automatic, automation all reduced to automat.

for example compressed and compression are both accepted as equivalent to compress.

for exampl compress and compress ar both accept as equival to compress

Porter's algorithm

- Commonest algorithm for stemming English
 - Results suggest it's at least as good as other stemming options
- Conventions + 5 phases of reductions
 - phases applied sequentially
 - each phase consists of a set of commands
 - sample convention: Of the rules in a compound command, select the one that applies to the longest suffix.

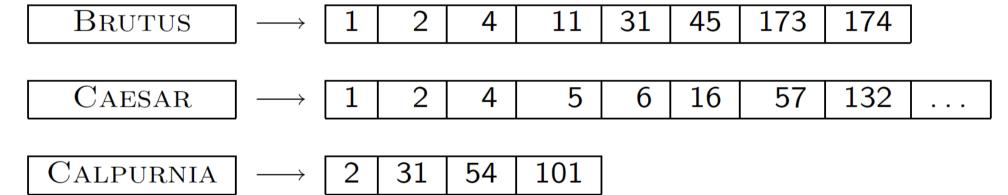
Typical rules in Porter

- \blacksquare sses \rightarrow ss
- $ies \rightarrow i$
- \blacksquare ational \rightarrow ate
- $tional \rightarrow tion$

- Rules sensitive to the measure of words
- (m>1) EMENT \rightarrow
 - $replacement \rightarrow replac$
 - cement → cement

Dictionary data structures for inverted indexes

The dictionary data structure stores the term vocabulary, document frequency, pointers to each postings list ... in what data structure?



:

A naïve dictionary

An array of struct:

term	document	pointer to
	frequency	postings list
а	656,265	\longrightarrow
aachen	65	\longrightarrow
zulu	221	\longrightarrow

char[20] int Postings *
20 bytes 4/8 bytes 4/8 bytes

- How do we store a dictionary in memory efficiently?
- How do we quickly look up elements at query time?

Dictionary data structures

- Two main choices:
 - Hashtables
 - Trees
- Some IR systems use hashtables, some trees

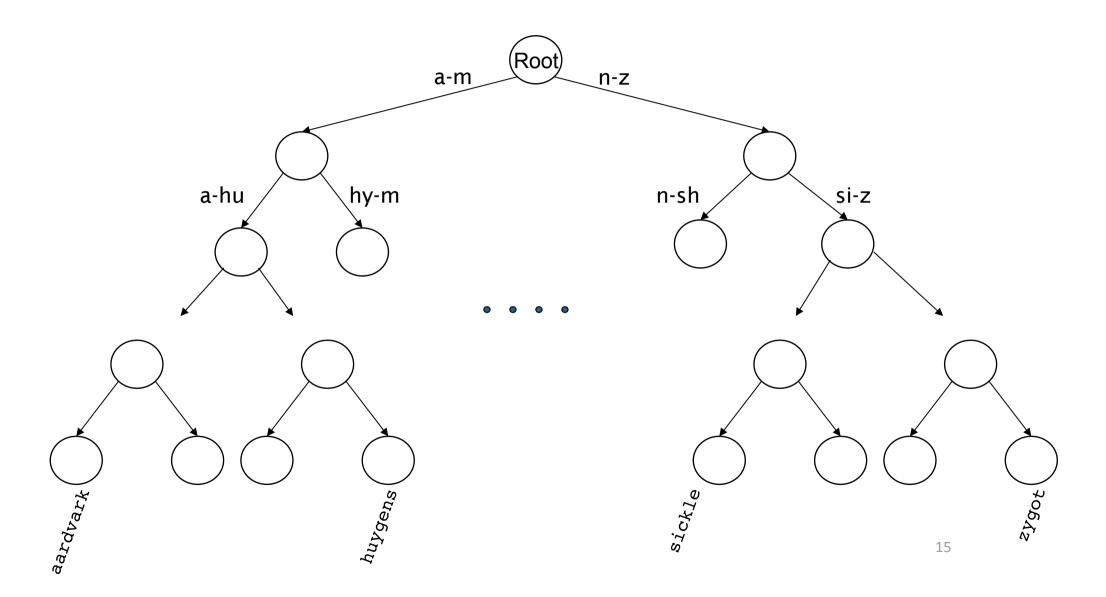
Hashtables

- Each vocabulary term is hashed to an integer
 - (We assume you've seen hashtables before)
- Pros:
 - Lookup is faster than for a tree: O(1)
- Cons:
 - No easy way to find minor variants:
 - judgment/judgement
 - No prefix search

