Natural Language Processing and
Information Retrieval

Indexing and Vector Space Models

Alessandro Moschitti

Department of Computer Science and Information
Engineering
University of Trento
Email: moschitti@disi.unitn.it

Outline

= Preprocessing for Inverted index production

= Vector Space

Stop words

s With a stop list, you exclude from the dictionary entirely
the commonest words. Intuition:

¥ They have little semantic content: the, a, and, to, be
¥ There are a lot of them: ~30% of postings for top 30 words

s But the trend is away from doing this:

¥ Good compression techniques means the space for including stopwords in
a system is very small

¥ Good query optimization techniques mean you pay little at query time for
including stop words.
¥ You need them for:
o Phrase queries: “King of Denmark”
o Various song titles, etc.: “Let it be”, “To be or not to be”
o “Relational” queries: “flights to London”

Normalization to terms

= We need to normalize” words in indexed text as well
as query words into the same form
¢ We want to match U.S.A. and USA

s Result is terms: a term is a (normalized) word type,
which is an entry in our IR system dictionary

» We most commonly implicitly define equivalence

classes of terms by, e.g.,

r deleting periods to form a term
o U.S.A.,USA & USA

¥ deleting hyphens to form a term
o anti-discriminatory, antidiscriminatory = antidiscriminatory

Case folding

= Reduce all letters to lower case

E exception: upper case in mid-sentence?

o e.g., General Motors
o Fed vs. fed
o SAIL vs. sail

¢ Often best to lower case everything, since
users will use lowercase regardless of
‘correct’ capitalization...

s Google example:

¢ Query C.A.T.

¥ #1 result was for “cat” (well, Lolcats) not
Caterpillar Inc.

Normalization to terms

m An alternative to equivalence classing is to do

asymmetric expansion

x An example of where this may be useful

¥ Enter: window Search: window, windows
¥ Enter: windows Search: Windows, windows, window
¥ Enter: Windows Search: Windows

m Potentially more powerful, but less efficient

Lemmatization

Reduce inflectional/variant forms to base form

E.g.,
E am, are, is — be
¥ car, cars, car's, cars' — car

the boy's cars are different colors — the boy car be

different color

Lemmatization implies doing “proper” reduction to
dictionary headword form

Stemming

= Reduce terms to their “roots” before indexing

= Stemming suggest crude affix chopping
¥ language dependent
¥ e.g., automate(s), automatic, automation all reduced to

automat.
for example compressed for exampl compress and
and compression are both j‘ compress ar both accept
accepted as equivalent to as equival to compress
compress.

Porter’ s algorithm

s Commonest algorithm for stemmming English
¥ Results suggest it’ s at least as good as other stemming
options

s Conventions + 5 phases of reductions

¥ phases applied sequentially
¥ each phase consists of a set of commands

¥ sample convention: Of the rules in a compound command,
select the one that applies to the longest suffix.

Typical rules in Porter

sses — ss
jes — |
ational — ate

tional — tion

Rules sensitive to the measure of words

(m>1) EMENT =

o replacement - replac
@ cement — cement

Dictionary data structures for inverted

indexes

s The dictionary data structure stores the term

vocabulary, document frequency, pointers to each

postings list ... in w

BRrRuTUS

CAESAR

CALPURNIA

N——
dictionary

—

nat data structure?

1 2 4 11 | 31 | 45 | 173 | 174
1 2 4 5 6| 16 57 | 132
213154 101

Ve

postings

A naive dictionary

= An array of struct:

term document pointer to
frequency postings list
a 056,265 —
aachen 65 —
zulu 221 —
char[20] int Postings *

20 bytes 4/8 bytes 4/8 bytes
s How do we store a dictionary in memory efficiently?

s How do we quickly look up elements at query time?