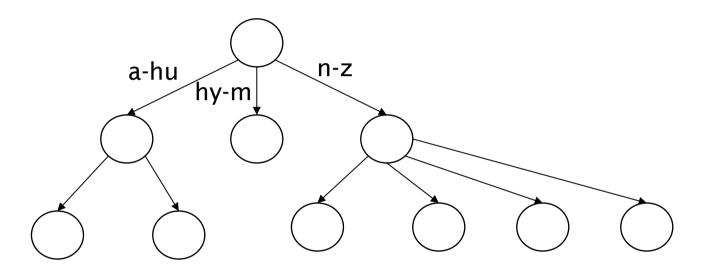
[tolerant retrieval]

If vocabulary keeps growing, need to occasionally do the expensive operation of rehashing everything

Trees: binary tree



Tree: B-tree



Definition: Every internal nodel has a number of children in the interval [a,b] where a, b are appropriate natural numbers, e.g., [2,4].

Trees

- Simplest: binary tree
- More usual: B-trees
- Trees require a standard ordering of characters and hence strings ... but we typically have one
- Pros:
 - Solves the prefix problem (terms starting with hyp)
- Cons:
 - Slower: O(log M) [and this requires balanced tree]
 - Rebalancing binary trees is expensive
 - But B-trees mitigate the rebalancing problem

Wild-card queries: *

- mon*: find all docs containing any word beginning with "mon".
- Easy with binary tree (or B-tree) lexicon: retrieve all words in range: mon ≤ w < moo</p>
- *mon: find words ending in "mon": harder
 - Maintain an additional B-tree for terms backwards.

Can retrieve all words in range: *nom ≤ w < non*.

Exercise: from this, how can we enumerate all terms meeting the wild-card query *pro*cent*?

Bigram (k-gram) indexes

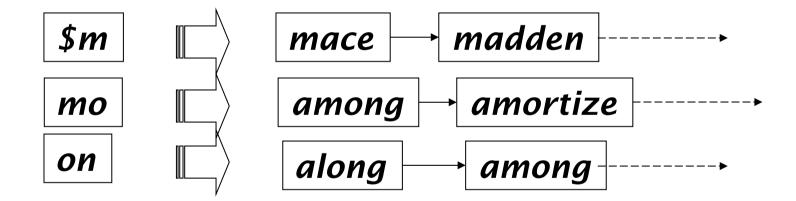
- Enumerate all k-grams (sequence of k chars) occurring in any term
- e.g., from text "April is the cruelest month" we get the 2-grams (bigrams)

```
$a,ap,pr,ri,il,l$,$i,is,s$,$t,th,he,e$,$c,cr,ru,ue,el,le,es,st,t$, $m,mo,on,nt,h$
```

- \$ is a special word boundary symbol
- Maintain a <u>second</u> inverted index <u>from bigrams to</u> <u>dictionary terms</u> that match each bigram.

Bigram index example

■ The k-gram index finds terms based on a query consisting of k-grams (here k=2).



SPELLING CORRECTION

Spell correction

- Two principal uses
 - Correcting document(s) being indexed
 - Correcting user queries to retrieve "right" answers
- Two main flavors:
 - Isolated word
 - Check each word on its own for misspelling
 - Will not catch typos resulting in correctly spelled words
 - e.g., $from \rightarrow form$
 - Context-sensitive
 - Look at surrounding words,
 - e.g., I flew form Heathrow to Narita.

Document correction

- Especially needed for OCR' ed documents
 - Correction algorithms are tuned for this: rn/m
 - Can use domain-specific knowledge
 - E.g., OCR can confuse O and D more often than it would confuse O and I (adjacent on the QWERTY keyboard, so more likely interchanged in typing).
- But also: web pages and even printed material have typos
- Goal: the dictionary contains fewer misspellings
- But often we don't change the documents and instead fix the query-document mapping

Query mis-spellings

- Our principal focus here
 - E.g., the query *Alanis Morisett*
- We can either
 - Retrieve documents indexed by the correct spelling, OR
 - Return several suggested alternative queries with the correct spelling
 - Did you mean ...?

Isolated word correction

- Fundamental premise there is a lexicon from which the correct spellings come
- Two basic choices for this
 - A standard lexicon such as
 - Webster's English Dictionary
 - An "industry-specific" lexicon hand-maintained
 - The lexicon of the indexed corpus
 - E.g., all words on the web
 - All names, acronyms etc.
 - (Including the mis-spellings)

Isolated word correction

- Given a lexicon and a character sequence Q, return the words in the lexicon closest to Q
- What's "closest"?
- We'll study several alternatives
 - Edit distance (Levenshtein distance)
 - Weighted edit distance
 - *n*-gram overlap

Edit distance

- Given two strings S_1 and S_2 , the minimum number of operations to convert one to the other
- Operations are typically character-level
 - Insert, Delete, Replace, (Transposition)
- E.g., the edit distance from dof to dog is 1
 - From *cat* to *act* is 2 (Just 1 with transpose.)
 - from cat to dog is 3.
- Generally found by dynamic programming.
- See http://www.merriampark.com/ld.htm for a nice example plus an applet.