Dictionary data structures

= Two main choices:

» Hashtables
¥ Trees

m Some IR systems use hashtables, some trees

Hashtables

s Each vocabulary term is hashed to an integer

¥ (We assume you’ ve seen hashtables before)

s Pros:

¥ Lookup is faster than for a tree: O(1)

s Cons:
¥ No easy way to find minor variants:
o judgment/judgement
¥ No prefix search [tolerant retrieval]

¥ If vocabulary keeps growing, need to occasionally do the
expensive operation of rehashing everything

Trees: binary tree

Tree: B-tree

a-hu n-z

» Definition: Every internal nodel has a number of children in the
interval [a,b] where a, b are appropriate natural numbers, e.g.,
[2,4].

Trees

= Simplest: binary tree

= More usual: B-trees

m Trees require a standard ordering of characters and hence
strings ... but we typically have one
m Pros:
¥ Solves the prefix problem (terms starting with hyp)
s Cons:

¥ Slower: O(log M) [and this requires balanced tree]
¥ Rebalancing binary trees is expensive

o But B-trees mitigate the rebalancing problem

Wild-card queries: *

s mon*: find all docs containing any word beginning with

(11 7

mon

s Easy with binary tree (or B-tree) lexicon: retrieve all
words in range: mon £ w < moo

= *mon: find words ending in “mon”: harder

¢ Maintain an additional B-tree for terms backwards.
Can retrieve all words in range: nom £ w < non.

Exercise: from this, how can we enumerate all terms
meeting the wild-card query pro*cent?

Bigram (k-gram) indexes

s Enumerate all k-grams (sequence of k chars) occurring
In any term
s e.g., from text “April is the cruelest month” we get

the 2-grams (bigrams)
$a,ap,pr,ri,il,1$,%i,is,s$,%t,th,he,e$,%c,cr,ru,
ue,el le,es,st,t$, m,mo,on,nt,h
» Sis aspecial word boundary symbol

s Maintain a second inverted index from bigrams to

dictionary terms that match each bigram.

Bigram index example

s The k-gram index finds terms based on a query
consisting of k-grams (here k=2).

$m N mace — madden ---—---—--- >
mo | among — amortize - >
on m along " AMONGg - -

SPELLING CORRECTION

Spell correction

s Two principal uses

¥ Correcting document(s) being indexed
¥ Correcting user queries to retrieve “right” answers

s Two main flavors:

» Isolated word

o Check each word on its own for misspelling
o Will not catch typos resulting in correctly spelled words
o e.g., from — form

¥ Context-sensitive

o Look at surrounding words,
o e.g., I flew form Heathrow to Narita.

Document correction

s Especially needed for OCR’ ed documents

» Correction algorithms are tuned for this: rn/m
¢ Can use domain-specific knowledge

o E.g., OCR can confuse O and D more often than it would confuse O
and | (adjacent on the QWERTY keyboard, so more likely
interchanged in typing).

s But also: web pages and even printed material have
typos
s Goal: the dictionary contains fewer misspellings

s But often we don’ t change the documents and
instead fix the query-document mapping

Query mis-spellings

m Our principal focus here
¥ E.g., the query Alanis Morisett

s We can either
¥ Retrieve documents indexed by the correct spelling, OR

¥ Return several suggested alternative queries with the
correct spelling
o Did you mean ... ?

Isolated word correction

s Fundamental premise — there is a lexicon from which
the correct spellings come

s Two basic choices for this

¥ A standard lexicon such as
o Webster s English Dictionary
o An “industry-specific” lexicon — hand-maintained

¥ The lexicon of the indexed corpus
o E.g., all words on the web

o All names, acronyms etc.
o (Including the mis-spellings)

Isolated word correction

= Given a lexicon and a character sequence Q, return
the words in the lexicon closest to Q

= What' s “closest”?

s We' |l study several alternatives
r Edit distance (Levenshtein distance)

r Weighted edit distance
¥ n-gram overlap

Edit distance

= Given two strings S; and S,, the minimum number of
operations to convert one to the other

s Operations are typically character-level

¥ Insert, Delete, Replace, (Transposition)

s E.g., the edit distance from dof to dog is 1
¥ From cat to act is 2 (Just 1 with transpose.)

¥ from cat to dog is 3.
s Generally found by dynamic programming.

n See for a nice
example plus an applet.

Weighted edit distance

s As above, but the weight of an operation depends on

the character(s) involved

¥ Meant to capture OCR or keyboard errors
Example: m more likely to be mis-typed as n than as g

¥ Therefore, replacing m by n is a smaller edit distance than

by q
¥ This may be formulated as a probability model

s Requires weight matrix as input

» Modify dynamic programming to handle weights

Using edit distances

s Given query, first enumerate all character sequences
within a preset (weighted) edit distance (e.g., 2)

s Intersect this set with list of “correct” words
s Show terms you found to user as suggestions

= Alternatively,

¥ We can look up all possible corrections in our inverted index
and return all docs ... slow

¥ We can run with a single most likely correction

s The alternatives disempower the user, but save a
round of interaction with the user

Edit distance to all dictionary terms?

s Given a (mis-spelled) query — do we compute its edit
distance to every dictionary term?

¥ Expensive and slow
¥ Alternative?

s How do we cut the set of candidate dictionary terms?
m One possibility is to use n-gram overlap for this

= This can also be used by itself for spelling correction.

n-gram overlap

s Enumerate all the n-grams in the query string as well

as in the lexicon

s Use the n-gram index (recall wild-card search) to
retrieve all lexicon terms matching any of the query n-

grams

s Threshold by number of matching n-grams
¥ Variants — weight by keyboard layout, etc.

Example with trigrams

Suppose the text is november

¥ Trigrams are nov, ove, vem, emb, mbe, ber.

The query is december

¥ Trigrams are dec, ece, cem, emb, mbe, ber.
So 3 trigrams overlap (of 6 in each term)

How can we turn this into a normalized measure of

overlap?

One option — Jaccard coefficient

A commonly-used measure of overlap
Let X and Y be two sets; then the J.C. is

X NY|/|XUY]|

Equals 1 when X and Y have the same elements and
zero when they are disjoint

X and Y don’ t have to be of the same size
Always assighs a number between 0 and 1

¥ Now threshold to decide if you have a match
¥ E.g., ifJ.C. >0.8, declare a match

Matching trigrams

s Consider the query lord — we wish to identify words
matching 2 of its 3 bigrams (lo, or, rd)

lo alone i sloth
or | |EOREER6R | morbid

rd ardent ﬁ* card

—

Standard postings “merge” will enumerate ...

Adapt this to using Jaccard (or another) measure.

Context-sensitive spell correction

n Text: I flew from Heathrow to Narita.
s Consider the phrase query “flew form Heathrow”
s We' d like to respond

Did you mean “flew from Heathrow’?

because no docs matched the query phrase.

Context-sensitive correction

s Need surrounding context to catch this.

a First idea: retrieve dictionary terms close (in weighted
edit distance) to each query term

= Now try all possible resulting phrases with one word
“fixed” at a time

¢ flew from heathrow
v fled form heathrow
¢ flea form heathrow

s Hit-based spelling correction: Suggest the alternative
that has lots of hits.

Exercise

s Suppose that for “flew form Heathrow” we have 7
alternatives for flew, 19 for form and 3 for heathrow.

How many “corrected” phrases will we enumerate in
this scheme?

General issues in spell correction

s We enumerate multiple alternatives for “Did you
mean?’

s Need to figure out which to present to the user
¥ The alternative hitting most docs
¥ Query log analysis
s More generally, rank alternatives probabilistically

argmax_,,, P(corr | query)

¥ From Bayes rule, this is equivalent to
argmax_,,, P(query | corr) * P(corr)

Noisy channel Language model

End Lecture