Weighted edit distance

- As above, but the weight of an operation depends on the character(s) involved
 - Meant to capture OCR or keyboard errors Example: m more likely to be mis-typed as n than as q
 - Therefore, replacing m by n is a smaller edit distance than by q
 - This may be formulated as a probability model
- Requires weight matrix as input
- Modify dynamic programming to handle weights

Using edit distances

- Given query, first enumerate all character sequences within a preset (weighted) edit distance (e.g., 2)
- Intersect this set with list of "correct" words
- Show terms you found to user as suggestions
- Alternatively,
 - We can look up all possible corrections in our inverted index and return all docs ... slow
 - We can run with a single most likely correction
- The alternatives disempower the user, but save a round of interaction with the user

Edit distance to all dictionary terms?

- Given a (mis-spelled) query do we compute its edit distance to every dictionary term?
 - Expensive and slow
 - Alternative?
- How do we cut the set of candidate dictionary terms?
- One possibility is to use n-gram overlap for this
- This can also be used by itself for spelling correction.

n-gram overlap

- Enumerate all the n-grams in the query string as well as in the lexicon
- Use the *n*-gram index (recall wild-card search) to retrieve all lexicon terms matching any of the query *n*-grams
- Threshold by number of matching n-grams
 - Variants weight by keyboard layout, etc.

Example with trigrams

- Suppose the text is november
 - Trigrams are *nov*, *ove*, *vem*, *emb*, *mbe*, *ber*.
- The query is *december*
 - Trigrams are dec, ece, cem, emb, mbe, ber.
- So 3 trigrams overlap (of 6 in each term)
- How can we turn this into a normalized measure of overlap?

One option – Jaccard coefficient

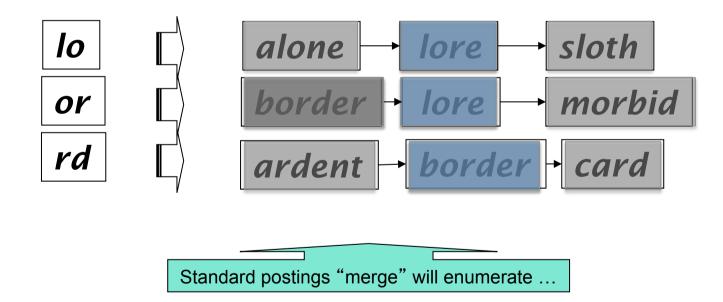
- A commonly-used measure of overlap
- Let X and Y be two sets; then the J.C. is

$$|X \cap Y|/|X \cup Y|$$

- Equals 1 when X and Y have the same elements and zero when they are disjoint
- X and Y don't have to be of the same size
- Always assigns a number between 0 and 1
 - Now threshold to decide if you have a match
 - E.g., if J.C. > 0.8, declare a match

Matching trigrams

 Consider the query *lord* – we wish to identify words matching 2 of its 3 bigrams (*lo, or, rd*)



Adapt this to using Jaccard (or another) measure.

Context-sensitive spell correction

- Text: *I flew from Heathrow to Narita*.
- Consider the phrase query "flew form Heathrow"
- We'd like to respond

Did you mean "flew from Heathrow"?

because no docs matched the query phrase.

Context-sensitive correction

- Need surrounding context to catch this.
- First idea: retrieve dictionary terms close (in weighted edit distance) to each query term
- Now try all possible resulting phrases with one word "fixed" at a time
 - flew from heathrow
 - fled form heathrow
 - flea form heathrow
- Hit-based spelling correction: Suggest the alternative that has lots of hits.

Exercise

Suppose that for "flew form Heathrow" we have 7 alternatives for flew, 19 for form and 3 for heathrow.

How many "corrected" phrases will we enumerate in this scheme?

General issues in spell correction

- We enumerate multiple alternatives for "Did you mean?"
- Need to figure out which to present to the user
 - The alternative hitting most docs
 - Query log analysis
- More generally, rank alternatives probabilistically argmax_{corr} P(corr | query)
 - From Bayes rule, this is equivalent to argmax_{corr} P(query | corr) * P(corr)

Noisy channel

Language model

End Lecture

